AHA-3WKM: The optimization of K-means with three-way clustering and artificial hummingbird algorithm

Clustering, as an essential technique in unsupervised learning, plays a pivotal role in the fields of data mining and machine learning. However, the classic K-means clustering algorithm has intrinsic drawbacks such as sensitivity to initial cluster centers, susceptibility to a local optimal solution...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 672; s. 120661
Hlavní autori: Chen, Xiying, Liu, Caihui, Lin, Bowen, Lai, Jianying, Miao, Duoqian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.06.2024
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering, as an essential technique in unsupervised learning, plays a pivotal role in the fields of data mining and machine learning. However, the classic K-means clustering algorithm has intrinsic drawbacks such as sensitivity to initial cluster centers, susceptibility to a local optimal solution, and challenges in handling data uncertainty. To address these problems, this paper proposes an artificial hummingbird algorithm (AHA)-based three-way K-means clustering algorithm, called AHA-3WKM. First, AHA is introduced to address the problems of sensitivity to initial cluster centers and local optima. Second, a fitness function of AHA is specifically constructed to find the best initial clustering centers so that the hummingbirds can search for high-quality food sources, i.e., the global optimum cluster centers. Third, a three-way clustering approach is utilized to capture information about data uncertainty. In this way, the results of clustering are divided into three distinct regions based on the relationship between objects and clusters. The experimental results demonstrate that AHA-3WKM has good performance, and enhances the stability and the accuracy of clustering results. •AHA is introduced to address the problems of the sensitivity to initial cluster centers and the proneness to local optima. Hummingbirds are treated as data points, which dynamically update their strategies and effectively find the optimal cluster centers during multiple iterations.•A fitness function is designed based on the clustering principle of “birds of a feather flock together”, with the aim of simplifying calculations, which enhances the specificity and practicality of K-means algorithm.•An AHA-based three-way K-means clustering algorithm (i.e., AHA-3WKM) is proposed. The clustering process is initialized with cluster centers optimized by AHA, and the results are represented in three regions, which can capture the uncertainty within the datasets.
AbstractList Clustering, as an essential technique in unsupervised learning, plays a pivotal role in the fields of data mining and machine learning. However, the classic K-means clustering algorithm has intrinsic drawbacks such as sensitivity to initial cluster centers, susceptibility to a local optimal solution, and challenges in handling data uncertainty. To address these problems, this paper proposes an artificial hummingbird algorithm (AHA)-based three-way K-means clustering algorithm, called AHA-3WKM. First, AHA is introduced to address the problems of sensitivity to initial cluster centers and local optima. Second, a fitness function of AHA is specifically constructed to find the best initial clustering centers so that the hummingbirds can search for high-quality food sources, i.e., the global optimum cluster centers. Third, a three-way clustering approach is utilized to capture information about data uncertainty. In this way, the results of clustering are divided into three distinct regions based on the relationship between objects and clusters. The experimental results demonstrate that AHA-3WKM has good performance, and enhances the stability and the accuracy of clustering results. •AHA is introduced to address the problems of the sensitivity to initial cluster centers and the proneness to local optima. Hummingbirds are treated as data points, which dynamically update their strategies and effectively find the optimal cluster centers during multiple iterations.•A fitness function is designed based on the clustering principle of “birds of a feather flock together”, with the aim of simplifying calculations, which enhances the specificity and practicality of K-means algorithm.•An AHA-based three-way K-means clustering algorithm (i.e., AHA-3WKM) is proposed. The clustering process is initialized with cluster centers optimized by AHA, and the results are represented in three regions, which can capture the uncertainty within the datasets.
ArticleNumber 120661
Author Chen, Xiying
Miao, Duoqian
Lin, Bowen
Liu, Caihui
Lai, Jianying
Author_xml – sequence: 1
  givenname: Xiying
  orcidid: 0009-0007-7314-0492
  surname: Chen
  fullname: Chen, Xiying
  email: xiying_chen@163.com
  organization: Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou 34100, Jiangxi, China
– sequence: 2
  givenname: Caihui
  orcidid: 0000-0003-2636-0613
  surname: Liu
  fullname: Liu, Caihui
  email: liucaihui@gnnu.edu.cn, liu_caihui@163.com
  organization: Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou 34100, Jiangxi, China
– sequence: 3
  givenname: Bowen
  surname: Lin
  fullname: Lin, Bowen
  email: lin_bw@qq.com
  organization: Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou 34100, Jiangxi, China
– sequence: 4
  givenname: Jianying
  orcidid: 0000-0003-4682-071X
  surname: Lai
  fullname: Lai, Jianying
  email: 1421631021@qq.com
  organization: Department of Mathematics and Computer Science, Gannan Normal University, Ganzhou 34100, Jiangxi, China
– sequence: 5
  givenname: Duoqian
  orcidid: 0000-0001-6588-1468
  surname: Miao
  fullname: Miao, Duoqian
  email: dqmiao@tongji.edu.cn
  organization: Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
BookMark eNp9kM1OAjEUhRuDiYA-gLu-wGDbYTozuiJExYBxg3HZdNo7zCXzQ9oiwad3EFcuXJ3kJN9Jzjcig7ZrgZBbziaccXm3nWDrJ4KJ6YQLJiW_IEOepSKSIucDMmRMsIiJJLkiI--3jLFpKuWQ2NliFsUfy9d7uq6AdruADX7pgF1Lu5IuowZ06-kBQ0VD5QCigz5SU-99AIfthurWUu0ClmhQ17TaN01fF-j6ut50rgeba3JZ6trDzW-OyfvT43q-iFZvzy_z2SoyIk9DJKXhOk3y3IgkE7bIY5vIMo6zLLEs01lRSqvlVBvgKefS2hJyY4RmEAMvShuPSXreNa7z3kGpDIafL8FprBVn6iRLbVUvS51kqbOsnuR_yJ3DRrvjv8zDmYH-0ieCU94gtAYsOjBB2Q7_ob8B5NeFiA
CitedBy_id crossref_primary_10_1007_s42243_025_01511_7
crossref_primary_10_1016_j_ins_2024_121099
crossref_primary_10_1016_j_swevo_2025_102150
crossref_primary_10_1016_j_cosrev_2025_100727
crossref_primary_10_1016_j_asoc_2024_112639
crossref_primary_10_1016_j_asoc_2025_113851
crossref_primary_10_1016_j_eswa_2025_126618
crossref_primary_10_1016_j_mtcomm_2024_111468
crossref_primary_10_1016_j_asoc_2025_113816
crossref_primary_10_3390_met15030318
crossref_primary_10_1016_j_asoc_2025_113880
crossref_primary_10_1109_JAS_2025_125204
Cites_doi 10.1016/j.ins.2022.07.131
10.1109/TIP.2023.3263102
10.1016/j.ins.2022.11.139
10.1016/j.patcog.2018.09.016
10.1016/j.ins.2010.11.019
10.1016/j.ijar.2023.109032
10.21203/rs.3.rs-3240432/v1
10.1109/JAS.2021.1004129
10.1016/j.ipl.2015.08.007
10.1515/mt-2022-0123
10.1214/aoms/1177731944
10.1007/s13042-018-0901-y
10.1186/s13054-022-04079-w
10.1109/TIM.2023.3316213
10.1016/j.ins.2023.01.071
10.1016/j.cma.2021.114194
10.1016/j.engappai.2022.104743
10.3390/app12168047
10.3390/sym14091821
10.1109/TITS.2023.3338251
10.1016/j.patcog.2019.04.014
10.1016/j.future.2021.06.059
10.1016/j.inffus.2023.02.013
10.1016/j.enconman.2023.116809
10.1007/s10489-018-1238-7
10.1007/s10489-020-02142-z
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.120661
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2024_120661
S0020025524005747
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-66c1a7599c2582db93d56f33885d08a8bf6da64ace17116ddfe9cc2a0e3e1bfd3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001238613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:50:04 EST 2025
Sat Nov 29 02:44:13 EST 2025
Sat May 25 15:41:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Three-way clustering
Artificial hummingbird algorithm
Fitness function
Cluster centers
K-means clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-66c1a7599c2582db93d56f33885d08a8bf6da64ace17116ddfe9cc2a0e3e1bfd3
ORCID 0009-0007-7314-0492
0000-0003-4682-071X
0000-0001-6588-1468
0000-0003-2636-0613
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2024_120661
crossref_primary_10_1016_j_ins_2024_120661
elsevier_sciencedirect_doi_10_1016_j_ins_2024_120661
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fränti, Sieranoja (br0100) 2018; 48
Nayak, Naik, Kanungo, Behera (br0150) 2015
Ikotun, Ezugwu, Abualigah, Abuhaija, Heming (br0080) 2023; 622
Åkerlund, Holst, Stocchetti, Steyerberg, Menon, Ercole, Nelson (br0050) 2022; 26
Yao (br0240) 2011; 181
Nayak, Naik, Behera (br0160) 2017
Hong (br0260) 2016; 5
Wang, Shi, Yang, Mi (br0270) 2019; 10
Yildiz, Mehta, Sait, Panagant, Kumar, Yildiz (br0210) 2022; 64
Guo, Yin, Wang (br0290) 2022; 14
Li, Zhou, Gu, Guo, Deng (br0170) 2022; 12
Zhang, Peng (br0310) 2022; 126
Tang, Liu, Pan (br0120) 2021; 8
Yanlong, Renxia (br0280) 2022; 50
Yousri, Farag, Zeineldin, El-Saadany (br0220) 2023; 280
Fränti, Sieranoja (br0090) 2019; 93
Chen, Wang, Bai (br0040) 2023; 32
Huang, Chao, Wang (br0110) 2019; 86
Fang, Du, Lin, Yang, Wang, Shi (br0030) 2023; 626
Yao (br0230) 2023
Ezugwu, Ikotun, Oyelade, Abualigah, Agushaka, Eke, Akinyelu (br0300) 2022; 110
Saida, Nadjet, Omar (br0130) 2014
Deng, Li, Zhao (br0070) 2023
Zhao, Wang (br0200) 2022; 609
Yao (br0250) 2021; 51
Ghiasabadi Farahani, Akbari Torkestani, Rahmani (br0060) 2022; 106
Chen, Fu, Yao, Guo, Plant, Wang (br0020) 2023; 95
Demšar (br0330) 2006; 7
Zhao, Wu, Deng (br0010) 2023; 72
Wang, Zhou, Qiao, Huang (br0140) 2016; 116
S. SI-MA, H. Liu, H. Zhan, G. Guo, C. Yu, P. Hu, Swarm intelligence algorithms evaluation, arXiv e-prints, 2023.
Friedman (br0320) 1940; 11
Zhao, Wang, Mirjalili (br0180) 2022; 388
Ikotun (10.1016/j.ins.2024.120661_br0080) 2023; 622
Chen (10.1016/j.ins.2024.120661_br0020) 2023; 95
Ghiasabadi Farahani (10.1016/j.ins.2024.120661_br0060) 2022; 106
Hong (10.1016/j.ins.2024.120661_br0260) 2016; 5
Zhao (10.1016/j.ins.2024.120661_br0180) 2022; 388
Fang (10.1016/j.ins.2024.120661_br0030) 2023; 626
Yanlong (10.1016/j.ins.2024.120661_br0280) 2022; 50
Ezugwu (10.1016/j.ins.2024.120661_br0300) 2022; 110
Demšar (10.1016/j.ins.2024.120661_br0330) 2006; 7
Yousri (10.1016/j.ins.2024.120661_br0220) 2023; 280
Yildiz (10.1016/j.ins.2024.120661_br0210) 2022; 64
Zhang (10.1016/j.ins.2024.120661_br0310) 2022; 126
Fränti (10.1016/j.ins.2024.120661_br0100) 2018; 48
Yao (10.1016/j.ins.2024.120661_br0250) 2021; 51
Zhao (10.1016/j.ins.2024.120661_br0200) 2022; 609
Fränti (10.1016/j.ins.2024.120661_br0090) 2019; 93
10.1016/j.ins.2024.120661_br0190
Tang (10.1016/j.ins.2024.120661_br0120) 2021; 8
Li (10.1016/j.ins.2024.120661_br0170) 2022; 12
Chen (10.1016/j.ins.2024.120661_br0040) 2023; 32
Deng (10.1016/j.ins.2024.120661_br0070) 2023
Huang (10.1016/j.ins.2024.120661_br0110) 2019; 86
Yao (10.1016/j.ins.2024.120661_br0240) 2011; 181
Guo (10.1016/j.ins.2024.120661_br0290) 2022; 14
Friedman (10.1016/j.ins.2024.120661_br0320) 1940; 11
Wang (10.1016/j.ins.2024.120661_br0270) 2019; 10
Zhao (10.1016/j.ins.2024.120661_br0010) 2023; 72
Wang (10.1016/j.ins.2024.120661_br0140) 2016; 116
Nayak (10.1016/j.ins.2024.120661_br0150) 2015
Nayak (10.1016/j.ins.2024.120661_br0160) 2017
Saida (10.1016/j.ins.2024.120661_br0130) 2014
Åkerlund (10.1016/j.ins.2024.120661_br0050) 2022; 26
Yao (10.1016/j.ins.2024.120661_br0230) 2023
References_xml – volume: 280
  start-page: 116809
  year: 2023
  end-page: 116827
  ident: br0220
  article-title: Integrated model for optimal energy management and demand response of microgrids considering hybrid hydrogen-battery storage systems
  publication-title: Energy Convers. Manag.
– volume: 116
  start-page: 1
  year: 2016
  end-page: 14
  ident: br0140
  article-title: Flower pollination algorithm with bee pollinator for cluster analysis
  publication-title: Inf. Process. Lett.
– volume: 10
  start-page: 2767
  year: 2019
  end-page: 2777
  ident: br0270
  article-title: Three-way k-means: integrating k-means and three-way decision
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 626
  start-page: 572
  year: 2023
  end-page: 585
  ident: br0030
  article-title: Dbo-net: differentiable bi-level optimization network for multi-view clustering
  publication-title: Inf. Sci.
– volume: 26
  start-page: 1
  year: 2022
  end-page: 15
  ident: br0050
  article-title: Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a center-tbi study
  publication-title: Crit. Care
– year: 2023
  ident: br0070
  article-title: A flight arrival time prediction method based on cluster clustering-based modular with deep neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 5
  start-page: 31
  year: 2016
  end-page: 35
  ident: br0260
  article-title: Three-way cluster analysis
  publication-title: Peak Data Sci.
– volume: 50
  start-page: 301
  year: 2022
  end-page: 307
  ident: br0280
  article-title: A three-way clustering algorithm based on particle swarm optimization
  publication-title: J. Fuzhou Univ.
– volume: 126
  start-page: 82
  year: 2022
  end-page: 87
  ident: br0310
  article-title: Pso and k-means-based semantic segmentation toward agricultural products
  publication-title: Future Gener. Comput. Syst.
– volume: 48
  start-page: 4743
  year: 2018
  end-page: 4759
  ident: br0100
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
– volume: 388
  start-page: 114194
  year: 2022
  end-page: 114239
  ident: br0180
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: S. SI-MA, H. Liu, H. Zhan, G. Guo, C. Yu, P. Hu, Swarm intelligence algorithms evaluation, arXiv e-prints, 2023.
– start-page: 55
  year: 2017
  end-page: 64
  ident: br0160
  article-title: Cluster analysis using firefly-based k-means algorithm: a combined approach
  publication-title: Computational Intelligence in Data Mining: Proceedings of the International Conference on CIDM
– volume: 110
  start-page: 104743
  year: 2022
  end-page: 104786
  ident: br0300
  article-title: A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
– volume: 12
  start-page: 8047
  year: 2022
  end-page: 8073
  ident: br0170
  article-title: A novel k-means clustering method for locating urban hotspots based on hybrid heuristic initialization
  publication-title: Appl. Sci.
– volume: 181
  start-page: 1080
  year: 2011
  end-page: 1096
  ident: br0240
  article-title: The superiority of three-way decisions in probabilistic rough set models
  publication-title: Inf. Sci.
– volume: 106
  start-page: 101978
  year: 2022
  end-page: 101990
  ident: br0060
  article-title: Adaptive personalized recommender system using learning automata and items clustering
  publication-title: Inf. Sci.
– volume: 622
  start-page: 178
  year: 2023
  end-page: 210
  ident: br0080
  article-title: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf. Sci.
– volume: 72
  start-page: 2527412
  year: 2023
  end-page: 2527423
  ident: br0010
  article-title: An interpretable dynamic inference system based on fuzzy broad learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 93
  start-page: 95
  year: 2019
  end-page: 112
  ident: br0090
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
– volume: 51
  start-page: 6298
  year: 2021
  end-page: 6325
  ident: br0250
  article-title: The geometry of three-way decision
  publication-title: Appl. Intell.
– start-page: 55
  year: 2014
  end-page: 64
  ident: br0130
  article-title: A new algorithm for data clustering based on cuckoo search optimization
  publication-title: Genetic and Evolutionary Computing: Proceedings of the Seventh International Conference on Genetic and Evolutionary Computing
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: br0330
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 609
  start-page: 1567
  year: 2022
  end-page: 1587
  ident: br0200
  article-title: Elite-ordinary synergistic particle swarm optimization
  publication-title: Inf. Sci.
– volume: 64
  start-page: 1043
  year: 2022
  end-page: 1050
  ident: br0210
  article-title: A new hybrid artificial hummingbird-simulated annealing algorithm to solve constrained mechanical engineering problems
  publication-title: Mater. Test.
– volume: 86
  start-page: 344
  year: 2019
  end-page: 353
  ident: br0110
  article-title: Multi-view intact space clustering
  publication-title: Pattern Recognit.
– start-page: 545
  year: 2015
  end-page: 553
  ident: br0150
  article-title: An improved swarm based hybrid k-means clustering for optimal cluster centers
  publication-title: Information Systems Design and Intelligent Applications: Proceedings of Second International Conference INDIA 2015, vol. 1
– volume: 14
  start-page: 1821
  year: 2022
  end-page: 1838
  ident: br0290
  article-title: An improved three-way k-means algorithm by optimizing cluster centers
  publication-title: Symmetry
– volume: 95
  start-page: 109
  year: 2023
  end-page: 119
  ident: br0020
  article-title: Learnable graph convolutional network and feature fusion for multi-view learning
  publication-title: Inf. Fusion
– volume: 8
  start-page: 1627
  year: 2021
  end-page: 1643
  ident: br0120
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 109032
  year: 2023
  end-page: 109053
  ident: br0230
  article-title: The dao of three-way decision and three-world thinking
  publication-title: Int. J. Approx. Reason.
– volume: 32
  start-page: 2132
  year: 2023
  end-page: 2146
  ident: br0040
  article-title: Fuzzy sparse subspace clustering for infrared image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: br0320
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 609
  start-page: 1567
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0200
  article-title: Elite-ordinary synergistic particle swarm optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.131
– volume: 32
  start-page: 2132
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0040
  article-title: Fuzzy sparse subspace clustering for infrared image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3263102
– volume: 5
  start-page: 31
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2024.120661_br0260
  article-title: Three-way cluster analysis
  publication-title: Peak Data Sci.
– volume: 622
  start-page: 178
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0080
  article-title: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.139
– volume: 86
  start-page: 344
  year: 2019
  ident: 10.1016/j.ins.2024.120661_br0110
  article-title: Multi-view intact space clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.09.016
– start-page: 55
  year: 2017
  ident: 10.1016/j.ins.2024.120661_br0160
  article-title: Cluster analysis using firefly-based k-means algorithm: a combined approach
– volume: 181
  start-page: 1080
  issue: 6
  year: 2011
  ident: 10.1016/j.ins.2024.120661_br0240
  article-title: The superiority of three-way decisions in probabilistic rough set models
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.11.019
– start-page: 109032
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0230
  article-title: The dao of three-way decision and three-world thinking
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2023.109032
– ident: 10.1016/j.ins.2024.120661_br0190
  doi: 10.21203/rs.3.rs-3240432/v1
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 10.1016/j.ins.2024.120661_br0120
  article-title: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– volume: 116
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2024.120661_br0140
  article-title: Flower pollination algorithm with bee pollinator for cluster analysis
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2015.08.007
– volume: 64
  start-page: 1043
  issue: 7
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0210
  article-title: A new hybrid artificial hummingbird-simulated annealing algorithm to solve constrained mechanical engineering problems
  publication-title: Mater. Test.
  doi: 10.1515/mt-2022-0123
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.ins.2024.120661_br0320
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 10
  start-page: 2767
  year: 2019
  ident: 10.1016/j.ins.2024.120661_br0270
  article-title: Three-way k-means: integrating k-means and three-way decision
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-018-0901-y
– volume: 26
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0050
  article-title: Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a center-tbi study
  publication-title: Crit. Care
  doi: 10.1186/s13054-022-04079-w
– volume: 72
  start-page: 2527412
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0010
  article-title: An interpretable dynamic inference system based on fuzzy broad learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3316213
– volume: 626
  start-page: 572
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0030
  article-title: Dbo-net: differentiable bi-level optimization network for multi-view clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.01.071
– volume: 388
  start-page: 114194
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0180
  article-title: Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114194
– volume: 110
  start-page: 104743
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0300
  article-title: A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104743
– volume: 50
  start-page: 301
  issue: 3
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0280
  article-title: A three-way clustering algorithm based on particle swarm optimization
  publication-title: J. Fuzhou Univ.
– volume: 12
  start-page: 8047
  issue: 16
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0170
  article-title: A novel k-means clustering method for locating urban hotspots based on hybrid heuristic initialization
  publication-title: Appl. Sci.
  doi: 10.3390/app12168047
– volume: 14
  start-page: 1821
  issue: 9
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0290
  article-title: An improved three-way k-means algorithm by optimizing cluster centers
  publication-title: Symmetry
  doi: 10.3390/sym14091821
– year: 2023
  ident: 10.1016/j.ins.2024.120661_br0070
  article-title: A flight arrival time prediction method based on cluster clustering-based modular with deep neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3338251
– volume: 93
  start-page: 95
  year: 2019
  ident: 10.1016/j.ins.2024.120661_br0090
  article-title: How much can k-means be improved by using better initialization and repeats?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.014
– volume: 126
  start-page: 82
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0310
  article-title: Pso and k-means-based semantic segmentation toward agricultural products
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.06.059
– volume: 95
  start-page: 109
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0020
  article-title: Learnable graph convolutional network and feature fusion for multi-view learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.02.013
– start-page: 55
  year: 2014
  ident: 10.1016/j.ins.2024.120661_br0130
  article-title: A new algorithm for data clustering based on cuckoo search optimization
– volume: 280
  start-page: 116809
  year: 2023
  ident: 10.1016/j.ins.2024.120661_br0220
  article-title: Integrated model for optimal energy management and demand response of microgrids considering hybrid hydrogen-battery storage systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.116809
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ins.2024.120661_br0330
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 48
  start-page: 4743
  year: 2018
  ident: 10.1016/j.ins.2024.120661_br0100
  article-title: K-means properties on six clustering benchmark datasets
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1238-7
– start-page: 545
  year: 2015
  ident: 10.1016/j.ins.2024.120661_br0150
  article-title: An improved swarm based hybrid k-means clustering for optimal cluster centers
– volume: 51
  start-page: 6298
  issue: 9
  year: 2021
  ident: 10.1016/j.ins.2024.120661_br0250
  article-title: The geometry of three-way decision
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02142-z
– volume: 106
  start-page: 101978
  year: 2022
  ident: 10.1016/j.ins.2024.120661_br0060
  article-title: Adaptive personalized recommender system using learning automata and items clustering
  publication-title: Inf. Sci.
SSID ssj0004766
Score 2.5002005
Snippet Clustering, as an essential technique in unsupervised learning, plays a pivotal role in the fields of data mining and machine learning. However, the classic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120661
SubjectTerms Artificial hummingbird algorithm
Cluster centers
Fitness function
K-means clustering
Three-way clustering
Title AHA-3WKM: The optimization of K-means with three-way clustering and artificial hummingbird algorithm
URI https://dx.doi.org/10.1016/j.ins.2024.120661
Volume 672
WOSCitedRecordID wos001238613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOCAqIAkU-IA4go8RJHJvbqioqbak4FLG3KPGjTbWbVNtd2v57xrGdhKcAiUsUjeIkyvdlPGPPA6EXWhqmM12RSMqKpDSWpCwjUIbSZNQoHmnVdS05zI-O-GwmPvrQoYuunUDeNPzqSpz_V6hBBmDb1Nm_gLu_KQjgHECHI8AOxz8Cfro3Jcnngw8hnqIFpbDw2ZbWNDwgCw3zk1-BBSg1uSyvX8v52tZMCDmL9sa-uMQpvDyIq3oJ4vlJu4SBi7FR61Oaugf4GbW31Hd89sesvg6TpA3_qdcu2qQ-XdeD0LWOby-H9LRD1y17H0jcj_drFDQdYqncwllInvkmttNaqsS6NG4qcvqX55Qw6hp4BQXNXHOfH5S9W3c4Aw_F1l2n6ZvY1qaPh5mtjze0W9Kd92QjZjPwoG6iDZpngk_QxvT97mx_SKXN3fZ2eLewEd6FBH73oJ-bMiPz5Pgeuuv9Cjx1fLiPbuhmE90ZVZvcRNs-RwW_xCPEsNfuD5AKzHmLgTd4zBvcGux5gy1vcM8bPPAGA2_wwBs84g3uefMQfXq3e7yzR3wTDiKpyFeEMRmX8KmEpBmnqhKJyphJEs4zFfGSV4apkqWl1HEex0wpo4WUtIx0ouPKqOQRmjRtox8jXMKFHCQpi0RambzSYL2mxgC-woDhuIWi8D0L6SvU20Yp8yKEIp4VAEFhISgcBFvoVT_k3JVn-d3FaQCp8H-DsxsLYNSvhz35t2FP0e3hV3iGJqvlWm-jW_LLqr5YPve8-wonaJ_u
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AHA-3WKM%3A+The+optimization+of+K-means+with+three-way+clustering+and+artificial+hummingbird+algorithm&rft.jtitle=Information+sciences&rft.au=Chen%2C+Xiying&rft.au=Liu%2C+Caihui&rft.au=Lin%2C+Bowen&rft.au=Lai%2C+Jianying&rft.date=2024-06-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=672&rft_id=info:doi/10.1016%2Fj.ins.2024.120661&rft.externalDocID=S0020025524005747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon