Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation

•The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model. Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 403; S. 126201
Hauptverfasser: Zhang, Run-Fa, Li, Ming-Chu, Albishari, Mohammed, Zheng, Fu-Chang, Lan, Zhong-Zhou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.08.2021
Schlagworte:
ISSN:0096-3003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model. Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (CDGKS-like) equation. Based on bilinear neural network method, the generalized lump solution, classical lump solution and the novel analytical solution are constructed by giving some specific activation functions in the single hidden layer neural network model and the “3-2-2” neural network model. By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. These results fill the blank of the CDGKS-like equation in the existing literature. Via various three-dimensional plots, curve plots, density plots and contour plots, dynamical characteristics of these waves are exhibited. The effective methods used in this paper is helpful to study the nonlinear evolution equations in plasmas, mathematical physics, electromagnetism and fluid dynamics.
AbstractList •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model. Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (CDGKS-like) equation. Based on bilinear neural network method, the generalized lump solution, classical lump solution and the novel analytical solution are constructed by giving some specific activation functions in the single hidden layer neural network model and the “3-2-2” neural network model. By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. These results fill the blank of the CDGKS-like equation in the existing literature. Via various three-dimensional plots, curve plots, density plots and contour plots, dynamical characteristics of these waves are exhibited. The effective methods used in this paper is helpful to study the nonlinear evolution equations in plasmas, mathematical physics, electromagnetism and fluid dynamics.
ArticleNumber 126201
Author Albishari, Mohammed
Zheng, Fu-Chang
Zhang, Run-Fa
Lan, Zhong-Zhou
Li, Ming-Chu
Author_xml – sequence: 1
  givenname: Run-Fa
  surname: Zhang
  fullname: Zhang, Run-Fa
  email: rf_zhang@sina.cn
  organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China
– sequence: 2
  givenname: Ming-Chu
  surname: Li
  fullname: Li, Ming-Chu
  email: mingchul@dlut.edu.cn
  organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China
– sequence: 3
  givenname: Mohammed
  surname: Albishari
  fullname: Albishari, Mohammed
  organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China
– sequence: 4
  givenname: Fu-Chang
  surname: Zheng
  fullname: Zheng, Fu-Chang
  organization: Department of Mathematics, Inner Mongolia University of Technology, Hohhot 010051, China
– sequence: 5
  givenname: Zhong-Zhou
  surname: Lan
  fullname: Lan, Zhong-Zhou
  organization: School of Computer Information Management, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
BookMark eNp9kLFOwzAQhj0UibbwAGweQeBydpqkERMqUBCVGIDZcuwzuKRxsRNQeQfemZQydWC64e67u_8bkF7tayTkiMOIA8_OFyO11CMBgo-4yATwHukDFBlLAJJ9MohxAQB5xsd98j3DGoOq3BcaWrXLFY2-ahvn63hGdaVidFpVOx2qakODf2mRfqoPjNRb2rwiPRan_IQZt8Q6dnMdN1WtCbhmV94YNnNl6Wt275vuIntUn8ooVrk3pPjeqs3mA7JnVRXx8K8OyfPN9dP0ls0fZnfTyznTosgbluWiKFGUNpuA5ZhpY9MUuqBJasZpmQgcp6ZIVZEZPSmwtJBbPkFrLYDOE50MCd_u1cHHGNDKVXBLFdaSg9w4lAvZOZQbh3LrsGPyHUa75vfrJihX_UtebEnsIn04DDJqh7VG4wLqRhrv_qF_AAXAkhA
CitedBy_id crossref_primary_10_1007_s11071_022_07656_4
crossref_primary_10_1007_s11071_023_08683_5
crossref_primary_10_1007_s11071_023_08287_z
crossref_primary_10_1007_s11071_023_08329_6
crossref_primary_10_1088_1402_4896_ad0e4d
crossref_primary_10_1007_s11071_022_07514_3
crossref_primary_10_1002_mma_8138
crossref_primary_10_1515_phys_2022_0043
crossref_primary_10_1007_s11071_023_08361_6
crossref_primary_10_1007_s11071_024_09316_1
crossref_primary_10_1142_S0217984925500022
crossref_primary_10_1007_s42452_025_07118_7
crossref_primary_10_1007_s11071_022_07270_4
crossref_primary_10_1007_s11071_022_07823_7
crossref_primary_10_1088_1742_6596_2025_1_012049
crossref_primary_10_1007_s10773_024_05869_4
crossref_primary_10_1007_s11071_024_09304_5
crossref_primary_10_1002_mma_8131
crossref_primary_10_1007_s11071_023_08544_1
crossref_primary_10_1007_s11071_023_08616_2
crossref_primary_10_1007_s11071_024_09911_2
crossref_primary_10_1007_s11071_023_09177_0
crossref_primary_10_1007_s11071_024_09386_1
crossref_primary_10_3390_math13020236
crossref_primary_10_1007_s11071_023_08257_5
crossref_primary_10_1088_1572_9494_ad8740
crossref_primary_10_1007_s11071_023_08325_w
crossref_primary_10_1080_0952813X_2023_2247412
crossref_primary_10_1007_s40819_022_01295_4
crossref_primary_10_1177_14613484221119275
crossref_primary_10_1007_s11071_023_08343_8
crossref_primary_10_1007_s12648_021_02154_6
crossref_primary_10_1007_s10773_023_05524_4
crossref_primary_10_1016_j_cjph_2023_03_016
crossref_primary_10_1007_s11071_023_08262_8
crossref_primary_10_1016_j_knosys_2024_111499
crossref_primary_10_1007_s12043_025_02969_6
crossref_primary_10_1007_s11071_023_08416_8
crossref_primary_10_1007_s11192_025_05328_9
crossref_primary_10_1016_j_wavemoti_2023_103243
crossref_primary_10_1007_s11071_022_07647_5
crossref_primary_10_1007_s11071_021_06550_9
crossref_primary_10_1088_1572_9494_ac9a3e
crossref_primary_10_1088_1402_4896_ac098b
crossref_primary_10_1088_1402_4896_ad2cd5
crossref_primary_10_1515_phys_2022_0050
crossref_primary_10_1142_S0217984925500459
crossref_primary_10_1007_s11071_022_07819_3
crossref_primary_10_1007_s11071_023_08615_3
crossref_primary_10_1007_s11071_023_08467_x
crossref_primary_10_1007_s11071_023_08256_6
Cites_doi 10.1016/j.wavemoti.2018.08.008
10.1016/j.aml.2019.01.019
10.1007/s12043-018-1700-4
10.1016/j.cnsns.2018.07.038
10.1016/j.cjph.2019.11.005
10.1016/j.cnsns.2020.105260
10.1002/mma.5721
10.1016/j.cnsns.2016.07.013
10.1007/s11071-020-05629-z
10.1088/0253-6102/71/4/362
10.1016/j.rinp.2020.103329
10.1007/s11071-020-05554-1
10.1016/j.aml.2018.08.004
10.1016/j.cnsns.2018.04.005
10.1088/1402-4896/ab52c1
10.1088/1572-9494/ab690c
10.1016/j.camwa.2016.08.027
10.1016/j.cnsns.2018.02.040
10.1016/j.geomphys.2019.01.005
10.1142/S0217984919501987
10.1007/s11071-019-04866-1
10.1016/j.rinp.2020.103105
10.1063/5.0019219
10.1007/s11071-018-04739-z
10.1016/j.geomphys.2020.103598
10.1007/s11071-019-05016-3
10.1016/0375-9601(84)90442-0
10.1016/j.cnsns.2019.105135
10.1016/j.camwa.2019.02.035
10.1016/j.physleta.2019.126178
10.1016/j.cnsns.2020.105544
10.1016/j.aml.2019.03.001
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2021.126201
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2021_126201
S0096300321002915
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-6729be2bf680f1e6cdf55020135d45b32e45d95a96dc89ebf07f18efff00c73c3
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639134100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 07:21:42 EST 2025
Tue Nov 18 21:45:41 EST 2025
Sun Apr 06 06:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bilinear neural network method
Generalized bilinear transformation
CDGKS-Like equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-6729be2bf680f1e6cdf55020135d45b32e45d95a96dc89ebf07f18efff00c73c3
ParticipantIDs crossref_primary_10_1016_j_amc_2021_126201
crossref_citationtrail_10_1016_j_amc_2021_126201
elsevier_sciencedirect_doi_10_1016_j_amc_2021_126201
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Wazwaz (bib0010) 2019; 180
Javid, Raza, Osman (bib0015) 2019; 71
Guan, Liu, Zhou, Biswas (bib0020) 2020; 366
Osman, Inc, Liu, Hosseini, Yusuf (bib0021) 2020; 95
Liu, Zhu (bib0018) 2020; 100
Cheng, Yang, Ren, Wang (bib0040) 2019; 86
Osman (bib0014) 2019; 96
Xia, Zhao, L. (bib0017) 2020; 90
Chen, Ma, L. (bib0027) 2020; 83
Tang, Tao, Guan (bib0041) 2016; 72
Kaur, Wazwaz (bib0019) 2019; 29
Fang, Gao, Wang, Wang (bib0038) 2019; 33
Geng, He, Wu (bib0039) 2019; 140
Lan, Gao, Yang, Su, Mao (bib0012) 2017; 44
Qin, Tian, Wang, Zhang (bib0006) 2018; 62
Wang, Bilige, Pang (bib0029) 2020
Wazwaz (bib0009) 2019; 88
Liu (bib0028) 2019; 92
Tahir, Awan, Osman, Baleanu, Alqurashi (bib0024) 2020; 17
Zhou, Manukure, Ma (bib0016) 2019; 68
Manafian, Lakestani (bib0032) 2020; 150
Guo, Li (bib0004) 2019; 94
zkan, Yaar (bib0003) 2021; 390
Zhang, Chen (bib0034) 2020; 100
Liu, Osman, Zhu, Zhou, Baleanu (bib0025) 2020; 10
Ma (bib0036) 2011; 2
Gai, Ma, Li (bib0007) 2020; 384
Ding, Osman, Wazwaz (bib0011) 2019; 181
Yin, Tian, Zhang, Du, Zhao (bib0008) 2019; 97
Zhang, Bilige, Fang, Chaolu (bib0030) 2019; 78
Zhang, Bilige (bib0001) 2019; 95
Sun, Wazwaz (bib0013) 2018; 64
Osman, Wazwaz (bib0023) 2019; 42
Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (bib0026) 2020; 63
Manafian, MohammadiIvatloo, Abapour (bib0035) 2019; 356
Ismael, Bulut, Park, Osman (bib0022) 2020; 19
Konopelchenko, Dubrovsky (bib0037) 1984; 102
Gai, Ma, Li (bib0005) 2020; 100
Younis, Ali, Rizvi, Tantawy, Tariq, Bekir (bib0002) 2021; 94
Wang, Bilige, Pang (bib0031) 2020; 72
Manafian, Lakestani (bib0033) 2019; 92
Younis (10.1016/j.amc.2021.126201_bib0002) 2021; 94
Zhang (10.1016/j.amc.2021.126201_bib0034) 2020; 100
Javid (10.1016/j.amc.2021.126201_bib0015) 2019; 71
Zhou (10.1016/j.amc.2021.126201_bib0016) 2019; 68
Kaur (10.1016/j.amc.2021.126201_bib0019) 2019; 29
zkan (10.1016/j.amc.2021.126201_bib0003) 2021; 390
Gai (10.1016/j.amc.2021.126201_bib0005) 2020; 100
Liu (10.1016/j.amc.2021.126201_bib0018) 2020; 100
Ismael (10.1016/j.amc.2021.126201_bib0022) 2020; 19
Yin (10.1016/j.amc.2021.126201_bib0008) 2019; 97
Liu (10.1016/j.amc.2021.126201_bib0010) 2019; 180
Lan (10.1016/j.amc.2021.126201_bib0012) 2017; 44
Wang (10.1016/j.amc.2021.126201_bib0029) 2020
Gai (10.1016/j.amc.2021.126201_bib0007) 2020; 384
Manafian (10.1016/j.amc.2021.126201_bib0035) 2019; 356
Xia (10.1016/j.amc.2021.126201_bib0017) 2020; 90
Qin (10.1016/j.amc.2021.126201_bib0006) 2018; 62
Geng (10.1016/j.amc.2021.126201_bib0039) 2019; 140
Guan (10.1016/j.amc.2021.126201_bib0020) 2020; 366
Fang (10.1016/j.amc.2021.126201_bib0038) 2019; 33
Chen (10.1016/j.amc.2021.126201_bib0027) 2020; 83
Manafian (10.1016/j.amc.2021.126201_bib0033) 2019; 92
Manafian (10.1016/j.amc.2021.126201_bib0032) 2020; 150
Osman (10.1016/j.amc.2021.126201_bib0023) 2019; 42
Sun (10.1016/j.amc.2021.126201_bib0013) 2018; 64
Ding (10.1016/j.amc.2021.126201_bib0011) 2019; 181
Zhang (10.1016/j.amc.2021.126201_bib0001) 2019; 95
Tahir (10.1016/j.amc.2021.126201_bib0024) 2020; 17
Wang (10.1016/j.amc.2021.126201_bib0031) 2020; 72
Cheng (10.1016/j.amc.2021.126201_bib0040) 2019; 86
Zhang (10.1016/j.amc.2021.126201_bib0030) 2019; 78
Osman (10.1016/j.amc.2021.126201_bib0021) 2020; 95
Liu (10.1016/j.amc.2021.126201_bib0025) 2020; 10
Tang (10.1016/j.amc.2021.126201_bib0041) 2016; 72
Liu (10.1016/j.amc.2021.126201_bib0028) 2019; 92
Osman (10.1016/j.amc.2021.126201_bib0014) 2019; 96
Osman (10.1016/j.amc.2021.126201_bib0026) 2020; 63
Guo (10.1016/j.amc.2021.126201_bib0004) 2019; 94
Wazwaz (10.1016/j.amc.2021.126201_bib0009) 2019; 88
Ma (10.1016/j.amc.2021.126201_bib0036) 2011; 2
Konopelchenko (10.1016/j.amc.2021.126201_bib0037) 1984; 102
References_xml – volume: 100
  start-page: 27152727
  year: 2020
  ident: bib0005
  article-title: Lumptype solution and breather lumpkink interaction phenomena to a (3+1)dimensional GBK equation based on trilinear form
  publication-title: Nonlinear Dyn.
– volume: 88
  start-page: 17
  year: 2019
  ident: bib0009
  article-title: Multiple complex soliton solutions for integrable negativeorder kdv and integrable negativeorder modified kdv equations
  publication-title: Appl. Math. Lett.
– volume: 366
  start-page: 124757
  year: 2020
  ident: bib0020
  article-title: Some lump solutions for a generalized (3+1)-dimensional kadomtsevpetviashvili equation
  publication-title: Appl. Math. Comput.
– volume: 92
  start-page: 184189
  year: 2019
  ident: bib0028
  article-title: Collisions between lump and soliton solutions
  publication-title: Appl. Math. Lett.
– volume: 102
  start-page: 1517
  year: 1984
  ident: bib0037
  article-title: Some new integrable nonlinear evolution equations in 2+1 dimensions
  publication-title: Phys. Lett. A
– volume: 180
  start-page: 917923
  year: 2019
  ident: bib0010
  article-title: A variety of nonautonomous complex wave solutions for the (2+1)dimensional nonlinear schrdinger equation with variable coefficients in nonlinear optical fibers
  publication-title: Optik (Stuttg)
– volume: 44
  start-page: 360372
  year: 2017
  ident: bib0012
  article-title: Solitons, bcklund transformation and lax pair for a (2+1)dimensional broerkaupkupershmidt system in the shallow water of uniform depth
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 100
  start-page: 27532765
  year: 2020
  ident: bib0034
  article-title: Mlump, highorder breather solutions and interaction dynamics of a generalized (2+1)dimensional nonlinear wave equation
  publication-title: Nonlinear Dyn.
– volume: 68
  start-page: 5662
  year: 2019
  ident: bib0016
  article-title: Lump and lumpsoliton solutions to the hirotasatsumaito equation
  publication-title: Commun. Nonlinear Sci.
– volume: 92
  start-page: 41
  year: 2019
  ident: bib0033
  article-title: Lumptype solutions and interaction phenomenon to the bidirectional sawadakotera equation
  publication-title: Pramana
– volume: 94
  start-page: 232237
  year: 2019
  ident: bib0004
  article-title: The new exact solutions of the fifthorder sawadakotera equation using three wave method
  publication-title: Appl. Math. Lett.
– volume: 95
  start-page: 3041
  year: 2019
  end-page: 3048
  ident: bib0001
  article-title: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to pgBKP equatuon
  publication-title: Nonlinear Dyn.
– volume: 33
  start-page: 1950198
  year: 2019
  ident: bib0038
  article-title: Lumptype solution, rogue wave, fusion and fission phenomena for the (2+1)dimensional caudreydoddgibbonkoterasawada equation
  publication-title: Mod. Phys. Lett. B
– start-page: 9260986
  year: 2020
  ident: bib0029
  article-title: Rational solutions and their interaction solutions of the (3+1)dimensional jimbomiwa equation
  publication-title: Adv. Math. Phys.
– volume: 86
  start-page: 150161
  year: 2019
  ident: bib0040
  article-title: Interaction behavior between solitons and (2+1)dimensional CDGKS waves
  publication-title: Wave Motion
– volume: 29
  start-page: 569579
  year: 2019
  ident: bib0019
  article-title: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation
  publication-title: Int. J. Numer. Method H.
– volume: 17
  start-page: 103105
  year: 2020
  ident: bib0024
  article-title: Abundant periodic wave solutions for fifth-order sawada-kotera equations
  publication-title: Results Phys.
– volume: 83
  start-page: 105135
  year: 2020
  ident: bib0027
  article-title: Bcklund transformation, exact solutions and interaction behaviour of the (3+1)dimensional hirotasatsumaitolike equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 140
  start-page: 85103
  year: 2019
  ident: bib0039
  article-title: Riemann theta function solutions of the caudreydoddgibbonsawadakotera hierarchy
  publication-title: J. Geom. Phys.
– volume: 19
  start-page: 103329
  year: 2020
  ident: bib0022
  article-title: M-Lump, n-soliton solutions, and the collision phenomena for the (2+1)-dimensional date-jimbo-kashiwara-miwa equation
  publication-title: Results Phys.
– volume: 95
  start-page: 035229
  year: 2020
  ident: bib0021
  article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation
  publication-title: Phys. Scr.
– volume: 390
  start-page: 125663
  year: 2021
  ident: bib0003
  article-title: Breathertype and multiwave solutions for (2+1)dimensional nonlocal gardner equation
  publication-title: Appl. Math. Comput.
– volume: 62
  start-page: 378385
  year: 2018
  ident: bib0006
  article-title: On breather waves, rogue waves and solitary waves to a generalized (2+1)dimensional camassaholmkadomtsevpetviashvili equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 2
  start-page: 140144
  year: 2011
  ident: bib0036
  article-title: Generalized bilinear differential equations
  publication-title: Stud. Nonlinear Sci.
– volume: 97
  start-page: 843852
  year: 2019
  ident: bib0008
  article-title: Optical breathers and rogue waves via the modulation instability for a higherorder generalized nonlinear schrdinger equation in an optical fiber transmission system
  publication-title: Nonlinear Dyn.
– volume: 96
  start-page: 1491
  year: 2019
  end-page: 1496
  ident: bib0014
  article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawadakotera equation
  publication-title: Nonlinear Dyn.
– volume: 384
  start-page: 126178
  year: 2020
  ident: bib0007
  article-title: Lumptype solutions, rogue wave type solutions and periodic lumpstripe interaction phenomena to a (3+1)dimensional generalized breaking soliton equation
  publication-title: Phys. Lett. A
– volume: 90
  start-page: 105260
  year: 2020
  ident: bib0017
  article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical kadomtsevpetviashvili equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 181
  start-page: 503513
  year: 2019
  ident: bib0011
  article-title: Abundant complex wave solutions for the nonautonomous fokaslenells equation in presence of perturbation terms
  publication-title: Optik (Stuttg)
– volume: 150
  start-page: 103598
  year: 2020
  ident: bib0032
  article-title: Nlump and interaction solutions of localized waves to the (2+1)dimensional variablecoefficient caudreydoddgibbonkoterasawada equation
  publication-title: J. Geom. Phys.
– volume: 72
  start-page: 045001
  year: 2020
  ident: bib0031
  article-title: Novel interaction phenomena of the (3+1)dimensional jimbomiwa equation
  publication-title: Commun. Theor. Phys.
– volume: 78
  start-page: 754764
  year: 2019
  ident: bib0030
  article-title: New periodic wave, crosskink wave and the interaction phenomenon for the JimboMiwalike equation
  publication-title: Comput. Math. Appl.
– volume: 94
  start-page: 105544
  year: 2021
  ident: bib0002
  article-title: Investigation of solitons and mixed lump wave solutions with (3+1)dimensional potentialytsf equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 71
  start-page: 362
  year: 2019
  end-page: 366
  ident: bib0015
  article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets
  publication-title: Commun. Theor. Phys.
– volume: 64
  start-page: 113
  year: 2018
  ident: bib0013
  article-title: General highorder breathers and rogue waves in the (3+1)dimensional KPBoussinesq equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 100
  start-page: 27392751
  year: 2020
  ident: bib0018
  article-title: Various exact analytical solutions of a variablecoefficient kadomtsevpetviashvili equation
  publication-title: Nonlinear Dyn.
– volume: 63
  start-page: 122
  year: 2020
  end-page: 129
  ident: bib0026
  article-title: Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations
  publication-title: Chin. J. Phys.
– volume: 356
  start-page: 1341
  year: 2019
  ident: bib0035
  article-title: Lumptype solutions and interaction phenomenon to the (2+1)dimensional breaking soliton equation
  publication-title: Appl. Math. Comput.
– volume: 42
  start-page: 6277
  year: 2019
  end-page: 6283
  ident: bib0023
  article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)dimensional boitileonmannapempinelli equation
  publication-title: Math. Methods Appl. Sci.
– volume: 10
  start-page: 105325
  year: 2020
  ident: bib0025
  article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium
  publication-title: AIP Adv.
– volume: 72
  start-page: 23342342
  year: 2016
  ident: bib0041
  article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations
  publication-title: Comput. Math. Appl.
– volume: 2
  start-page: 140144
  year: 2011
  ident: 10.1016/j.amc.2021.126201_bib0036
  article-title: Generalized bilinear differential equations
  publication-title: Stud. Nonlinear Sci.
– volume: 86
  start-page: 150161
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0040
  article-title: Interaction behavior between solitons and (2+1)dimensional CDGKS waves
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2018.08.008
– volume: 92
  start-page: 184189
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0028
  article-title: Collisions between lump and soliton solutions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.01.019
– volume: 92
  start-page: 41
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0033
  article-title: Lumptype solutions and interaction phenomenon to the bidirectional sawadakotera equation
  publication-title: Pramana
  doi: 10.1007/s12043-018-1700-4
– volume: 68
  start-page: 5662
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0016
  article-title: Lump and lumpsoliton solutions to the hirotasatsumaito equation
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2018.07.038
– volume: 63
  start-page: 122
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0026
  article-title: Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2019.11.005
– volume: 181
  start-page: 503513
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0011
  article-title: Abundant complex wave solutions for the nonautonomous fokaslenells equation in presence of perturbation terms
  publication-title: Optik (Stuttg)
– volume: 90
  start-page: 105260
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0017
  article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical kadomtsevpetviashvili equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2020.105260
– volume: 42
  start-page: 6277
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0023
  article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)dimensional boitileonmannapempinelli equation
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5721
– volume: 100
  start-page: 27532765
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0034
  article-title: Mlump, highorder breather solutions and interaction dynamics of a generalized (2+1)dimensional nonlinear wave equation
  publication-title: Nonlinear Dyn.
– volume: 44
  start-page: 360372
  year: 2017
  ident: 10.1016/j.amc.2021.126201_bib0012
  article-title: Solitons, bcklund transformation and lax pair for a (2+1)dimensional broerkaupkupershmidt system in the shallow water of uniform depth
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2016.07.013
– volume: 100
  start-page: 27392751
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0018
  article-title: Various exact analytical solutions of a variablecoefficient kadomtsevpetviashvili equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05629-z
– volume: 71
  start-page: 362
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0015
  article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/71/4/362
– volume: 19
  start-page: 103329
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0022
  article-title: M-Lump, n-soliton solutions, and the collision phenomena for the (2+1)-dimensional date-jimbo-kashiwara-miwa equation
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103329
– start-page: 9260986
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0029
  article-title: Rational solutions and their interaction solutions of the (3+1)dimensional jimbomiwa equation
  publication-title: Adv. Math. Phys.
– volume: 100
  start-page: 27152727
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0005
  article-title: Lumptype solution and breather lumpkink interaction phenomena to a (3+1)dimensional GBK equation based on trilinear form
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05554-1
– volume: 88
  start-page: 17
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0009
  article-title: Multiple complex soliton solutions for integrable negativeorder kdv and integrable negativeorder modified kdv equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.08.004
– volume: 64
  start-page: 113
  year: 2018
  ident: 10.1016/j.amc.2021.126201_bib0013
  article-title: General highorder breathers and rogue waves in the (3+1)dimensional KPBoussinesq equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2018.04.005
– volume: 95
  start-page: 035229
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0021
  article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab52c1
– volume: 72
  start-page: 045001
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0031
  article-title: Novel interaction phenomena of the (3+1)dimensional jimbomiwa equation
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ab690c
– volume: 72
  start-page: 23342342
  year: 2016
  ident: 10.1016/j.amc.2021.126201_bib0041
  article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2016.08.027
– volume: 62
  start-page: 378385
  year: 2018
  ident: 10.1016/j.amc.2021.126201_bib0006
  article-title: On breather waves, rogue waves and solitary waves to a generalized (2+1)dimensional camassaholmkadomtsevpetviashvili equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2018.02.040
– volume: 140
  start-page: 85103
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0039
  article-title: Riemann theta function solutions of the caudreydoddgibbonsawadakotera hierarchy
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2019.01.005
– volume: 33
  start-page: 1950198
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0038
  article-title: Lumptype solution, rogue wave, fusion and fission phenomena for the (2+1)dimensional caudreydoddgibbonkoterasawada equation
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984919501987
– volume: 96
  start-page: 1491
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0014
  article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawadakotera equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04866-1
– volume: 17
  start-page: 103105
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0024
  article-title: Abundant periodic wave solutions for fifth-order sawada-kotera equations
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103105
– volume: 180
  start-page: 917923
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0010
  article-title: A variety of nonautonomous complex wave solutions for the (2+1)dimensional nonlinear schrdinger equation with variable coefficients in nonlinear optical fibers
  publication-title: Optik (Stuttg)
– volume: 10
  start-page: 105325
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0025
  article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium
  publication-title: AIP Adv.
  doi: 10.1063/5.0019219
– volume: 95
  start-page: 3041
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0001
  article-title: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to pgBKP equatuon
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-04739-z
– volume: 390
  start-page: 125663
  year: 2021
  ident: 10.1016/j.amc.2021.126201_bib0003
  article-title: Breathertype and multiwave solutions for (2+1)dimensional nonlocal gardner equation
  publication-title: Appl. Math. Comput.
– volume: 29
  start-page: 569579
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0019
  article-title: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation
  publication-title: Int. J. Numer. Method H.
– volume: 150
  start-page: 103598
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0032
  article-title: Nlump and interaction solutions of localized waves to the (2+1)dimensional variablecoefficient caudreydoddgibbonkoterasawada equation
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2020.103598
– volume: 97
  start-page: 843852
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0008
  article-title: Optical breathers and rogue waves via the modulation instability for a higherorder generalized nonlinear schrdinger equation in an optical fiber transmission system
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05016-3
– volume: 102
  start-page: 1517
  year: 1984
  ident: 10.1016/j.amc.2021.126201_bib0037
  article-title: Some new integrable nonlinear evolution equations in 2+1 dimensions
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(84)90442-0
– volume: 366
  start-page: 124757
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0020
  article-title: Some lump solutions for a generalized (3+1)-dimensional kadomtsevpetviashvili equation
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 105135
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0027
  article-title: Bcklund transformation, exact solutions and interaction behaviour of the (3+1)dimensional hirotasatsumaitolike equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2019.105135
– volume: 78
  start-page: 754764
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0030
  article-title: New periodic wave, crosskink wave and the interaction phenomenon for the JimboMiwalike equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.02.035
– volume: 384
  start-page: 126178
  year: 2020
  ident: 10.1016/j.amc.2021.126201_bib0007
  article-title: Lumptype solutions, rogue wave type solutions and periodic lumpstripe interaction phenomena to a (3+1)dimensional generalized breaking soliton equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2019.126178
– volume: 94
  start-page: 105544
  year: 2021
  ident: 10.1016/j.amc.2021.126201_bib0002
  article-title: Investigation of solitons and mixed lump wave solutions with (3+1)dimensional potentialytsf equation
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2020.105544
– volume: 356
  start-page: 1341
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0035
  article-title: Lumptype solutions and interaction phenomenon to the (2+1)dimensional breaking soliton equation
  publication-title: Appl. Math. Comput.
– volume: 94
  start-page: 232237
  year: 2019
  ident: 10.1016/j.amc.2021.126201_bib0004
  article-title: The new exact solutions of the fifthorder sawadakotera equation using three wave method
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.03.001
SSID ssj0007614
Score 2.6543636
Snippet •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126201
SubjectTerms Bilinear neural network method
CDGKS-Like equation
Generalized bilinear transformation
Title Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation
URI https://dx.doi.org/10.1016/j.amc.2021.126201
Volume 403
WOSCitedRecordID wos000639134100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007614
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMcEKtoWTQHkAAzlXd7jiVqWNRWCArKzfJs1CV10jZuK_4DP4p_xhuPPXaiFrUHLqPEy7M135c3b17egtALlXqR8iRsS2IRkDCAgbGQEuElQoWM86R2ZX_fTnZ30_GYfh4M_rS5MKeTpCzT83M6-69QwzEAW6fOXgNuKxQOwGcAHUaAHcYrAd8Uki5-gSkJmmfm2Mfp6eTaWq6BWTxn4sy1H8c5y5tKtNomBQPUf-m_A30HM6s7AZgqHs4wrwSwgOgG7eR9wZjuRDzV6czka36Wi5xMip_SkUdVB31b7LYxfA9txdiTNrtuVi1GBlh39peqJCO7gmwXJuK__EGG-5Xl7ITpVtImdX5nuq998qKTJI2kUUXqjIq-u8Ov_bcm4bNV4VQH67lBX4WHzVejhD1dZN-7cH0wroqDjfxQl6_0vY3u2sVa3EtrpI1cbIPiDjIQkWkRmRFxA636SURBsa5uftwaf7LmQBKbAvPte7d_rddBhkvvcbFx1DN49u6iO81OBW8aht1DA1neR7d3OtAeoN89rmHNJ2z59BZbpi2dwYA1rpmGa6bhqcIgE7_yHe91n2P4ahzDLcceom-jrb3hB9L09yDcp8mcxLCxY9JnKk5d0BcxFwr2yzANQSTCiAW-DCNBo5zGgqdUMuUmykulUsp1eRLw4BFaKaelfIywilSexjQPPabLTUkGu4SIqiAWMXe5m68ht53YjDfF73UPlkl2KaBr6I29ZWYqv_zr4rBFK2tMV2OSZsC8y29bv84znqBb3Q_iKVqZH1fyGbrJT-fFyfHzhnZ_Ad8Ku4Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+lump+solutions%2C+classical+lump+solutions+and+rogue+waves+of+the+%282%2B1%29-dimensional+Caudrey-Dodd-Gibbon-Kotera-Sawada-like+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhang%2C+Run-Fa&rft.au=Li%2C+Ming-Chu&rft.au=Albishari%2C+Mohammed&rft.au=Zheng%2C+Fu-Chang&rft.date=2021-08-15&rft.issn=0096-3003&rft.volume=403&rft.spage=126201&rft_id=info:doi/10.1016%2Fj.amc.2021.126201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2021_126201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon