Statistical Convergence for Grünwald–Letnikov Fractional Differences: Stability, Approximation, and Diagnostics in Fuzzy Normed Spaces
We present a unified framework for fuzzy statistical convergence of Grünwald–Letnikov (GL) fractional differences in Bag–Samanta fuzzy normed linear spaces, addressing memory effects and nonlocality inherent to fractional-order models. Theoretically, we establish the uniqueness, linearity, and invar...
Uložené v:
| Vydané v: | Axioms Ročník 14; číslo 10; s. 725 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
25.09.2025
|
| Predmet: | |
| ISSN: | 2075-1680, 2075-1680 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a unified framework for fuzzy statistical convergence of Grünwald–Letnikov (GL) fractional differences in Bag–Samanta fuzzy normed linear spaces, addressing memory effects and nonlocality inherent to fractional-order models. Theoretically, we establish the uniqueness, linearity, and invariance of fuzzy statistical limits and prove a Cauchy characterization: fuzzy statistical convergence implies fuzzy statistical Cauchyness, while the converse holds in fuzzy-complete spaces (and in the completion, otherwise). We further develop an inclusion theory linking fuzzy strong Cesàro summability—including weighted means—to fuzzy statistical convergence. Via the discrete Q-operator, all statements transfer verbatim between nabla-left and delta-right GL forms, clarifying the binomial GL↔discrete Riemann–Liouville correspondence. Beyond structure, we propose density-based residual diagnostics for GL discretizations of fractional initial-value problems: when GL residuals are fuzzy statistically negligible, trajectories exhibit Ulam–Hyers-type robustness in the fuzzy topology. We also formulate a fuzzy Korovkin-type approximation principle under GL smoothing: Cesàro control on the test set {1,x,x2} propagates to arbitrary targets, yielding fuzzy statistical convergence for positive-operator sequences. Worked examples and an engineering-style case study (thermal balance with memory and bursty disturbances) illustrate how the diagnostics certify robustness of GL numerical schemes under sparse spikes and imprecise data. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2075-1680 2075-1680 |
| DOI: | 10.3390/axioms14100725 |