An evolutionary algorithm with clustering-based selection strategies for multi-objective optimization

This paper proposes an evolutionary algorithm with clustering-based selection strategies to deal with multi-objective optimization problems. In the proposed algorithm, two clustering based selection strategies, named local indicator selection and local crowding selection, have been devised to approp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 624; s. 217 - 234
Hlavní autori: Zhou, Shenghao, Mo, Xiaomei, Wang, Zidong, Li, Qi, Chen, Tianxiang, Zheng, Yujun, Sheng, Weiguo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.05.2023
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes an evolutionary algorithm with clustering-based selection strategies to deal with multi-objective optimization problems. In the proposed algorithm, two clustering based selection strategies, named local indicator selection and local crowding selection, have been devised to appropriately search the space. The local indicator selection is developed to select diverse and well-converged individuals for mating while the local crowding selection strategy is designed to maintain a set of evenly distributed individuals on the Pareto front for next generation of evolution. The proposed method is further enhanced by a clustering based crowding degree strategy, which is introduced to extract a uniformly distributed and convergent solutions as the final output. The performance of proposed algorithm has been evaluated on 31 benchmark problems and compared with related methods. The results clearly show the merits of proposed strategies and the proposed method could significantly outperform related methods to be compared.
AbstractList This paper proposes an evolutionary algorithm with clustering-based selection strategies to deal with multi-objective optimization problems. In the proposed algorithm, two clustering based selection strategies, named local indicator selection and local crowding selection, have been devised to appropriately search the space. The local indicator selection is developed to select diverse and well-converged individuals for mating while the local crowding selection strategy is designed to maintain a set of evenly distributed individuals on the Pareto front for next generation of evolution. The proposed method is further enhanced by a clustering based crowding degree strategy, which is introduced to extract a uniformly distributed and convergent solutions as the final output. The performance of proposed algorithm has been evaluated on 31 benchmark problems and compared with related methods. The results clearly show the merits of proposed strategies and the proposed method could significantly outperform related methods to be compared.
Author Chen, Tianxiang
Zheng, Yujun
Li, Qi
Mo, Xiaomei
Sheng, Weiguo
Zhou, Shenghao
Wang, Zidong
Author_xml – sequence: 1
  givenname: Shenghao
  surname: Zhou
  fullname: Zhou, Shenghao
  organization: Department of Computer Science, Hangzhou Normal University, Hangzhou 311121, PR China
– sequence: 2
  givenname: Xiaomei
  surname: Mo
  fullname: Mo, Xiaomei
  organization: College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, PR China
– sequence: 3
  givenname: Zidong
  surname: Wang
  fullname: Wang, Zidong
  organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
– sequence: 4
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: Department of Computer Science, Hangzhou Normal University, Hangzhou 311121, PR China
– sequence: 5
  givenname: Tianxiang
  surname: Chen
  fullname: Chen, Tianxiang
  organization: Department of Computer Science, San Jose State university, 1 Washington SQ, San Jose, CA 95192, USA
– sequence: 6
  givenname: Yujun
  surname: Zheng
  fullname: Zheng, Yujun
  organization: Department of Computer Science, Hangzhou Normal University, Hangzhou 311121, PR China
– sequence: 7
  givenname: Weiguo
  surname: Sheng
  fullname: Sheng, Weiguo
  email: w.sheng@ieee.org
  organization: Department of Computer Science, Hangzhou Normal University, Hangzhou 311121, PR China
BookMark eNp9kM9OwzAMhyM0JLbBA3DLC7Q4aZu24jRN_JMmcYFzlKXuSNU2U5INwdOTMk4cdrEP_n2W_S3IbLQjEnLLIGXAxF2XmtGnHDhPGU-hFBdkzqqSJ4LXbEbmABwS4EVxRRbedwCQl0LMCa5GikfbH4Kxo3JfVPU760z4GOhnrFT3Bx_QmXGXbJXHhnrsUU9h6oNTAXcGPW2to8OhDyax224aH5HafTCD-VZT9ppctqr3ePPXl-T98eFt_ZxsXp9e1qtNonldhkRseaErBGxFlhcsZzWHtq2rCtuGFdgUpapVWzJkgFxVoPKqzhDimzVkORPZkpSnvdpZ7x22Upvwe0G81fSSgZxsyU5GW3KyJRmX0VYk2T9y78wQhZxl7k8MxpeOBp302uCosTEuSpCNNWfoHwZIh2k
CitedBy_id crossref_primary_10_1007_s10586_024_05035_9
crossref_primary_10_1016_j_swevo_2025_101916
crossref_primary_10_1016_j_swevo_2025_102151
crossref_primary_10_1016_j_swevo_2024_101643
crossref_primary_10_1007_s10489_024_05714_5
crossref_primary_10_1109_JIOT_2025_3569576
Cites_doi 10.1109/CEC45853.2021.9504954
10.1109/CEC.2009.4982949
10.1109/TCYB.2018.2834466
10.1016/j.neucom.2015.08.092
10.1109/TEVC.2013.2239648
10.1109/TEVC.2007.892759
10.1109/TEVC.2009.2021467
10.1109/CEC.2014.6900519
10.1109/CEC.2002.1007032
10.1109/TEVC.2015.2455812
10.1109/TEVC.2009.2033586
10.1109/TEVC.2014.2350987
10.1109/TEVC.2012.2204264
10.1109/4235.996017
10.1016/j.ins.2022.10.136
10.1137/S1052623496307510
10.1016/j.ins.2021.08.054
10.1109/TEVC.2014.2378512
10.1109/TEVC.2018.2879078
10.3233/ICA-130443
10.1109/TEVC.2013.2258025
10.1162/106365600568202
10.1109/TEVC.2014.2373386
10.1109/TEVC.2013.2281535
10.1162/106365605774666895
10.1109/TEVC.2015.2504730
10.1109/TEVC.2012.2227145
10.1109/TKDE.2020.3033324
10.1109/TEVC.2016.2587749
10.1109/TCYB.2018.2883914
10.1016/j.ins.2020.08.070
10.1109/TCYB.2020.3029748
10.1016/j.neucom.2022.04.117
10.1109/TCYB.2014.2367526
10.1016/j.ins.2022.09.057
10.1109/TEVC.2013.2240687
10.1109/TEVC.2021.3095481
10.1162/EVCO_a_00009
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.12.076
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 234
ExternalDocumentID 10_1016_j_ins_2022_12_076
S0020025522015729
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-6b25c8e0ef6345141920ff988efd15ed57a9af71e10e2a80a4893e08729034163
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:28:43 EST 2025
Tue Nov 18 22:19:47 EST 2025
Fri Feb 23 02:37:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords I∊+ indicator
Multi-objective evolution algorithm
Clustering
Selection strategy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-6b25c8e0ef6345141920ff988efd15ed57a9af71e10e2a80a4893e08729034163
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_12_076
crossref_primary_10_1016_j_ins_2022_12_076
elsevier_sciencedirect_doi_10_1016_j_ins_2022_12_076
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wang, Jiao, Yao (b0155) 2015; 19
Li, Fialho, Kwong, Zhang (b0110) 2013; 18
Lei, Gao, Zhang, Zhou, Cheng (b0090) 2022; 26
Li, Yang, Liu (b0115) 2015; 20
Tian, Zhang, Cheng, He, Jin (b0150) 2020; 50
Karahan, Koksalan (b0085) 2010; 14
Huband, Barone, While, Hingston (b0065) 2005
Zeng, Wang, Liu, Zhang, Hone, Liu (b0195) 2022; 52
Bader, Zitzler (b0005) 2011; 19
Liu, Ishibuchi, Masuyama, Nojima (b0125) 2020; 24
Zhou, Zhang, Jin (b0235) 2009; 13
Yang, Li, Liu, Zheng (b0185) 2013; 17
Zhou, Jin, Zhang, Sendhoff, Tsang (b0230) 2006
Zitzler, Künzli (b0245) 2004
Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b0135) 2016; 20
Deb, Mohan, Mishra (b0035) 2005; 13
Whitley, Sutton (b0170) 2012
Hua, Jin, Hao (b0060) 2018; 49
Zitzler, Deb, Thiele (b0240) 2000; 8
Zhang, Li (b0210) 2007; 11
T. Takagi, K. Takadama, H. Sato, Weight vector arrangement using virtual objective vectors in decomposition-based moea, in: 2021 IEEE Congress on Evolutionary Computation (CEC). 2021. p. 1462–1469. DOI: 10.1109/CEC45853.2021.9504954.
Li, Wang, Xiao (b0095) 2022; 615
Phan, Suzuki (b0140) 2013
Luo, Yuan, Chen, Zeng, Wang (b0130) 2022; 34
Ester, Kriegel, Sander, Xu (b0050) 1996; 96
Xie, Qiao, Wang, Yin (b0180) 2021; 556
Yen, He (b0190) 2013; 18
Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). IEEE; volume 1; 2002b. p. 825–830.
He, Yen, Zhang (b0055) 2013; 18
Jiao, Xue, Zhang (b0080) 2022
Zhang, Zhang, Gao, Song (b0205) 2016; 173
Wang, Yang, Lin, Zhang, Wong, Coello, Chen (b0165) 2018; 23
Zhang, Zhou, Zhao, Suganthan, Liu, Tiwari (b0220) 2008; 264
Li, Li, Wu, You, Zeng (b0100) 2022; 494
Coello, Lamont, Van Veldhuizen (b0015) 2007; volume 5
Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on cec09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation. 2009. p. 203–208. DOI: 10.1109/CEC.2009.4982949.
Deb, Jain (b0030) 2014; 18
H. Zhang, S. Song, A. Zhou, X.Z. Gao, A clustering based multiobjective evolutionary algorithm, in: 2014 IEEE Congress on Evolutionary Computation (CEC). 2014a. p. 723–730. DOI: 10.1109/CEC.2014.6900519.
Zhang, Tian, Jin (b0225) 2014; 19
Das, Dennis (b0020) 1998; 8
Li, Deb, Zhang, Kwong (b0105) 2014; 19
Deb, Agrawal (b0025) 1995; 9
Deb, Pratap, Agarwal, Meyarivan (b0040) 2002; 6
Campomanes-Álvarez, Cordón, Damas (b0010) 2013; 20
Wu, Wei, Ying, Lan, Cui, Wang (b0175) 2022; 616
Jiang, Zhang, Ong, Zhang, Tan (b0075) 2014; 45
Liu, Zheng, Lin, Tan (b0120) 2021; 578
Wang, Purshouse, Fleming (b0160) 2012; 17
Ishibuchi, Setoguchi, Masuda, Nojima (b0070) 2016; 21
Li (10.1016/j.ins.2022.12.076_b0115) 2015; 20
Jiao (10.1016/j.ins.2022.12.076_b0080) 2022
Tian (10.1016/j.ins.2022.12.076_b0150) 2020; 50
Yen (10.1016/j.ins.2022.12.076_b0190) 2013; 18
10.1016/j.ins.2022.12.076_b0145
Campomanes-Álvarez (10.1016/j.ins.2022.12.076_b0010) 2013; 20
Karahan (10.1016/j.ins.2022.12.076_b0085) 2010; 14
Ma (10.1016/j.ins.2022.12.076_b0135) 2016; 20
Wang (10.1016/j.ins.2022.12.076_b0155) 2015; 19
Zhang (10.1016/j.ins.2022.12.076_b0220) 2008; 264
Bader (10.1016/j.ins.2022.12.076_b0005) 2011; 19
Zitzler (10.1016/j.ins.2022.12.076_b0240) 2000; 8
Ester (10.1016/j.ins.2022.12.076_b0050) 1996; 96
Wang (10.1016/j.ins.2022.12.076_b0165) 2018; 23
Coello (10.1016/j.ins.2022.12.076_b0015) 2007; volume 5
Zhou (10.1016/j.ins.2022.12.076_b0235) 2009; 13
Liu (10.1016/j.ins.2022.12.076_b0125) 2020; 24
Zhang (10.1016/j.ins.2022.12.076_b0225) 2014; 19
Luo (10.1016/j.ins.2022.12.076_b0130) 2022; 34
Phan (10.1016/j.ins.2022.12.076_b0140) 2013
Zhang (10.1016/j.ins.2022.12.076_b0210) 2007; 11
Zeng (10.1016/j.ins.2022.12.076_b0195) 2022; 52
10.1016/j.ins.2022.12.076_b0215
Deb (10.1016/j.ins.2022.12.076_b0025) 1995; 9
Zhang (10.1016/j.ins.2022.12.076_b0205) 2016; 173
Deb (10.1016/j.ins.2022.12.076_b0030) 2014; 18
Li (10.1016/j.ins.2022.12.076_b0105) 2014; 19
Li (10.1016/j.ins.2022.12.076_b0100) 2022; 494
Li (10.1016/j.ins.2022.12.076_b0110) 2013; 18
Wu (10.1016/j.ins.2022.12.076_b0175) 2022; 616
Lei (10.1016/j.ins.2022.12.076_b0090) 2022; 26
Whitley (10.1016/j.ins.2022.12.076_b0170) 2012
10.1016/j.ins.2022.12.076_b0200
Zitzler (10.1016/j.ins.2022.12.076_b0245) 2004
10.1016/j.ins.2022.12.076_b0045
Ishibuchi (10.1016/j.ins.2022.12.076_b0070) 2016; 21
Yang (10.1016/j.ins.2022.12.076_b0185) 2013; 17
Deb (10.1016/j.ins.2022.12.076_b0040) 2002; 6
Zhou (10.1016/j.ins.2022.12.076_b0230) 2006
Das (10.1016/j.ins.2022.12.076_b0020) 1998; 8
Jiang (10.1016/j.ins.2022.12.076_b0075) 2014; 45
Li (10.1016/j.ins.2022.12.076_b0095) 2022; 615
Hua (10.1016/j.ins.2022.12.076_b0060) 2018; 49
Deb (10.1016/j.ins.2022.12.076_b0035) 2005; 13
He (10.1016/j.ins.2022.12.076_b0055) 2013; 18
Liu (10.1016/j.ins.2022.12.076_b0120) 2021; 578
Xie (10.1016/j.ins.2022.12.076_b0180) 2021; 556
Wang (10.1016/j.ins.2022.12.076_b0160) 2012; 17
Huband (10.1016/j.ins.2022.12.076_b0065) 2005
References_xml – volume: 18
  start-page: 269
  year: 2013
  end-page: 285
  ident: b0055
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: volume 5
  year: 2007
  ident: b0015
  publication-title: Evolutionary algorithms for solving multi-objective problems
– reference: Deb K., Thiele L., Laumanns M., Zitzler E. Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). IEEE; volume 1; 2002b. p. 825–830.
– volume: 20
  start-page: 375
  year: 2013
  end-page: 390
  ident: b0010
  article-title: Evolutionary multi-objective optimization for mesh simplification of 3d)
  publication-title: Integr Comput-Aided Eng
– start-page: 637
  year: 2012
  end-page: 671
  ident: b0170
  article-title: Genetic algorithms-a survey of models and methods
  publication-title: Handbook of natural computing
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0210
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on evolutionary computation
– reference: Q. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on cec09 unconstrained mop test instances, in: 2009 IEEE Congress on Evolutionary Computation. 2009. p. 203–208. DOI: 10.1109/CEC.2009.4982949.
– start-page: 1836
  year: 2013
  end-page: 1845
  ident: b0140
  article-title: R2-ibea: R2 indicator based evolutionary algorithm for multiobjective optimization
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– start-page: 832
  year: 2004
  end-page: 842
  ident: b0245
  article-title: Indicator-based selection in multiobjective search
  publication-title: International conference on parallel problem solving from nature
– volume: 173
  start-page: 1868
  year: 2016
  end-page: 1884
  ident: b0205
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
– start-page: 280
  year: 2005
  end-page: 295
  ident: b0065
  article-title: A scalable multi-objective test problem toolkit
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 14
  start-page: 636
  year: 2010
  end-page: 664
  ident: b0085
  article-title: A territory defining multiobjective evolutionary algorithms and preference incorporation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 694
  year: 2014
  end-page: 716
  ident: b0105
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE transactions on evolutionary computation
– volume: 45
  start-page: 2202
  year: 2014
  end-page: 2213
  ident: b0075
  article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Cybernetics
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b0185
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 275
  year: 2016
  end-page: 298
  ident: b0135
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 892
  year: 2006
  end-page: 899
  ident: b0230
  article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion
  publication-title: 2006 IEEE international conference on evolutionary computation
– volume: 49
  start-page: 2758
  year: 2018
  end-page: 2770
  ident: b0060
  article-title: A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts
  publication-title: IEEE Transactions on Cybernetics
– volume: 615
  start-page: 323
  year: 2022
  end-page: 347
  ident: b0095
  article-title: A novel adaptive weight algorithm based on decomposition and two-part update strategy for many-objective optimization
  publication-title: Information Sciences
– reference: H. Zhang, S. Song, A. Zhou, X.Z. Gao, A clustering based multiobjective evolutionary algorithm, in: 2014 IEEE Congress on Evolutionary Computation (CEC). 2014a. p. 723–730. DOI: 10.1109/CEC.2014.6900519.
– volume: 13
  start-page: 501
  year: 2005
  end-page: 525
  ident: b0035
  article-title: Evaluating the
  publication-title: Evolutionary computation
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b0050
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: kdd
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0240
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary computation
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  ident: b0025
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex systems
– volume: 52
  start-page: 9290
  year: 2022
  end-page: 9301
  ident: b0195
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm
  publication-title: IEEE Transactions on Cybernetics
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0040
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE transactions on evolutionary computation
– year: 2022
  ident: b0080
  article-title: Solving multi-objective feature selection problems in classification via problem reformulation and duplication handling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 131
  year: 2013
  end-page: 144
  ident: b0190
  article-title: Performance metric ensemble for multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 645
  year: 2018
  end-page: 659
  ident: b0165
  article-title: An effective ensemble framework for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: T. Takagi, K. Takadama, H. Sato, Weight vector arrangement using virtual objective vectors in decomposition-based moea, in: 2021 IEEE Congress on Evolutionary Computation (CEC). 2021. p. 1462–1469. DOI: 10.1109/CEC45853.2021.9504954.
– volume: 18
  start-page: 114
  year: 2013
  end-page: 130
  ident: b0110
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 616
  start-page: 505
  year: 2022
  end-page: 525
  ident: b0175
  article-title: A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based boundary intersection methods for many-objective optimization
  publication-title: Information Sciences
– volume: 494
  start-page: 356
  year: 2022
  end-page: 367
  ident: b0100
  article-title: A ranking-system-based switching particle swarm optimizer with dynamic learning strategies
  publication-title: Neurocomputing
– volume: 34
  start-page: 3958
  year: 2022
  end-page: 3970
  ident: b0130
  article-title: Position-transitional particle swarm optimization-incorporated latent factor analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 20
  start-page: 645
  year: 2015
  end-page: 665
  ident: b0115
  article-title: Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 21
  start-page: 169
  year: 2016
  end-page: 190
  ident: b0070
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 556
  start-page: 472
  year: 2021
  end-page: 494
  ident: b0180
  article-title: A novel decomposition-based multiobjective evolutionary algorithm using improved multiple adaptive dynamic selection strategies
  publication-title: Information Sciences
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b0005
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary computation
– volume: 50
  start-page: 1106
  year: 2020
  end-page: 1119
  ident: b0150
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Transactions on Cybernetics
– volume: 24
  start-page: 439
  year: 2020
  end-page: 453
  ident: b0125
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 761
  year: 2014
  end-page: 776
  ident: b0225
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0030
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 17
  start-page: 474
  year: 2012
  end-page: 494
  ident: b0160
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 578
  start-page: 930
  year: 2021
  end-page: 949
  ident: b0120
  article-title: Evolutionary multi and many-objective optimization via clustering for environmental selection
  publication-title: Information Sciences
– volume: 264
  start-page: 1
  year: 2008
  end-page: 30
  ident: b0220
  article-title: Multiobjective optimization test instances for the cec 2009 special session and competition
  publication-title: University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b0235
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: b0155
  article-title: Twoarch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b0020
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM journal on optimization
– volume: 26
  start-page: 417
  year: 2022
  end-page: 430
  ident: b0090
  article-title: Mo4: A many-objective evolutionary algorithm for protein structure prediction
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.ins.2022.12.076_b0050
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– ident: 10.1016/j.ins.2022.12.076_b0145
  doi: 10.1109/CEC45853.2021.9504954
– ident: 10.1016/j.ins.2022.12.076_b0215
  doi: 10.1109/CEC.2009.4982949
– volume: 49
  start-page: 2758
  issue: 7
  year: 2018
  ident: 10.1016/j.ins.2022.12.076_b0060
  article-title: A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2834466
– volume: 173
  start-page: 1868
  year: 2016
  ident: 10.1016/j.ins.2022.12.076_b0205
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.092
– volume: 18
  start-page: 114
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0110
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2239648
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2022.12.076_b0210
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on evolutionary computation
  doi: 10.1109/TEVC.2007.892759
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.ins.2022.12.076_b0235
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2021467
– ident: 10.1016/j.ins.2022.12.076_b0200
  doi: 10.1109/CEC.2014.6900519
– ident: 10.1016/j.ins.2022.12.076_b0045
  doi: 10.1109/CEC.2002.1007032
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.12.076_b0135
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2455812
– start-page: 280
  year: 2005
  ident: 10.1016/j.ins.2022.12.076_b0065
  article-title: A scalable multi-objective test problem toolkit
– volume: 14
  start-page: 636
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2022.12.076_b0085
  article-title: A territory defining multiobjective evolutionary algorithms and preference incorporation
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2033586
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2022.12.076_b0155
  article-title: Twoarch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2350987
– volume: 17
  start-page: 474
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2022.12.076_b0160
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2204264
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2022.12.076_b0040
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/4235.996017
– volume: 616
  start-page: 505
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0175
  article-title: A collaborative decomposition-based evolutionary algorithm integrating normal and penalty-based boundary intersection methods for many-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.10.136
– volume: 264
  start-page: 1
  year: 2008
  ident: 10.1016/j.ins.2022.12.076_b0220
  article-title: Multiobjective optimization test instances for the cec 2009 special session and competition
  publication-title: University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.ins.2022.12.076_b0020
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM journal on optimization
  doi: 10.1137/S1052623496307510
– year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0080
  article-title: Solving multi-objective feature selection problems in classification via problem reformulation and duplication handling
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 578
  start-page: 930
  year: 2021
  ident: 10.1016/j.ins.2022.12.076_b0120
  article-title: Evolutionary multi and many-objective optimization via clustering for environmental selection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.08.054
– volume: 19
  start-page: 761
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2022.12.076_b0225
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2378512
– volume: 23
  start-page: 645
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2022.12.076_b0165
  article-title: An effective ensemble framework for multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2018.2879078
– start-page: 892
  year: 2006
  ident: 10.1016/j.ins.2022.12.076_b0230
  article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion
– volume: 20
  start-page: 375
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0010
  article-title: Evolutionary multi-objective optimization for mesh simplification of 3d)open models
  publication-title: Integr Comput-Aided Eng
  doi: 10.3233/ICA-130443
– volume: 18
  start-page: 269
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0055
  article-title: Fuzzy-based Pareto optimality for many-objective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2258025
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 10.1016/j.ins.2022.12.076_b0025
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex systems
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.ins.2022.12.076_b0240
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary computation
  doi: 10.1162/106365600568202
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2022.12.076_b0105
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/TEVC.2014.2373386
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2022.12.076_b0030
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– start-page: 832
  year: 2004
  ident: 10.1016/j.ins.2022.12.076_b0245
  article-title: Indicator-based selection in multiobjective search
– volume: 13
  start-page: 501
  issue: 4
  year: 2005
  ident: 10.1016/j.ins.2022.12.076_b0035
  article-title: Evaluating the ∊-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions
  publication-title: Evolutionary computation
  doi: 10.1162/106365605774666895
– volume: volume 5
  year: 2007
  ident: 10.1016/j.ins.2022.12.076_b0015
– volume: 20
  start-page: 645
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2022.12.076_b0115
  article-title: Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2504730
– volume: 24
  start-page: 439
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2022.12.076_b0125
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0185
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2012.2227145
– volume: 34
  start-page: 3958
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0130
  article-title: Position-transitional particle swarm optimization-incorporated latent factor analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.3033324
– volume: 21
  start-page: 169
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2022.12.076_b0070
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2016.2587749
– volume: 50
  start-page: 1106
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2022.12.076_b0150
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2883914
– volume: 556
  start-page: 472
  year: 2021
  ident: 10.1016/j.ins.2022.12.076_b0180
  article-title: A novel decomposition-based multiobjective evolutionary algorithm using improved multiple adaptive dynamic selection strategies
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.08.070
– start-page: 1836
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0140
  article-title: R2-ibea: R2 indicator based evolutionary algorithm for multiobjective optimization
– volume: 52
  start-page: 9290
  issue: 9
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0195
  article-title: A dynamic neighborhood-based switching particle swarm optimization algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3029748
– volume: 494
  start-page: 356
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0100
  article-title: A ranking-system-based switching particle swarm optimizer with dynamic learning strategies
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.117
– volume: 45
  start-page: 2202
  issue: 10
  year: 2014
  ident: 10.1016/j.ins.2022.12.076_b0075
  article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2367526
– start-page: 637
  year: 2012
  ident: 10.1016/j.ins.2022.12.076_b0170
  article-title: Genetic algorithms-a survey of models and methods
– volume: 615
  start-page: 323
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0095
  article-title: A novel adaptive weight algorithm based on decomposition and two-part update strategy for many-objective optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.09.057
– volume: 18
  start-page: 131
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2022.12.076_b0190
  article-title: Performance metric ensemble for multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2240687
– volume: 26
  start-page: 417
  issue: 3
  year: 2022
  ident: 10.1016/j.ins.2022.12.076_b0090
  article-title: Mo4: A many-objective evolutionary algorithm for protein structure prediction
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3095481
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2022.12.076_b0005
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evolutionary computation
  doi: 10.1162/EVCO_a_00009
SSID ssj0004766
Score 2.4414935
Snippet This paper proposes an evolutionary algorithm with clustering-based selection strategies to deal with multi-objective optimization problems. In the proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Clustering
I∊+ indicator
Multi-objective evolution algorithm
Selection strategy
Title An evolutionary algorithm with clustering-based selection strategies for multi-objective optimization
URI https://dx.doi.org/10.1016/j.ins.2022.12.076
Volume 624
WOSCitedRecordID wos000915819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9swGBZZu8N2GFu3sa7t0GHssCCQFdmyj2G0rD2UDToIvRjZlhqHxC6JE_oP9rf76sOOm32wDXYxwURyyPP4_dL7gdB7lYkgyERBZBFFhEspCXi2lOgkC3kgpAo1tcMmxOVlPJkkXwaD720tzGYuqiq-u0tu_yvUcA_ANqWzfwF3tyncgM8AOlwBdrj-EfDjaqg2_gkmJU7Ob-pl2UwXPs18vja9EUBjEaPBiuHKTsIxLFg1bd8Im3xocw1Jnc2cTBzWIF0Wvmyzb9P6iia3hRMVnaF-Pa3XNsA6VdXNVNYdvjZCOyllvVDlNqjvBM91WdReoZpUIZtv8LXsxydYLxvQBc3awpkHeZ3GSiXGnXFqyMneWDASMTe8qxXOEeMPxKvoaWrmwqA_KAEXj5iB52L6sTNm471ip-G2VeHmqNp6VQzsoBD8jEdon4kwAQm_Pz4_nVxsS2yFO_Zuf3d7QG5TBXce9HMTp2e2XD1Hz7y_gceOJy_QQFUH6GmvC-UBOvG1K_gD7kGJvdR_idS4wn1G4Y5R2DAK7zIKd4zCW0Zh2BjvMAr3GfUKfTs7vfr0mfjpHCRniWhIlLEwjxVVOhpxMLvBVaBaJ3GsdBGEqgiFTKQWgQqoYjKm0rQ5UhRATujIuAGv0V5VV-oNwjnXmdRcc8ZjHmdRBkZTwpVWo1xwKtQhou0fmua-db2ZoDJP2xzFWQoYpAaDNGApYHCIPnZLbl3flt99mbcopf49cQZlCpT69bK3_7bsCD3ZvifHaK9ZrtUJepxvmnK1fOeJdw-1Mqu4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evolutionary+algorithm+with+clustering-based+selection+strategies+for+multi-objective+optimization&rft.jtitle=Information+sciences&rft.au=Zhou%2C+Shenghao&rft.au=Mo%2C+Xiaomei&rft.au=Wang%2C+Zidong&rft.au=Li%2C+Qi&rft.date=2023-05-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=624&rft.spage=217&rft.epage=234&rft_id=info:doi/10.1016%2Fj.ins.2022.12.076&rft.externalDocID=S0020025522015729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon