Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation
•The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model. Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (C...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 403; S. 126201 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.08.2021
|
| Schlagworte: | |
| ISSN: | 0096-3003 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model.
Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (CDGKS-like) equation. Based on bilinear neural network method, the generalized lump solution, classical lump solution and the novel analytical solution are constructed by giving some specific activation functions in the single hidden layer neural network model and the “3-2-2” neural network model. By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. These results fill the blank of the CDGKS-like equation in the existing literature. Via various three-dimensional plots, curve plots, density plots and contour plots, dynamical characteristics of these waves are exhibited. The effective methods used in this paper is helpful to study the nonlinear evolution equations in plasmas, mathematical physics, electromagnetism and fluid dynamics. |
|---|---|
| AbstractList | •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is constructed by using “3-2-2” neural network model.
Under investigation in this paper is the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like (CDGKS-like) equation. Based on bilinear neural network method, the generalized lump solution, classical lump solution and the novel analytical solution are constructed by giving some specific activation functions in the single hidden layer neural network model and the “3-2-2” neural network model. By means of symbolic computation, these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. These results fill the blank of the CDGKS-like equation in the existing literature. Via various three-dimensional plots, curve plots, density plots and contour plots, dynamical characteristics of these waves are exhibited. The effective methods used in this paper is helpful to study the nonlinear evolution equations in plasmas, mathematical physics, electromagnetism and fluid dynamics. |
| ArticleNumber | 126201 |
| Author | Albishari, Mohammed Zheng, Fu-Chang Zhang, Run-Fa Lan, Zhong-Zhou Li, Ming-Chu |
| Author_xml | – sequence: 1 givenname: Run-Fa surname: Zhang fullname: Zhang, Run-Fa email: rf_zhang@sina.cn organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China – sequence: 2 givenname: Ming-Chu surname: Li fullname: Li, Ming-Chu email: mingchul@dlut.edu.cn organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China – sequence: 3 givenname: Mohammed surname: Albishari fullname: Albishari, Mohammed organization: School of Software Technology, Dalian University of Technology, Dalian 116620, China – sequence: 4 givenname: Fu-Chang surname: Zheng fullname: Zheng, Fu-Chang organization: Department of Mathematics, Inner Mongolia University of Technology, Hohhot 010051, China – sequence: 5 givenname: Zhong-Zhou surname: Lan fullname: Lan, Zhong-Zhou organization: School of Computer Information Management, Inner Mongolia University of Finance and Economics, Hohhot 010070, China |
| BookMark | eNp9kLFOwzAQhj0UibbwAGweQeBydpqkERMqUBCVGIDZcuwzuKRxsRNQeQfemZQydWC64e67u_8bkF7tayTkiMOIA8_OFyO11CMBgo-4yATwHukDFBlLAJJ9MohxAQB5xsd98j3DGoOq3BcaWrXLFY2-ahvn63hGdaVidFpVOx2qakODf2mRfqoPjNRb2rwiPRan_IQZt8Q6dnMdN1WtCbhmV94YNnNl6Wt275vuIntUn8ooVrk3pPjeqs3mA7JnVRXx8K8OyfPN9dP0ls0fZnfTyznTosgbluWiKFGUNpuA5ZhpY9MUuqBJasZpmQgcp6ZIVZEZPSmwtJBbPkFrLYDOE50MCd_u1cHHGNDKVXBLFdaSg9w4lAvZOZQbh3LrsGPyHUa75vfrJihX_UtebEnsIn04DDJqh7VG4wLqRhrv_qF_AAXAkhA |
| CitedBy_id | crossref_primary_10_1007_s11071_022_07656_4 crossref_primary_10_1007_s11071_023_08683_5 crossref_primary_10_1007_s11071_023_08287_z crossref_primary_10_1007_s11071_023_08329_6 crossref_primary_10_1088_1402_4896_ad0e4d crossref_primary_10_1007_s11071_022_07514_3 crossref_primary_10_1002_mma_8138 crossref_primary_10_1515_phys_2022_0043 crossref_primary_10_1007_s11071_023_08361_6 crossref_primary_10_1007_s11071_024_09316_1 crossref_primary_10_1142_S0217984925500022 crossref_primary_10_1007_s42452_025_07118_7 crossref_primary_10_1007_s11071_022_07270_4 crossref_primary_10_1007_s11071_022_07823_7 crossref_primary_10_1088_1742_6596_2025_1_012049 crossref_primary_10_1007_s10773_024_05869_4 crossref_primary_10_1007_s11071_024_09304_5 crossref_primary_10_1002_mma_8131 crossref_primary_10_1007_s11071_023_08544_1 crossref_primary_10_1007_s11071_023_08616_2 crossref_primary_10_1007_s11071_024_09911_2 crossref_primary_10_1007_s11071_023_09177_0 crossref_primary_10_1007_s11071_024_09386_1 crossref_primary_10_3390_math13020236 crossref_primary_10_1007_s11071_023_08257_5 crossref_primary_10_1088_1572_9494_ad8740 crossref_primary_10_1007_s11071_023_08325_w crossref_primary_10_1080_0952813X_2023_2247412 crossref_primary_10_1007_s40819_022_01295_4 crossref_primary_10_1177_14613484221119275 crossref_primary_10_1007_s11071_023_08343_8 crossref_primary_10_1007_s12648_021_02154_6 crossref_primary_10_1007_s10773_023_05524_4 crossref_primary_10_1016_j_cjph_2023_03_016 crossref_primary_10_1007_s11071_023_08262_8 crossref_primary_10_1016_j_knosys_2024_111499 crossref_primary_10_1007_s12043_025_02969_6 crossref_primary_10_1007_s11071_023_08416_8 crossref_primary_10_1007_s11192_025_05328_9 crossref_primary_10_1016_j_wavemoti_2023_103243 crossref_primary_10_1007_s11071_022_07647_5 crossref_primary_10_1007_s11071_021_06550_9 crossref_primary_10_1088_1572_9494_ac9a3e crossref_primary_10_1088_1402_4896_ac098b crossref_primary_10_1088_1402_4896_ad2cd5 crossref_primary_10_1515_phys_2022_0050 crossref_primary_10_1142_S0217984925500459 crossref_primary_10_1007_s11071_022_07819_3 crossref_primary_10_1007_s11071_023_08615_3 crossref_primary_10_1007_s11071_023_08467_x crossref_primary_10_1007_s11071_023_08256_6 |
| Cites_doi | 10.1016/j.wavemoti.2018.08.008 10.1016/j.aml.2019.01.019 10.1007/s12043-018-1700-4 10.1016/j.cnsns.2018.07.038 10.1016/j.cjph.2019.11.005 10.1016/j.cnsns.2020.105260 10.1002/mma.5721 10.1016/j.cnsns.2016.07.013 10.1007/s11071-020-05629-z 10.1088/0253-6102/71/4/362 10.1016/j.rinp.2020.103329 10.1007/s11071-020-05554-1 10.1016/j.aml.2018.08.004 10.1016/j.cnsns.2018.04.005 10.1088/1402-4896/ab52c1 10.1088/1572-9494/ab690c 10.1016/j.camwa.2016.08.027 10.1016/j.cnsns.2018.02.040 10.1016/j.geomphys.2019.01.005 10.1142/S0217984919501987 10.1007/s11071-019-04866-1 10.1016/j.rinp.2020.103105 10.1063/5.0019219 10.1007/s11071-018-04739-z 10.1016/j.geomphys.2020.103598 10.1007/s11071-019-05016-3 10.1016/0375-9601(84)90442-0 10.1016/j.cnsns.2019.105135 10.1016/j.camwa.2019.02.035 10.1016/j.physleta.2019.126178 10.1016/j.cnsns.2020.105544 10.1016/j.aml.2019.03.001 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2021.126201 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2021_126201 S0096300321002915 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-6729be2bf680f1e6cdf55020135d45b32e45d95a96dc89ebf07f18efff00c73c3 |
| ISICitedReferencesCount | 165 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639134100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 07:21:42 EST 2025 Tue Nov 18 21:45:41 EST 2025 Sun Apr 06 06:54:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bilinear neural network method Generalized bilinear transformation CDGKS-Like equation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-6729be2bf680f1e6cdf55020135d45b32e45d95a96dc89ebf07f18efff00c73c3 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2021_126201 crossref_citationtrail_10_1016_j_amc_2021_126201 elsevier_sciencedirect_doi_10_1016_j_amc_2021_126201 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-15 |
| PublicationDateYYYYMMDD | 2021-08-15 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Liu, Wazwaz (bib0010) 2019; 180 Javid, Raza, Osman (bib0015) 2019; 71 Guan, Liu, Zhou, Biswas (bib0020) 2020; 366 Osman, Inc, Liu, Hosseini, Yusuf (bib0021) 2020; 95 Liu, Zhu (bib0018) 2020; 100 Cheng, Yang, Ren, Wang (bib0040) 2019; 86 Osman (bib0014) 2019; 96 Xia, Zhao, L. (bib0017) 2020; 90 Chen, Ma, L. (bib0027) 2020; 83 Tang, Tao, Guan (bib0041) 2016; 72 Kaur, Wazwaz (bib0019) 2019; 29 Fang, Gao, Wang, Wang (bib0038) 2019; 33 Geng, He, Wu (bib0039) 2019; 140 Lan, Gao, Yang, Su, Mao (bib0012) 2017; 44 Qin, Tian, Wang, Zhang (bib0006) 2018; 62 Wang, Bilige, Pang (bib0029) 2020 Wazwaz (bib0009) 2019; 88 Liu (bib0028) 2019; 92 Tahir, Awan, Osman, Baleanu, Alqurashi (bib0024) 2020; 17 Zhou, Manukure, Ma (bib0016) 2019; 68 Manafian, Lakestani (bib0032) 2020; 150 Guo, Li (bib0004) 2019; 94 zkan, Yaar (bib0003) 2021; 390 Zhang, Chen (bib0034) 2020; 100 Liu, Osman, Zhu, Zhou, Baleanu (bib0025) 2020; 10 Ma (bib0036) 2011; 2 Gai, Ma, Li (bib0007) 2020; 384 Ding, Osman, Wazwaz (bib0011) 2019; 181 Yin, Tian, Zhang, Du, Zhao (bib0008) 2019; 97 Zhang, Bilige, Fang, Chaolu (bib0030) 2019; 78 Zhang, Bilige (bib0001) 2019; 95 Sun, Wazwaz (bib0013) 2018; 64 Osman, Wazwaz (bib0023) 2019; 42 Osman, Baleanu, Adem, Hosseini, Mirzazadeh, Eslami (bib0026) 2020; 63 Manafian, MohammadiIvatloo, Abapour (bib0035) 2019; 356 Ismael, Bulut, Park, Osman (bib0022) 2020; 19 Konopelchenko, Dubrovsky (bib0037) 1984; 102 Gai, Ma, Li (bib0005) 2020; 100 Younis, Ali, Rizvi, Tantawy, Tariq, Bekir (bib0002) 2021; 94 Wang, Bilige, Pang (bib0031) 2020; 72 Manafian, Lakestani (bib0033) 2019; 92 Younis (10.1016/j.amc.2021.126201_bib0002) 2021; 94 Zhang (10.1016/j.amc.2021.126201_bib0034) 2020; 100 Javid (10.1016/j.amc.2021.126201_bib0015) 2019; 71 Zhou (10.1016/j.amc.2021.126201_bib0016) 2019; 68 Kaur (10.1016/j.amc.2021.126201_bib0019) 2019; 29 zkan (10.1016/j.amc.2021.126201_bib0003) 2021; 390 Gai (10.1016/j.amc.2021.126201_bib0005) 2020; 100 Liu (10.1016/j.amc.2021.126201_bib0018) 2020; 100 Ismael (10.1016/j.amc.2021.126201_bib0022) 2020; 19 Yin (10.1016/j.amc.2021.126201_bib0008) 2019; 97 Liu (10.1016/j.amc.2021.126201_bib0010) 2019; 180 Lan (10.1016/j.amc.2021.126201_bib0012) 2017; 44 Wang (10.1016/j.amc.2021.126201_bib0029) 2020 Gai (10.1016/j.amc.2021.126201_bib0007) 2020; 384 Manafian (10.1016/j.amc.2021.126201_bib0035) 2019; 356 Xia (10.1016/j.amc.2021.126201_bib0017) 2020; 90 Qin (10.1016/j.amc.2021.126201_bib0006) 2018; 62 Geng (10.1016/j.amc.2021.126201_bib0039) 2019; 140 Guan (10.1016/j.amc.2021.126201_bib0020) 2020; 366 Fang (10.1016/j.amc.2021.126201_bib0038) 2019; 33 Chen (10.1016/j.amc.2021.126201_bib0027) 2020; 83 Manafian (10.1016/j.amc.2021.126201_bib0033) 2019; 92 Manafian (10.1016/j.amc.2021.126201_bib0032) 2020; 150 Osman (10.1016/j.amc.2021.126201_bib0023) 2019; 42 Sun (10.1016/j.amc.2021.126201_bib0013) 2018; 64 Ding (10.1016/j.amc.2021.126201_bib0011) 2019; 181 Zhang (10.1016/j.amc.2021.126201_bib0001) 2019; 95 Tahir (10.1016/j.amc.2021.126201_bib0024) 2020; 17 Wang (10.1016/j.amc.2021.126201_bib0031) 2020; 72 Cheng (10.1016/j.amc.2021.126201_bib0040) 2019; 86 Zhang (10.1016/j.amc.2021.126201_bib0030) 2019; 78 Osman (10.1016/j.amc.2021.126201_bib0021) 2020; 95 Liu (10.1016/j.amc.2021.126201_bib0025) 2020; 10 Tang (10.1016/j.amc.2021.126201_bib0041) 2016; 72 Liu (10.1016/j.amc.2021.126201_bib0028) 2019; 92 Osman (10.1016/j.amc.2021.126201_bib0014) 2019; 96 Osman (10.1016/j.amc.2021.126201_bib0026) 2020; 63 Guo (10.1016/j.amc.2021.126201_bib0004) 2019; 94 Wazwaz (10.1016/j.amc.2021.126201_bib0009) 2019; 88 Ma (10.1016/j.amc.2021.126201_bib0036) 2011; 2 Konopelchenko (10.1016/j.amc.2021.126201_bib0037) 1984; 102 |
| References_xml | – volume: 100 start-page: 27152727 year: 2020 ident: bib0005 article-title: Lumptype solution and breather lumpkink interaction phenomena to a (3+1)dimensional GBK equation based on trilinear form publication-title: Nonlinear Dyn. – volume: 88 start-page: 17 year: 2019 ident: bib0009 article-title: Multiple complex soliton solutions for integrable negativeorder kdv and integrable negativeorder modified kdv equations publication-title: Appl. Math. Lett. – volume: 366 start-page: 124757 year: 2020 ident: bib0020 article-title: Some lump solutions for a generalized (3+1)-dimensional kadomtsevpetviashvili equation publication-title: Appl. Math. Comput. – volume: 92 start-page: 184189 year: 2019 ident: bib0028 article-title: Collisions between lump and soliton solutions publication-title: Appl. Math. Lett. – volume: 102 start-page: 1517 year: 1984 ident: bib0037 article-title: Some new integrable nonlinear evolution equations in 2+1 dimensions publication-title: Phys. Lett. A – volume: 180 start-page: 917923 year: 2019 ident: bib0010 article-title: A variety of nonautonomous complex wave solutions for the (2+1)dimensional nonlinear schrdinger equation with variable coefficients in nonlinear optical fibers publication-title: Optik (Stuttg) – volume: 44 start-page: 360372 year: 2017 ident: bib0012 article-title: Solitons, bcklund transformation and lax pair for a (2+1)dimensional broerkaupkupershmidt system in the shallow water of uniform depth publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 100 start-page: 27532765 year: 2020 ident: bib0034 article-title: Mlump, highorder breather solutions and interaction dynamics of a generalized (2+1)dimensional nonlinear wave equation publication-title: Nonlinear Dyn. – volume: 68 start-page: 5662 year: 2019 ident: bib0016 article-title: Lump and lumpsoliton solutions to the hirotasatsumaito equation publication-title: Commun. Nonlinear Sci. – volume: 92 start-page: 41 year: 2019 ident: bib0033 article-title: Lumptype solutions and interaction phenomenon to the bidirectional sawadakotera equation publication-title: Pramana – volume: 94 start-page: 232237 year: 2019 ident: bib0004 article-title: The new exact solutions of the fifthorder sawadakotera equation using three wave method publication-title: Appl. Math. Lett. – volume: 95 start-page: 3041 year: 2019 end-page: 3048 ident: bib0001 article-title: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to pgBKP equatuon publication-title: Nonlinear Dyn. – volume: 33 start-page: 1950198 year: 2019 ident: bib0038 article-title: Lumptype solution, rogue wave, fusion and fission phenomena for the (2+1)dimensional caudreydoddgibbonkoterasawada equation publication-title: Mod. Phys. Lett. B – start-page: 9260986 year: 2020 ident: bib0029 article-title: Rational solutions and their interaction solutions of the (3+1)dimensional jimbomiwa equation publication-title: Adv. Math. Phys. – volume: 86 start-page: 150161 year: 2019 ident: bib0040 article-title: Interaction behavior between solitons and (2+1)dimensional CDGKS waves publication-title: Wave Motion – volume: 29 start-page: 569579 year: 2019 ident: bib0019 article-title: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation publication-title: Int. J. Numer. Method H. – volume: 17 start-page: 103105 year: 2020 ident: bib0024 article-title: Abundant periodic wave solutions for fifth-order sawada-kotera equations publication-title: Results Phys. – volume: 83 start-page: 105135 year: 2020 ident: bib0027 article-title: Bcklund transformation, exact solutions and interaction behaviour of the (3+1)dimensional hirotasatsumaitolike equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 140 start-page: 85103 year: 2019 ident: bib0039 article-title: Riemann theta function solutions of the caudreydoddgibbonsawadakotera hierarchy publication-title: J. Geom. Phys. – volume: 19 start-page: 103329 year: 2020 ident: bib0022 article-title: M-Lump, n-soliton solutions, and the collision phenomena for the (2+1)-dimensional date-jimbo-kashiwara-miwa equation publication-title: Results Phys. – volume: 95 start-page: 035229 year: 2020 ident: bib0021 article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation publication-title: Phys. Scr. – volume: 390 start-page: 125663 year: 2021 ident: bib0003 article-title: Breathertype and multiwave solutions for (2+1)dimensional nonlocal gardner equation publication-title: Appl. Math. Comput. – volume: 62 start-page: 378385 year: 2018 ident: bib0006 article-title: On breather waves, rogue waves and solitary waves to a generalized (2+1)dimensional camassaholmkadomtsevpetviashvili equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 2 start-page: 140144 year: 2011 ident: bib0036 article-title: Generalized bilinear differential equations publication-title: Stud. Nonlinear Sci. – volume: 97 start-page: 843852 year: 2019 ident: bib0008 article-title: Optical breathers and rogue waves via the modulation instability for a higherorder generalized nonlinear schrdinger equation in an optical fiber transmission system publication-title: Nonlinear Dyn. – volume: 96 start-page: 1491 year: 2019 end-page: 1496 ident: bib0014 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawadakotera equation publication-title: Nonlinear Dyn. – volume: 384 start-page: 126178 year: 2020 ident: bib0007 article-title: Lumptype solutions, rogue wave type solutions and periodic lumpstripe interaction phenomena to a (3+1)dimensional generalized breaking soliton equation publication-title: Phys. Lett. A – volume: 90 start-page: 105260 year: 2020 ident: bib0017 article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical kadomtsevpetviashvili equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 181 start-page: 503513 year: 2019 ident: bib0011 article-title: Abundant complex wave solutions for the nonautonomous fokaslenells equation in presence of perturbation terms publication-title: Optik (Stuttg) – volume: 150 start-page: 103598 year: 2020 ident: bib0032 article-title: Nlump and interaction solutions of localized waves to the (2+1)dimensional variablecoefficient caudreydoddgibbonkoterasawada equation publication-title: J. Geom. Phys. – volume: 72 start-page: 045001 year: 2020 ident: bib0031 article-title: Novel interaction phenomena of the (3+1)dimensional jimbomiwa equation publication-title: Commun. Theor. Phys. – volume: 78 start-page: 754764 year: 2019 ident: bib0030 article-title: New periodic wave, crosskink wave and the interaction phenomenon for the JimboMiwalike equation publication-title: Comput. Math. Appl. – volume: 94 start-page: 105544 year: 2021 ident: bib0002 article-title: Investigation of solitons and mixed lump wave solutions with (3+1)dimensional potentialytsf equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 71 start-page: 362 year: 2019 end-page: 366 ident: bib0015 article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets publication-title: Commun. Theor. Phys. – volume: 64 start-page: 113 year: 2018 ident: bib0013 article-title: General highorder breathers and rogue waves in the (3+1)dimensional KPBoussinesq equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 100 start-page: 27392751 year: 2020 ident: bib0018 article-title: Various exact analytical solutions of a variablecoefficient kadomtsevpetviashvili equation publication-title: Nonlinear Dyn. – volume: 63 start-page: 122 year: 2020 end-page: 129 ident: bib0026 article-title: Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations publication-title: Chin. J. Phys. – volume: 356 start-page: 1341 year: 2019 ident: bib0035 article-title: Lumptype solutions and interaction phenomenon to the (2+1)dimensional breaking soliton equation publication-title: Appl. Math. Comput. – volume: 42 start-page: 6277 year: 2019 end-page: 6283 ident: bib0023 article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)dimensional boitileonmannapempinelli equation publication-title: Math. Methods Appl. Sci. – volume: 10 start-page: 105325 year: 2020 ident: bib0025 article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium publication-title: AIP Adv. – volume: 72 start-page: 23342342 year: 2016 ident: bib0041 article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations publication-title: Comput. Math. Appl. – volume: 2 start-page: 140144 year: 2011 ident: 10.1016/j.amc.2021.126201_bib0036 article-title: Generalized bilinear differential equations publication-title: Stud. Nonlinear Sci. – volume: 86 start-page: 150161 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0040 article-title: Interaction behavior between solitons and (2+1)dimensional CDGKS waves publication-title: Wave Motion doi: 10.1016/j.wavemoti.2018.08.008 – volume: 92 start-page: 184189 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0028 article-title: Collisions between lump and soliton solutions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.01.019 – volume: 92 start-page: 41 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0033 article-title: Lumptype solutions and interaction phenomenon to the bidirectional sawadakotera equation publication-title: Pramana doi: 10.1007/s12043-018-1700-4 – volume: 68 start-page: 5662 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0016 article-title: Lump and lumpsoliton solutions to the hirotasatsumaito equation publication-title: Commun. Nonlinear Sci. doi: 10.1016/j.cnsns.2018.07.038 – volume: 63 start-page: 122 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0026 article-title: Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.11.005 – volume: 181 start-page: 503513 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0011 article-title: Abundant complex wave solutions for the nonautonomous fokaslenells equation in presence of perturbation terms publication-title: Optik (Stuttg) – volume: 90 start-page: 105260 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0017 article-title: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical kadomtsevpetviashvili equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2020.105260 – volume: 42 start-page: 6277 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0023 article-title: A general bilinear form to generate different wave structures of solitons for a (3+1)dimensional boitileonmannapempinelli equation publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5721 – volume: 100 start-page: 27532765 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0034 article-title: Mlump, highorder breather solutions and interaction dynamics of a generalized (2+1)dimensional nonlinear wave equation publication-title: Nonlinear Dyn. – volume: 44 start-page: 360372 year: 2017 ident: 10.1016/j.amc.2021.126201_bib0012 article-title: Solitons, bcklund transformation and lax pair for a (2+1)dimensional broerkaupkupershmidt system in the shallow water of uniform depth publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2016.07.013 – volume: 100 start-page: 27392751 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0018 article-title: Various exact analytical solutions of a variablecoefficient kadomtsevpetviashvili equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05629-z – volume: 71 start-page: 362 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0015 article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/4/362 – volume: 19 start-page: 103329 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0022 article-title: M-Lump, n-soliton solutions, and the collision phenomena for the (2+1)-dimensional date-jimbo-kashiwara-miwa equation publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103329 – start-page: 9260986 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0029 article-title: Rational solutions and their interaction solutions of the (3+1)dimensional jimbomiwa equation publication-title: Adv. Math. Phys. – volume: 100 start-page: 27152727 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0005 article-title: Lumptype solution and breather lumpkink interaction phenomena to a (3+1)dimensional GBK equation based on trilinear form publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05554-1 – volume: 88 start-page: 17 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0009 article-title: Multiple complex soliton solutions for integrable negativeorder kdv and integrable negativeorder modified kdv equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.08.004 – volume: 64 start-page: 113 year: 2018 ident: 10.1016/j.amc.2021.126201_bib0013 article-title: General highorder breathers and rogue waves in the (3+1)dimensional KPBoussinesq equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2018.04.005 – volume: 95 start-page: 035229 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0021 article-title: Different wave structures and stability analysis for the generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab52c1 – volume: 72 start-page: 045001 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0031 article-title: Novel interaction phenomena of the (3+1)dimensional jimbomiwa equation publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ab690c – volume: 72 start-page: 23342342 year: 2016 ident: 10.1016/j.amc.2021.126201_bib0041 article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.08.027 – volume: 62 start-page: 378385 year: 2018 ident: 10.1016/j.amc.2021.126201_bib0006 article-title: On breather waves, rogue waves and solitary waves to a generalized (2+1)dimensional camassaholmkadomtsevpetviashvili equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2018.02.040 – volume: 140 start-page: 85103 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0039 article-title: Riemann theta function solutions of the caudreydoddgibbonsawadakotera hierarchy publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2019.01.005 – volume: 33 start-page: 1950198 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0038 article-title: Lumptype solution, rogue wave, fusion and fission phenomena for the (2+1)dimensional caudreydoddgibbonkoterasawada equation publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984919501987 – volume: 96 start-page: 1491 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0014 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawadakotera equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04866-1 – volume: 17 start-page: 103105 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0024 article-title: Abundant periodic wave solutions for fifth-order sawada-kotera equations publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103105 – volume: 180 start-page: 917923 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0010 article-title: A variety of nonautonomous complex wave solutions for the (2+1)dimensional nonlinear schrdinger equation with variable coefficients in nonlinear optical fibers publication-title: Optik (Stuttg) – volume: 10 start-page: 105325 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0025 article-title: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium publication-title: AIP Adv. doi: 10.1063/5.0019219 – volume: 95 start-page: 3041 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0001 article-title: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to pgBKP equatuon publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-04739-z – volume: 390 start-page: 125663 year: 2021 ident: 10.1016/j.amc.2021.126201_bib0003 article-title: Breathertype and multiwave solutions for (2+1)dimensional nonlocal gardner equation publication-title: Appl. Math. Comput. – volume: 29 start-page: 569579 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0019 article-title: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation publication-title: Int. J. Numer. Method H. – volume: 150 start-page: 103598 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0032 article-title: Nlump and interaction solutions of localized waves to the (2+1)dimensional variablecoefficient caudreydoddgibbonkoterasawada equation publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2020.103598 – volume: 97 start-page: 843852 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0008 article-title: Optical breathers and rogue waves via the modulation instability for a higherorder generalized nonlinear schrdinger equation in an optical fiber transmission system publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05016-3 – volume: 102 start-page: 1517 year: 1984 ident: 10.1016/j.amc.2021.126201_bib0037 article-title: Some new integrable nonlinear evolution equations in 2+1 dimensions publication-title: Phys. Lett. A doi: 10.1016/0375-9601(84)90442-0 – volume: 366 start-page: 124757 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0020 article-title: Some lump solutions for a generalized (3+1)-dimensional kadomtsevpetviashvili equation publication-title: Appl. Math. Comput. – volume: 83 start-page: 105135 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0027 article-title: Bcklund transformation, exact solutions and interaction behaviour of the (3+1)dimensional hirotasatsumaitolike equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2019.105135 – volume: 78 start-page: 754764 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0030 article-title: New periodic wave, crosskink wave and the interaction phenomenon for the JimboMiwalike equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.02.035 – volume: 384 start-page: 126178 year: 2020 ident: 10.1016/j.amc.2021.126201_bib0007 article-title: Lumptype solutions, rogue wave type solutions and periodic lumpstripe interaction phenomena to a (3+1)dimensional generalized breaking soliton equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2019.126178 – volume: 94 start-page: 105544 year: 2021 ident: 10.1016/j.amc.2021.126201_bib0002 article-title: Investigation of solitons and mixed lump wave solutions with (3+1)dimensional potentialytsf equation publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2020.105544 – volume: 356 start-page: 1341 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0035 article-title: Lumptype solutions and interaction phenomenon to the (2+1)dimensional breaking soliton equation publication-title: Appl. Math. Comput. – volume: 94 start-page: 232237 year: 2019 ident: 10.1016/j.amc.2021.126201_bib0004 article-title: The new exact solutions of the fifthorder sawadakotera equation using three wave method publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.03.001 |
| SSID | ssj0007614 |
| Score | 2.6543636 |
| Snippet | •The lump solution method is generalized.•The CDGKS-like equation is derived through the generalized bilinear method.•The new rogue wave solution is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126201 |
| SubjectTerms | Bilinear neural network method CDGKS-Like equation Generalized bilinear transformation |
| Title | Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation |
| URI | https://dx.doi.org/10.1016/j.amc.2021.126201 |
| Volume | 403 |
| WOSCitedRecordID | wos000639134100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMcEKtoWTQHkAAzlXd7jiVqWNRWCArKzfJs1CV10jZuK_4DP4p_xhuPPXaiFrUHLqPEy7M135c3b17egtALlXqR8iRsS2IRkDCAgbGQEuElQoWM86R2ZX_fTnZ30_GYfh4M_rS5MKeTpCzT83M6-69QwzEAW6fOXgNuKxQOwGcAHUaAHcYrAd8Uki5-gSkJmmfm2Mfp6eTaWq6BWTxn4sy1H8c5y5tKtNomBQPUf-m_A30HM6s7AZgqHs4wrwSwgOgG7eR9wZjuRDzV6czka36Wi5xMip_SkUdVB31b7LYxfA9txdiTNrtuVi1GBlh39peqJCO7gmwXJuK__EGG-5Xl7ITpVtImdX5nuq998qKTJI2kUUXqjIq-u8Ov_bcm4bNV4VQH67lBX4WHzVejhD1dZN-7cH0wroqDjfxQl6_0vY3u2sVa3EtrpI1cbIPiDjIQkWkRmRFxA636SURBsa5uftwaf7LmQBKbAvPte7d_rddBhkvvcbFx1DN49u6iO81OBW8aht1DA1neR7d3OtAeoN89rmHNJ2z59BZbpi2dwYA1rpmGa6bhqcIgE7_yHe91n2P4ahzDLcceom-jrb3hB9L09yDcp8mcxLCxY9JnKk5d0BcxFwr2yzANQSTCiAW-DCNBo5zGgqdUMuUmykulUsp1eRLw4BFaKaelfIywilSexjQPPabLTUkGu4SIqiAWMXe5m68ht53YjDfF73UPlkl2KaBr6I29ZWYqv_zr4rBFK2tMV2OSZsC8y29bv84znqBb3Q_iKVqZH1fyGbrJT-fFyfHzhnZ_Ad8Ku4Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+lump+solutions%2C+classical+lump+solutions+and+rogue+waves+of+the+%282%2B1%29-dimensional+Caudrey-Dodd-Gibbon-Kotera-Sawada-like+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zhang%2C+Run-Fa&rft.au=Li%2C+Ming-Chu&rft.au=Albishari%2C+Mohammed&rft.au=Zheng%2C+Fu-Chang&rft.date=2021-08-15&rft.issn=0096-3003&rft.volume=403&rft.spage=126201&rft_id=info:doi/10.1016%2Fj.amc.2021.126201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2021_126201 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |