Imbalanced class incremental learning system: A task incremental diagnosis method for imbalanced industrial streaming data

In recent years, machine learning has been widely used in various fault diagnosis scenarios. However, existing machine learning algorithms tend to work well in closed static environments and handle a constant number of categories. However, in industrial applications, the monitored data is streaming...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced engineering informatics Ročník 62; s. 102832
Hlavní autoři: Shi, Mingkuan, Ding, Chuancang, Shen, Changqing, Huang, Weiguo, Zhu, Zhongkui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:1474-0346
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, machine learning has been widely used in various fault diagnosis scenarios. However, existing machine learning algorithms tend to work well in closed static environments and handle a constant number of categories. However, in industrial applications, the monitored data is streaming and new categories are constantly introduced into the diagnostic system. In real industrial scenarios, monitoring data is often characterized by an imbalanced distribution due to the uncertainty of machinery operation. The diagnosis of such imbalanced industrial streaming data is known as the imbalanced class incremental learning problem in industrial applications. A novel imbalanced class incremental learning system (ICILS) is proposed for imbalanced industrial streaming data and applied to intelligent fault diagnosis of mechanical equipment. Specifically, a novel graph convolutional sparse autoencoder is firstly designed for the imbalanced dataset to extract feature information with large inter-class scatter. Next, a classification loss function is designed to enhance the classification decision boundary between majority and minority classes by utilizing the prior distribution information of the imbalanced data. Finally, a novel imbalanced class incremental learning rule is derived to realize new class learning without replaying old class data. ICILS has high accuracy and computational efficiency, while ensuring data privacy and security. The designed experiments for the diagnosis of imbalanced industrial streaming data indicated that the proposed method has significant advantages over other methods and can effectively deal with imbalanced streaming data.
AbstractList In recent years, machine learning has been widely used in various fault diagnosis scenarios. However, existing machine learning algorithms tend to work well in closed static environments and handle a constant number of categories. However, in industrial applications, the monitored data is streaming and new categories are constantly introduced into the diagnostic system. In real industrial scenarios, monitoring data is often characterized by an imbalanced distribution due to the uncertainty of machinery operation. The diagnosis of such imbalanced industrial streaming data is known as the imbalanced class incremental learning problem in industrial applications. A novel imbalanced class incremental learning system (ICILS) is proposed for imbalanced industrial streaming data and applied to intelligent fault diagnosis of mechanical equipment. Specifically, a novel graph convolutional sparse autoencoder is firstly designed for the imbalanced dataset to extract feature information with large inter-class scatter. Next, a classification loss function is designed to enhance the classification decision boundary between majority and minority classes by utilizing the prior distribution information of the imbalanced data. Finally, a novel imbalanced class incremental learning rule is derived to realize new class learning without replaying old class data. ICILS has high accuracy and computational efficiency, while ensuring data privacy and security. The designed experiments for the diagnosis of imbalanced industrial streaming data indicated that the proposed method has significant advantages over other methods and can effectively deal with imbalanced streaming data.
ArticleNumber 102832
Author Ding, Chuancang
Shi, Mingkuan
Zhu, Zhongkui
Shen, Changqing
Huang, Weiguo
Author_xml – sequence: 1
  givenname: Mingkuan
  surname: Shi
  fullname: Shi, Mingkuan
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, PR China
– sequence: 2
  givenname: Chuancang
  surname: Ding
  fullname: Ding, Chuancang
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, PR China
– sequence: 3
  givenname: Changqing
  surname: Shen
  fullname: Shen, Changqing
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, PR China
– sequence: 4
  givenname: Weiguo
  surname: Huang
  fullname: Huang, Weiguo
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, PR China
– sequence: 5
  givenname: Zhongkui
  surname: Zhu
  fullname: Zhu, Zhongkui
  email: zhuzhongkui@suda.edu.cn
  organization: School of Rail Transportation, Soochow University, Suzhou 215131, PR China
BookMark eNp9kM1KAzEUhbOoYKs-gLu8wNRkJk5mdFWKP4WCG12HO8lNTZ3JSBKF-vSmVBBddHW4cL4D95uRiR89EnLJ2ZwzXl9t54BuXrJS5LtsqnJCplxIUbBK1KdkFuOW5V7Tyin5Wg0d9OA1Gqp7iJE6rwMO6BP0tEcI3vkNjbuYcLihC5ogvv3pGAcbP0YX6YDpdTTUjoG631XnzUdMweVqDoRhv2cgwTk5sdBHvPjJM_Jyf_e8fCzWTw-r5WJd6LKVqaixlrblVVd22rZgRGUr22jATiJvsckPWtnZTjc1NsI25toIVkpRWwAtmKnOiDzs6jDGGNAq7RIkN_oUwPWKM7XXprYqa1N7beqgLZP8H_ke3ABhd5S5PTCYX_p0GFTUDvcmXECdlBndEfobmNCNcA
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113346
crossref_primary_10_1016_j_eti_2025_104154
crossref_primary_10_1109_TIM_2025_3589703
crossref_primary_10_1080_10589759_2025_2534431
crossref_primary_10_1016_j_ress_2025_111239
crossref_primary_10_1088_1361_6501_ade554
crossref_primary_10_1016_j_knosys_2025_114044
Cites_doi 10.1016/j.ins.2023.119496
10.1016/j.eswa.2021.116459
10.1016/j.ress.2023.109832
10.1007/s11831-024-10146-y
10.1016/j.ymssp.2023.110309
10.1016/j.knosys.2023.110395
10.1109/MCI.2022.3222049
10.1016/j.aei.2023.102157
10.1016/j.ins.2022.12.090
10.1007/s12559-014-9259-y
10.1038/s42256-022-00568-3
10.1016/j.aei.2024.102513
10.1007/s11704-016-6903-6
10.1016/j.ress.2023.109601
10.1073/pnas.1611835114
10.1016/j.ress.2023.109522
10.1016/j.ress.2023.109705
10.1016/j.ymssp.2022.108826
10.1109/TII.2021.3138558
10.1016/j.aei.2022.101725
10.1109/TIM.2024.3480206
10.1016/j.neunet.2019.01.012
10.1016/j.ymssp.2022.109353
10.1016/j.eswa.2023.121001
10.1016/j.aei.2020.101150
10.1016/j.compstruct.2023.117792
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2024.102832
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_aei_2024_102832
S1474034624004804
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-6e67f913b2bcf9ad43f3f8caeb7e19e8283f7bfbc86e84f8d5d402746faac40d3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320957200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Sat Nov 29 03:19:54 EST 2025
Tue Nov 18 21:51:13 EST 2025
Sat Dec 14 16:15:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Industrial streaming data
Intelligent fault diagnosis
Rotating machinery
Class imbalance
Class incremental learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-6e67f913b2bcf9ad43f3f8caeb7e19e8283f7bfbc86e84f8d5d402746faac40d3
ParticipantIDs crossref_citationtrail_10_1016_j_aei_2024_102832
crossref_primary_10_1016_j_aei_2024_102832
elsevier_sciencedirect_doi_10_1016_j_aei_2024_102832
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Wu, Zhang, Guo, Ji, Pecht (b0140) 2022; 193
Zhao, Ding, Lu, Wang, Ma, Tao, Ma (b0030) 2023; 234
Parisi, Kemker, Part, Kanan, Wermter (b0090) 2019; 113
Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska (b0155) 2017; 114
Pan, Xu, Zheng, Tong (b0035) 2023; 624
Hu, He, Cheng, Peng (b0085) 2024; 241
Shi, Ding, Chang, Shen, Huang, Zhu (b0065) 2024
Chen, Shen, Wang, Kong, Chen, Zhu (b0115) 2022; 71
Fu, Cao, Chen, Ding (b0120) 2022; 178
Mallya, Lazebnik (b0165) 2018
Zhu, Zhang, Wang, Yin, Liu (b0180) 2021
Zhiyi, Haidong, Xiang, Yu, Junsheng (b0045) 2020; 46
Zhu, Zhai, Cao, Luo, Zha (b0170) 2022
Han, Xie, Pei (b0060) 2023; 648
Wang, Xiong, He (b0125) 2023; 266
Zhao, Yao, Deng, Jia, Liu (b0145) 2022; 170
Tian, Jiang, Zhang, Luo, Yin (b0150) 2024; 243
Yan, Zhong, Shao, Ming, Liu, Liu (b0025) 2023; 239
Rannen, Aljundi, Blaschko, Tuytelaars (b0160) 2017
Azad, Kim (b0055) 2024; 329
Zhao, Chen, Chen, Wang, Wang (b0195) 2014; 6
Zhu, Huang, Shen, Shen (b0005) 2022; 18
Qin, Liu, Mao (b0050) 2024; 61
Hou, Pan, Loy, Wang, Lin (b0205) 2019; 2019
Defferrard, Bresson, Vandergheynst (b0190) 2016; 29
Zhou, Wang, Qi, Ye, Zhan, Liu (b0075) 2024
Shi, Ding, Wang, Shen, Huang, Zhu (b0135) 2023; 240
van de Ven, Tuytelaars, Tolias (b0080) 2022; 4
Peng, Zhang, Li, Peng, Wang, Shen (b0105) 2023
Bruna, Zaremba, Szlam, LeCun (b0185) 2013
Ren, Lin, Feng, Zhu, Liu, Yan (b0010) 2023; 72
Shi, Ding, Chang, Wang, Huang, Zhu (b0015) 2023; 58
Liu, Chen, Wang, Kong, Shi, Shen (b0110) 2023; 72
Rebuffi, Kolesnikov, Sperl, Lampert (b0175) 2017
Liu, Huang, Ma, Luo (b0130) 2023; 196
Castro, Marín-Jiménez, Guil, Schmid, Alahari (b0200) 2018
Azad, Cheon, Raouf, Khalid, Kim (b0020) 2024
Febrinanto, Xia, Moore, Thapa, Aggarwal (b0100) 2023; 18
Zhu, Wang, Huang, Shen, Chen (b0070) 2024; 73
Liu, Zhong, Lin, Zhao, Fu, Liu (b0040) 2022; 54
Liu (b0095) 2017; 11
Azad (10.1016/j.aei.2024.102832_b0055) 2024; 329
Liu (10.1016/j.aei.2024.102832_b0095) 2017; 11
Zhu (10.1016/j.aei.2024.102832_b0180) 2021
Castro (10.1016/j.aei.2024.102832_b0200) 2018
Zhu (10.1016/j.aei.2024.102832_b0170) 2022
Liu (10.1016/j.aei.2024.102832_b0040) 2022; 54
Zhou (10.1016/j.aei.2024.102832_b0075) 2024
Hu (10.1016/j.aei.2024.102832_b0085) 2024; 241
Wu (10.1016/j.aei.2024.102832_b0140) 2022; 193
Kirkpatrick (10.1016/j.aei.2024.102832_b0155) 2017; 114
Zhao (10.1016/j.aei.2024.102832_b0030) 2023; 234
Liu (10.1016/j.aei.2024.102832_b0130) 2023; 196
Shi (10.1016/j.aei.2024.102832_b0065) 2024
Pan (10.1016/j.aei.2024.102832_b0035) 2023; 624
Chen (10.1016/j.aei.2024.102832_b0115) 2022; 71
Shi (10.1016/j.aei.2024.102832_b0015) 2023; 58
Zhiyi (10.1016/j.aei.2024.102832_b0045) 2020; 46
Fu (10.1016/j.aei.2024.102832_b0120) 2022; 178
Wang (10.1016/j.aei.2024.102832_b0125) 2023; 266
Defferrard (10.1016/j.aei.2024.102832_b0190) 2016; 29
Liu (10.1016/j.aei.2024.102832_b0110) 2023; 72
Febrinanto (10.1016/j.aei.2024.102832_b0100) 2023; 18
Zhu (10.1016/j.aei.2024.102832_b0005) 2022; 18
van de Ven (10.1016/j.aei.2024.102832_b0080) 2022; 4
Zhao (10.1016/j.aei.2024.102832_b0145) 2022; 170
Rebuffi (10.1016/j.aei.2024.102832_b0175) 2017
Tian (10.1016/j.aei.2024.102832_b0150) 2024; 243
Ren (10.1016/j.aei.2024.102832_b0010) 2023; 72
Zhu (10.1016/j.aei.2024.102832_b0070) 2024; 73
Rannen (10.1016/j.aei.2024.102832_b0160) 2017
Zhao (10.1016/j.aei.2024.102832_b0195) 2014; 6
Yan (10.1016/j.aei.2024.102832_b0025) 2023; 239
Hou (10.1016/j.aei.2024.102832_b0205) 2019; 2019
Qin (10.1016/j.aei.2024.102832_b0050) 2024; 61
Han (10.1016/j.aei.2024.102832_b0060) 2023; 648
Shi (10.1016/j.aei.2024.102832_b0135) 2023; 240
Bruna (10.1016/j.aei.2024.102832_b0185) 2013
Peng (10.1016/j.aei.2024.102832_b0105) 2023
Mallya (10.1016/j.aei.2024.102832_b0165) 2018
Azad (10.1016/j.aei.2024.102832_b0020) 2024
Parisi (10.1016/j.aei.2024.102832_b0090) 2019; 113
References_xml – volume: 46
  year: 2020
  ident: b0045
  article-title: An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE
  publication-title: Adv. Eng. Inf.
– start-page: 5871
  year: 2021
  end-page: 5880
  ident: b0180
  article-title: Prototype augmentation and self-supervision for incremental learning
  publication-title: Proc. IEEE/CVF Conference on Comp. Vis. Pattern Recognition
– year: 2023
  ident: b0105
  article-title: SCLIFD: supervised contrastive knowledge distillation for incremental fault diagnosis under limited fault data
  publication-title: ArXiv abs/2302.05929
– volume: 240
  year: 2023
  ident: b0135
  article-title: Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 624
  start-page: 395
  year: 2023
  end-page: 415
  ident: b0035
  article-title: Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis
  publication-title: Inf. Sci.
– volume: 234
  year: 2023
  ident: b0030
  article-title: An adaptive fault diagnosis framework under class-imbalanced conditions based on contrastive augmented deep reinforcement learning
  publication-title: Expert Syst. Appl.
– volume: 2019
  start-page: 831
  year: 2019
  end-page: 839
  ident: b0205
  article-title: Learning a unified classifier incrementally via rebalancing, in
  publication-title: IEEE/CVF Conference on Comp. Vis. Pattern Recognition (CVPR)
– volume: 266
  year: 2023
  ident: b0125
  article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 423
  year: 2014
  end-page: 431
  ident: b0195
  article-title: A class incremental extreme learning machine for activity recognition
  publication-title: Cogn. Comput.
– year: 2013
  ident: b0185
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv preprint arXiv:1312.6203
– year: 2024
  ident: b0075
  article-title: Class-incremental learning: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 241
  year: 2024
  ident: b0085
  article-title: Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 58
  year: 2023
  ident: b0015
  article-title: Cross-domain privacy-preserving broad network for fault diagnosis of rotating machinery
  publication-title: Adv. Eng. Inf.
– volume: 170
  year: 2022
  ident: b0145
  article-title: Normalized conditional variational auto-encoder with adaptive focal loss for imbalanced fault diagnosis of bearing-rotor system
  publication-title: Mech. Syst. Sig. Process.
– year: 2024
  ident: b0020
  article-title: Intelligent computational methods for damage detection of laminated composite structures for mobility applications: a comprehensive review
  publication-title: Arch. Comput. Meth. Eng.
– volume: 71
  start-page: 1
  year: 2022
  ident: b0115
  article-title: A lifelong learning method for gearbox diagnosis with incremental fault types
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: b0090
  article-title: Continual lifelong learning with neural networks: a review
  publication-title: Neural Netw.
– volume: 193
  year: 2022
  ident: b0140
  article-title: Imbalanced bearing fault diagnosis under variant working conditions using cost-sensitive deep domain adaptation network
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 1
  year: 2024
  end-page: 14
  ident: b0070
  article-title: A new incremental learning for bearing fault diagnosis under noisy conditions using classification and feature-level information
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 4
  start-page: 1185
  year: 2022
  end-page: 1197
  ident: b0080
  article-title: Three types of incremental learning
  publication-title: Nature Machine Intelligence
– start-page: 9296
  year: 2022
  end-page: 9305
  ident: b0170
  article-title: Self-sustaining representation expansion for non-exemplar class-incremental learning
  publication-title: Proce. IEEE/CVF Conference on Com. Vis. Pattern Recognition
– start-page: 1320
  year: 2017
  end-page: 1328
  ident: b0160
  article-title: Encoder based lifelong learning
  publication-title: Proc. IEEE int. conference on Com. Vis.
– volume: 11
  start-page: 359
  year: 2017
  end-page: 361
  ident: b0095
  article-title: Lifelong machine learning: a paradigm for continuous learning
  publication-title: Front. Comp. Sci.
– volume: 18
  start-page: 32
  year: 2023
  end-page: 51
  ident: b0100
  article-title: Graph lifelong learning: a survey
  publication-title: IEEE Comput. Intell. Mag.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  ident: b0110
  article-title: A lifelong learning method based on generative feature replay for bearing diagnosis with incremental fault types
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 61
  year: 2024
  ident: b0050
  article-title: Faulty rolling bearing digital twin model and its application in fault diagnosis with imbalanced samples
  publication-title: Adv. Eng. Inf.
– volume: 29
  year: 2016
  ident: b0190
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 1
  year: 2024
  end-page: 13
  ident: b0065
  article-title: Cross-domain class incremental broad network for continuous diagnosis of rotating machinery faults under variable operating conditions
  publication-title: IEEE Trans. Ind. Inf.
– volume: 178
  year: 2022
  ident: b0120
  article-title: Broad auto-encoder for machinery intelligent fault diagnosis with incremental fault samples and fault modes
  publication-title: Mech. Syst. Sig. Process.
– volume: 18
  start-page: 8077
  year: 2022
  end-page: 8086
  ident: b0005
  article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers
  publication-title: IEEE Trans. Ind. Inf.
– volume: 114
  start-page: 3521
  year: 2017
  end-page: 3526
  ident: b0155
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 54
  year: 2022
  ident: b0040
  article-title: Highly imbalanced fault diagnosis of gas turbines via clustering-based downsampling and deep siamese self-attention network
  publication-title: Adv. Eng. Inf.
– volume: 243
  year: 2024
  ident: b0150
  article-title: A novel data augmentation approach to fault diagnosis with class-imbalance problem
  publication-title: Reliab. Eng. Syst. Saf.
– start-page: 5533
  year: 2017
  end-page: 5542
  ident: b0175
  article-title: iCaRL: incremental classifier and representation learning
  publication-title: IEEE Conference on Comp. Vis. Pattern Recognition (CVPR)
– volume: 196
  year: 2023
  ident: b0130
  article-title: Class-incremental continual learning model for plunger pump faults based on weight space meta-representation
  publication-title: Mech. Syst. Sig. Process.
– volume: 239
  year: 2023
  ident: b0025
  article-title: Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 329
  year: 2024
  ident: b0055
  article-title: Hybrid deep convolutional networks for the autonomous damage diagnosis of laminated composite structures
  publication-title: Compos. Struct.
– start-page: 241
  year: 2018
  end-page: 257
  ident: b0200
  article-title: End-to-End Incremental Learning
  publication-title: Computer Vision – ECCV 2018
– start-page: 7765
  year: 2018
  end-page: 7773
  ident: b0165
  article-title: Packnet: adding multiple tasks to a single network by iterative pruning
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 35
  ident: b0010
  article-title: A systematic review on imbalanced learning methods in intelligent fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 648
  year: 2023
  ident: b0060
  article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine
  publication-title: Inf. Sci.
– volume: 648
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0060
  article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119496
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0010
  article-title: A systematic review on imbalanced learning methods in intelligent fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 5533
  year: 2017
  ident: 10.1016/j.aei.2024.102832_b0175
  article-title: iCaRL: incremental classifier and representation learning
  publication-title: IEEE Conference on Comp. Vis. Pattern Recognition (CVPR)
– volume: 193
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0140
  article-title: Imbalanced bearing fault diagnosis under variant working conditions using cost-sensitive deep domain adaptation network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116459
– volume: 243
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0150
  article-title: A novel data augmentation approach to fault diagnosis with class-imbalance problem
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109832
– year: 2024
  ident: 10.1016/j.aei.2024.102832_b0020
  article-title: Intelligent computational methods for damage detection of laminated composite structures for mobility applications: a comprehensive review
  publication-title: Arch. Comput. Meth. Eng.
  doi: 10.1007/s11831-024-10146-y
– volume: 196
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0130
  article-title: Class-incremental continual learning model for plunger pump faults based on weight space meta-representation
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2023.110309
– volume: 266
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0125
  article-title: Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110395
– volume: 18
  start-page: 32
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0100
  article-title: Graph lifelong learning: a survey
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2022.3222049
– volume: 29
  year: 2016
  ident: 10.1016/j.aei.2024.102832_b0190
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 58
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0015
  article-title: Cross-domain privacy-preserving broad network for fault diagnosis of rotating machinery
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102157
– year: 2024
  ident: 10.1016/j.aei.2024.102832_b0075
  article-title: Class-incremental learning: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5871
  year: 2021
  ident: 10.1016/j.aei.2024.102832_b0180
  article-title: Prototype augmentation and self-supervision for incremental learning
  publication-title: Proc. IEEE/CVF Conference on Comp. Vis. Pattern Recognition
– year: 2013
  ident: 10.1016/j.aei.2024.102832_b0185
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv preprint arXiv:1312.6203
– volume: 624
  start-page: 395
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0035
  article-title: Non-parallel bounded support matrix machine and its application in roller bearing fault diagnosis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.090
– start-page: 241
  year: 2018
  ident: 10.1016/j.aei.2024.102832_b0200
  article-title: End-to-End Incremental Learning
– volume: 6
  start-page: 423
  year: 2014
  ident: 10.1016/j.aei.2024.102832_b0195
  article-title: A class incremental extreme learning machine for activity recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9259-y
– volume: 4
  start-page: 1185
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0080
  article-title: Three types of incremental learning
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-022-00568-3
– volume: 61
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0050
  article-title: Faulty rolling bearing digital twin model and its application in fault diagnosis with imbalanced samples
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2024.102513
– volume: 11
  start-page: 359
  year: 2017
  ident: 10.1016/j.aei.2024.102832_b0095
  article-title: Lifelong machine learning: a paradigm for continuous learning
  publication-title: Front. Comp. Sci.
  doi: 10.1007/s11704-016-6903-6
– volume: 240
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0135
  article-title: Graph embedding deep broad learning system for data imbalance fault diagnosis of rotating machinery
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109601
– start-page: 1
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0065
  article-title: Cross-domain class incremental broad network for continuous diagnosis of rotating machinery faults under variable operating conditions
  publication-title: IEEE Trans. Ind. Inf.
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0115
  article-title: A lifelong learning method for gearbox diagnosis with incremental fault types
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 114
  start-page: 3521
  year: 2017
  ident: 10.1016/j.aei.2024.102832_b0155
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1611835114
– volume: 239
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0025
  article-title: Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109522
– volume: 241
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0085
  article-title: Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109705
– year: 2023
  ident: 10.1016/j.aei.2024.102832_b0105
  article-title: SCLIFD: supervised contrastive knowledge distillation for incremental fault diagnosis under limited fault data
  publication-title: ArXiv abs/2302.05929
– volume: 170
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0145
  article-title: Normalized conditional variational auto-encoder with adaptive focal loss for imbalanced fault diagnosis of bearing-rotor system
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.108826
– start-page: 1320
  year: 2017
  ident: 10.1016/j.aei.2024.102832_b0160
  article-title: Encoder based lifelong learning
  publication-title: Proc. IEEE int. conference on Com. Vis.
– volume: 18
  start-page: 8077
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0005
  article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3138558
– volume: 54
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0040
  article-title: Highly imbalanced fault diagnosis of gas turbines via clustering-based downsampling and deep siamese self-attention network
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101725
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0070
  article-title: A new incremental learning for bearing fault diagnosis under noisy conditions using classification and feature-level information
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2024.3480206
– volume: 113
  start-page: 54
  year: 2019
  ident: 10.1016/j.aei.2024.102832_b0090
  article-title: Continual lifelong learning with neural networks: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 178
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0120
  article-title: Broad auto-encoder for machinery intelligent fault diagnosis with incremental fault samples and fault modes
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2022.109353
– volume: 2019
  start-page: 831
  year: 2019
  ident: 10.1016/j.aei.2024.102832_b0205
  article-title: Learning a unified classifier incrementally via rebalancing, in
  publication-title: IEEE/CVF Conference on Comp. Vis. Pattern Recognition (CVPR)
– volume: 234
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0030
  article-title: An adaptive fault diagnosis framework under class-imbalanced conditions based on contrastive augmented deep reinforcement learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121001
– start-page: 7765
  year: 2018
  ident: 10.1016/j.aei.2024.102832_b0165
  article-title: Packnet: adding multiple tasks to a single network by iterative pruning
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.aei.2024.102832_b0110
  article-title: A lifelong learning method based on generative feature replay for bearing diagnosis with incremental fault types
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 9296
  year: 2022
  ident: 10.1016/j.aei.2024.102832_b0170
  article-title: Self-sustaining representation expansion for non-exemplar class-incremental learning
  publication-title: Proce. IEEE/CVF Conference on Com. Vis. Pattern Recognition
– volume: 46
  year: 2020
  ident: 10.1016/j.aei.2024.102832_b0045
  article-title: An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2020.101150
– volume: 329
  year: 2024
  ident: 10.1016/j.aei.2024.102832_b0055
  article-title: Hybrid deep convolutional networks for the autonomous damage diagnosis of laminated composite structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117792
SSID ssj0016897
Score 2.442499
Snippet In recent years, machine learning has been widely used in various fault diagnosis scenarios. However, existing machine learning algorithms tend to work well in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102832
SubjectTerms Class imbalance
Class incremental learning
Industrial streaming data
Intelligent fault diagnosis
Rotating machinery
Title Imbalanced class incremental learning system: A task incremental diagnosis method for imbalanced industrial streaming data
URI https://dx.doi.org/10.1016/j.aei.2024.102832
Volume 62
WOSCitedRecordID wos001320957200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016897
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2Sw-9UPpSoQ_50FNXWSWxN3a4rSgIKhVVKlX3FtmOTQNLeGyCUP9N_2nt2I53EVTl0EsUJc4kynyZjMffzADwgYkyo4ShiE-4iDBP9ScVKxoxZtaETC4IY12zCXJ4SGez_Otg8NvnwlzPSV3Tm5v84r-qWh_Tyjapsw9Qdy9UH9D7Wul6q9Wut_-k-IMzbuiKZl1fGNd4VNXCBgG1NuY-EmIrONu89IYtTldGlZZ_Vy1cg-mOi1gFuVXo92FyTdiZkeiy3HpXd-rZBTKUPBy5Oq3NEsf-W9dWePRFnz5tA1Y_uWYrOz9bE3ZxP1hbTNITBerjyyqc2G9d7PuHrI7b8-V4Rop7Zpw3wZjgKEYuMOlstLPY1sh2PlF6p_23oYiTMZPV2Agfh7GrtbZv_QN7ZqInvZ0UWkRhRBRWxCOwlpJJTodgbXqwO_vcL1Vl1Hbw8Y_tl847EuGt57jb-VlyaI42wLqbicCpRdAzMJD1c_DUzUqgs_mLF-BXABTsAAWXoAI9oKAF1DacQgOnlTE9nKCFE9QYgAFOMMAJ9nCCBk4vwfe93aOd_ch17IhEmpMmymRGVJ4gnnKhclZipJCigklOZJJLPbtHinDFBc0kxYqWkxKbuEimGBM4LtErMKzPa_kaQJRKikqmTQhj2BSZ0z5WziY0VkksEpFsgti_ykK4cvamq8q8uFeFm-Bjf8mFreXyt8HY66dwzqh1MguNtfsv23rIPd6AJ-ELeAuGzVUr34HH4rqpFlfvHdD-ANitr_w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imbalanced+class+incremental+learning+system%3A+A+task+incremental+diagnosis+method+for+imbalanced+industrial+streaming+data&rft.jtitle=Advanced+engineering+informatics&rft.au=Shi%2C+Mingkuan&rft.au=Ding%2C+Chuancang&rft.au=Shen%2C+Changqing&rft.au=Huang%2C+Weiguo&rft.date=2024-10-01&rft.issn=1474-0346&rft.volume=62&rft.spage=102832&rft_id=info:doi/10.1016%2Fj.aei.2024.102832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2024_102832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon