Small-strain folding of semi-rigid elastomer derives high-performance 3D-printable soft origami actuators

[Display omitted] •The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in li...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 489; s. 151462
Hlavní autoři: Liu, Sicong, Chen, Fang, Duanmu, Dehao, Wang, Yaxi, Liu, Jianhui, Yang, Wenjian, Zhu, Yuming, Wu, Yige, Yi, Juan, Dai, Jian S., Wang, Zheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2024
Témata:
ISSN:1385-8947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in lifespan, linearity, energy efficiency, and force.•The SSF actuators benefit the development of soft robots and their performance. Elastomers with hyperelastic deformation bring prosperity to soft robotics, especially in constituting fluidic actuators, largely due to the merit of large deformation and airtightness. However, the large (typically 0.5–1.5 strain) in-plane stretching of such materials concurrent to motion generation inevitably causes energy loss, hinders force output and accuracy. Particularly, the high nonlinearity of the low-durometer (typically 10A to 30A Shore) hyperelastic elastomers makes the modeling and control of actuators a well-known challenge. In this work, we proposed an alternative approach of using semi-rigid elastomer of significantly larger durometer (70 A–100 A) to create the typical fluidic soft actuator with axial translation, by utilizing small-strain folding to generate motion. Deformation constraints and property programming are combined into a single-piece body, enabling easy fabrication by Selective Laser Sintering 3D-printing and post-treatment for origami patterned structure. Systematic analyses on the principles, modeling and design are presented. The long lifespan (over 1 million cycles), superior output linearity, high energy efficiency (more than 60% increase), and drastically improved force output (more than 98% increase) were validated experimentally, showing high potentials in enabling high-performance soft actuators that are easy to design, fabricate and drive, strong to use, and accurate to control, towards even wider applications.
AbstractList [Display omitted] •The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in lifespan, linearity, energy efficiency, and force.•The SSF actuators benefit the development of soft robots and their performance. Elastomers with hyperelastic deformation bring prosperity to soft robotics, especially in constituting fluidic actuators, largely due to the merit of large deformation and airtightness. However, the large (typically 0.5–1.5 strain) in-plane stretching of such materials concurrent to motion generation inevitably causes energy loss, hinders force output and accuracy. Particularly, the high nonlinearity of the low-durometer (typically 10A to 30A Shore) hyperelastic elastomers makes the modeling and control of actuators a well-known challenge. In this work, we proposed an alternative approach of using semi-rigid elastomer of significantly larger durometer (70 A–100 A) to create the typical fluidic soft actuator with axial translation, by utilizing small-strain folding to generate motion. Deformation constraints and property programming are combined into a single-piece body, enabling easy fabrication by Selective Laser Sintering 3D-printing and post-treatment for origami patterned structure. Systematic analyses on the principles, modeling and design are presented. The long lifespan (over 1 million cycles), superior output linearity, high energy efficiency (more than 60% increase), and drastically improved force output (more than 98% increase) were validated experimentally, showing high potentials in enabling high-performance soft actuators that are easy to design, fabricate and drive, strong to use, and accurate to control, towards even wider applications.
ArticleNumber 151462
Author Wu, Yige
Chen, Fang
Wang, Zheng
Duanmu, Dehao
Wang, Yaxi
Liu, Sicong
Yang, Wenjian
Liu, Jianhui
Dai, Jian S.
Zhu, Yuming
Yi, Juan
Author_xml – sequence: 1
  givenname: Sicong
  orcidid: 0000-0002-1872-5283
  surname: Liu
  fullname: Liu, Sicong
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 2
  givenname: Fang
  surname: Chen
  fullname: Chen, Fang
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 3
  givenname: Dehao
  orcidid: 0000-0002-9227-1945
  surname: Duanmu
  fullname: Duanmu, Dehao
  organization: Orthopedic Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
– sequence: 4
  givenname: Yaxi
  orcidid: 0009-0008-7340-6593
  surname: Wang
  fullname: Wang, Yaxi
  organization: Department of Mechanical Engineering, University College London, Gower Street, London, United Kingdom
– sequence: 5
  givenname: Jianhui
  surname: Liu
  fullname: Liu, Jianhui
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 6
  givenname: Wenjian
  surname: Yang
  fullname: Yang, Wenjian
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 7
  givenname: Yuming
  orcidid: 0000-0002-5124-8298
  surname: Zhu
  fullname: Zhu, Yuming
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 8
  givenname: Yige
  surname: Wu
  fullname: Wu, Yige
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 9
  givenname: Juan
  orcidid: 0000-0002-5992-4254
  surname: Yi
  fullname: Yi, Juan
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 10
  givenname: Jian S.
  surname: Dai
  fullname: Dai, Jian S.
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
– sequence: 11
  givenname: Zheng
  orcidid: 0000-0002-7726-0770
  surname: Wang
  fullname: Wang, Zheng
  email: zheng.wang@ieee.org
  organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China
BookMark eNp90L1OwzAQwHEPRaItPACbXyDBH4mTiAmVT6kSAzBbF-fcOkriyjaVeHtSlYmB6abf6e6_IovJT0jIDWc5Z1zd9rnBPhdMFDkveaHEgiy5rMusborqkqxi7BljquHNkrj3EYYhiymAm6j1Q-emHfWWRhxdFtzOdRQHiMmPGGiHwR0x0r3b7bMDBuvDCJNBKh-yQ3BTgnZAGr1N1M8WRkfBpC9IPsQrcmFhiHj9O9fk8-nxY_OSbd-eXzf328yIpkqZ4iAKaJUUCkVbAIBlBlTVsUqVpShN0cq6VcYUVlai5RVjUMvONtIg2obLNeHnvSb4GANaPV82QvjWnOlTH93ruY8-9dHnPrOp_hjjEiTnp1OX4V95d5Y4v3R0GHQ0DucknQtoku68-0f_ANx6hfo
CitedBy_id crossref_primary_10_1002_advs_202409060
crossref_primary_10_1007_s40964_025_01073_w
crossref_primary_10_1016_j_oceaneng_2025_120998
Cites_doi 10.1038/s41578-018-0002-2
10.1371/journal.pone.0204637
10.1002/adma.201203002
10.1016/j.mattod.2017.10.010
10.1115/DETC2014-34567
10.1002/pen.24633
10.1109/TMECH.2022.3195985
10.1088/0964-1726/24/10/105031
10.1089/soro.2018.0030
10.1109/LRA.2021.3131701
10.1109/TRO.2018.2871440
10.1002/adfm.201303288
10.1177/0278364920917203
10.3389/frobt.2021.614623
10.1109/LRA.2020.2974438
10.1038/nature19100
10.3389/frobt.2023.1210217
10.1016/j.mechmat.2004.08.001
10.1088/1748-3190/10/5/055003
10.1126/scirobotics.abn4155
10.1109/TMECH.2020.3045476
10.1089/soro.2016.0030
10.1115/1.4054731
10.1016/j.ijmecsci.2015.05.009
10.1038/s41467-023-37343-w
10.1002/anie.201006464
10.1038/s41467-023-39980-7
10.1109/TMECH.2016.2638468
10.1002/adfm.201806698
10.1115/1.4031953
10.1126/scirobotics.aay3493
10.1115/DETC2013-12947
10.1073/pnas.1713450114
10.1108/RPJ-11-2019-0302
10.1038/nature14543
10.1089/soro.2014.0008
10.1089/soro.2016.0023
10.1073/pnas.1116564108
10.1002/adma.202003387
10.1109/CYBER46603.2019.9066517
10.1016/j.mechmachtheory.2018.08.010
10.1002/adfm.201102978
10.1038/s41586-020-03153-z
10.1038/s41578-021-00389-7
10.1007/s42242-020-00099-z
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.151462
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_151462
S1385894724029498
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
~HD
ID FETCH-LOGICAL-c297t-61a24ab6326e2b4aaaf0ca67d0765525c4b38b6cc4f372b1700a83df93ceef913
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234651500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Tue Nov 18 21:16:33 EST 2025
Sat Nov 29 03:30:53 EST 2025
Sat Nov 09 16:00:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Origami
Semi-rigid elastomer
Small-strain folding
SLS printing
Soft actuator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-61a24ab6326e2b4aaaf0ca67d0765525c4b38b6cc4f372b1700a83df93ceef913
ORCID 0000-0002-5124-8298
0000-0002-5992-4254
0009-0008-7340-6593
0000-0002-7726-0770
0000-0002-1872-5283
0000-0002-9227-1945
ParticipantIDs crossref_primary_10_1016_j_cej_2024_151462
crossref_citationtrail_10_1016_j_cej_2024_151462
elsevier_sciencedirect_doi_10_1016_j_cej_2024_151462
PublicationCentury 2000
PublicationDate 2024-06-01
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Yang, Wang, Branson, Dai, Kang (b0035) 2018; 130
Rus, Tolley (b0005) 2015; 521
Wehner, Truby, Fitzgerald, Mosadegh, Whitesides, Lewis, Wood (b0050) 2016; 536
Pascali, Naselli, Palagi, Scharff, Mazzolai (b0150) 2022; 7
Martinez, Branch, Fish, Jin, Shepherd, Nunes, Suo, Whitesides (b0245) 2013; 25
S. Liu, W. Lv, Y. Chen, G. Lu, Deployable prismatic structures with origami patterns, in: Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 38th Mechanisms and Robotics Conference. Buffalo, New York, USA, 2014. https://doi.org/10.1115/DETC2014-34567.
Zhang, Zhu, Lin, Tang, Jiao, Yang, Zou (b0065) 2021; 4
Tolley, Shepherd, Mosadegh, Galloway, Wehner, Karpelson, Wood, Whitesides (b0070) 2014; 1
Liu, Liu, Zou, Wang, Fang, Yi, Wang (b0185) 2022; 14
Wang, Polygerinos, Overvelde, Galloway, Bertoldi, Walsh (b0025) 2017; 22
SachyaniKeneth, Kamyshny, Totaro, Beccai, Magdassi (b0060) 2021; 33
Su, Fang, Zhu, Sun, Zhu, Wang, Tang, Huang, Liu, Wang (b0135) 2020; 5
Y. Guo, X. Chen, Z. Wang, Environmental insulation of 3d printable origamic soft actuators, in: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 2019. http://doi.org/10.1109/CYBER46603.2019.9066517.
Byrne, Coulter, Glynn, Jones, Annaidh, O'Cearbhaill, Holland (b0165) 2018; 5
Martinez, Fish, Chen, Whitesides (b0090) 2012; 22
Zhang, Zhang, Peng, Zhang, An, Wang, Zhai, Xu, Jiang (b0120) 2023; 14
assets › Elastollan, 2023 (accessed February 2023).
Yap, Ng, Yeow (b0160) 2016; 3
Smooth-On, Shore Hardness Scales
Shepherd, Ilievski, Choi, Morin, Stokes, Mazzeo, Chen, Wang, Whitesides (b0040) 2011; 108
Kim, Byun, Kim, Choi, Jakobsen, Jakobsen, Lee, Cho (b0145) 2019; 4
Skorina, Luo, Oo, Tao, Chen, Youssefian, Rahbar, Onal (b0030) 2018; 13
Mosadegh, Polygerinos, Keplinger, Wennstedt, Shepherd, Gupta, Shim, Bertoldi, Walsh, Whitesides (b0020) 2014; 24
Yi, Chen, Song, Zhou, Liu, Liu, Wang (b0110) 2019; 35
Liu, Liu, Yang, Yi, Wang, Zhang, Dai, Wang (b0125) 2024
Li, Wang (b0130) 2015; 24
Liu, Zhu, Zhang, Fang, Tan, Peng, Song, Asada, Wang (b0045) 2020; 26
Li, Chen, Zhou, Liang, Xiao, Cao, Zhang, Zhang, Wu, Yin, Xu, Fan, Chen, Song, Yang, Pan, Hou, Zou, He, Yang, Mao, Jia, Zhou, Li, Qu, Xu, Huang, Luo, Xie, Gu, Zhu, Yang (b0075) 2021; 591
Zhang, Zhang, Hingorani, Ding, Wang, Yuan, Zhang, Gu, Ge (b0255) 2019; 29
Scharff, Doubrovski, Poelman, Jonker, Wang, Geraedts (b0170) 2016
Liu, Wang, Liu, Yi, Wang, Wang (b0180) 2022; 7
Paez, Agarwal, Paik (b0250) 2016; 3
S. Liu, Y. Chen, G. Lu, The rigid origami patterns for flat surface, in: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6B, ASME, Portland, Oregon, USA, 2013. https://doi.org/10.1115/DETC2013-12947.
Gong, Fang, Chen, Cheng, Xie, Liu, Chen, Yang, Kong, Yufei Hao, Wang, Yu (b0240) 2021; 40
Datta, Kasprzyk (b0210) 2018; 58
Wallin, Pikul, Shepherd (b0055) 2018; 3
2023 (accessed February 2023).
Li, Fang, Sadeghi, Bhovad, Wang (b0115) 2019; 31
Zhu, Lu, Zheng, Fang, Che, Tang, Zhu, Liu, Wang (b0230) 2022; 28
Tang, Tang, Wu, Xiao, Liu, Yi, Wang (b0195) 2023; 10
Ye, Liu, Cheng, Li, Jian, Wang, Sun, Lu, Ge (b0155) 2023; 14
Yap, Sing, Yeong (b0215) 2020; 26
BASF, Physical properties – Plastics & Rubber
Peele, Wallin, Zhao, Shepherd (b0080) 2015; 10
Liu, Lv, Chen, Lu (b0105) 2016; 8
Qi, Boyce (b0225) 2005; 37
Li, Pal, Aghakhani, Pena-Francesch, Sitti (b0010) 2022; 7
Bergström (b0085) 2015
Li, Vogt, Rus, Wood (b0140) 2017; 114
Wang, Yang, Chen, Majidi, Iida, Askounis, Pei (b0200) 2018; 21
Liu, Lu, Chen, Leong (b0095) 2015; 99
Ilievski, Mazzeo, Shepherd, Chen, Whitesides (b0015) 2011; 50
Liu, Fang, Liu, Tang, Luo, Yi, Hu, Wang (b0190) 2021; 8
Liu (10.1016/j.cej.2024.151462_b0045) 2020; 26
Ye (10.1016/j.cej.2024.151462_b0155) 2023; 14
Rus (10.1016/j.cej.2024.151462_b0005) 2015; 521
Martinez (10.1016/j.cej.2024.151462_b0245) 2013; 25
Yap (10.1016/j.cej.2024.151462_b0160) 2016; 3
Gong (10.1016/j.cej.2024.151462_b0240) 2021; 40
Wallin (10.1016/j.cej.2024.151462_b0055) 2018; 3
10.1016/j.cej.2024.151462_b0235
Qi (10.1016/j.cej.2024.151462_b0225) 2005; 37
Liu (10.1016/j.cej.2024.151462_b0185) 2022; 14
Tolley (10.1016/j.cej.2024.151462_b0070) 2014; 1
Zhang (10.1016/j.cej.2024.151462_b0065) 2021; 4
SachyaniKeneth (10.1016/j.cej.2024.151462_b0060) 2021; 33
Liu (10.1016/j.cej.2024.151462_b0190) 2021; 8
Zhang (10.1016/j.cej.2024.151462_b0255) 2019; 29
Kim (10.1016/j.cej.2024.151462_b0145) 2019; 4
Byrne (10.1016/j.cej.2024.151462_b0165) 2018; 5
Paez (10.1016/j.cej.2024.151462_b0250) 2016; 3
Li (10.1016/j.cej.2024.151462_b0010) 2022; 7
10.1016/j.cej.2024.151462_b0100
Zhu (10.1016/j.cej.2024.151462_b0230) 2022; 28
10.1016/j.cej.2024.151462_b0220
Ilievski (10.1016/j.cej.2024.151462_b0015) 2011; 50
Wang (10.1016/j.cej.2024.151462_b0025) 2017; 22
Skorina (10.1016/j.cej.2024.151462_b0030) 2018; 13
Liu (10.1016/j.cej.2024.151462_b0125) 2024
Peele (10.1016/j.cej.2024.151462_b0080) 2015; 10
Yap (10.1016/j.cej.2024.151462_b0215) 2020; 26
Li (10.1016/j.cej.2024.151462_b0140) 2017; 114
Liu (10.1016/j.cej.2024.151462_b0105) 2016; 8
Wehner (10.1016/j.cej.2024.151462_b0050) 2016; 536
10.1016/j.cej.2024.151462_b0175
Yi (10.1016/j.cej.2024.151462_b0110) 2019; 35
Li (10.1016/j.cej.2024.151462_b0115) 2019; 31
Li (10.1016/j.cej.2024.151462_b0075) 2021; 591
Mosadegh (10.1016/j.cej.2024.151462_b0020) 2014; 24
Shepherd (10.1016/j.cej.2024.151462_b0040) 2011; 108
Martinez (10.1016/j.cej.2024.151462_b0090) 2012; 22
10.1016/j.cej.2024.151462_b0205
Zhang (10.1016/j.cej.2024.151462_b0120) 2023; 14
Li (10.1016/j.cej.2024.151462_b0130) 2015; 24
Su (10.1016/j.cej.2024.151462_b0135) 2020; 5
Wang (10.1016/j.cej.2024.151462_b0200) 2018; 21
Scharff (10.1016/j.cej.2024.151462_b0170) 2016
Bergström (10.1016/j.cej.2024.151462_b0085) 2015
Chen (10.1016/j.cej.2024.151462_b0035) 2018; 130
Liu (10.1016/j.cej.2024.151462_b0180) 2022; 7
Liu (10.1016/j.cej.2024.151462_b0095) 2015; 99
Pascali (10.1016/j.cej.2024.151462_b0150) 2022; 7
Tang (10.1016/j.cej.2024.151462_b0195) 2023; 10
Datta (10.1016/j.cej.2024.151462_b0210) 2018; 58
References_xml – volume: 28
  start-page: 104
  year: 2022
  end-page: 115
  ident: b0230
  article-title: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation
  publication-title: IEEE-ASME Trans. Mechatron.
– volume: 26
  start-page: 2747
  year: 2020
  end-page: 2757
  ident: b0045
  article-title: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami
  publication-title: IEEE-ASME Trans. Mechatron.
– volume: 24
  year: 2015
  ident: b0130
  article-title: Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning
  publication-title: Smart Mater. Struct.
– volume: 7
  year: 2022
  ident: b0150
  article-title: 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate
  publication-title: Sci. Robot.
– volume: 14
  start-page: 1607
  year: 2023
  ident: b0155
  article-title: Multimaterial 3D printed self-locking thick-panel origami metamaterials
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  ident: b0115
  article-title: Architected origami materials: how folding creates sophisticated mechanical properties
  publication-title: Adv. Mater.
– volume: 4
  start-page: 123
  year: 2021
  end-page: 145
  ident: b0065
  article-title: Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications
  publication-title: Bio-Des. Manuf.
– volume: 8
  year: 2021
  ident: b0190
  article-title: A compact soft robotic wrist brace with origami actuators
  publication-title: Front. Robot. AI.
– volume: 99
  start-page: 130
  year: 2015
  end-page: 142
  ident: b0095
  article-title: Deformation of the Miura-ori patterned sheet
  publication-title: Int. J. Mech. Sci.
– volume: 3
  start-page: 144
  year: 2016
  end-page: 158
  ident: b0160
  article-title: High-force soft printable pneumatics for soft robotic applications
  publication-title: Soft Robot.
– volume: 14
  start-page: 4329
  year: 2023
  ident: b0120
  article-title: Plug & play origami modules with all-purpose deformation modes
  publication-title: Nat. Commun.
– volume: 5
  start-page: 726
  year: 2018
  end-page: 736
  ident: b0165
  article-title: Additive manufacture of composite soft pneumatic actuators
  publication-title: Soft Robot.
– volume: 130
  start-page: 109
  year: 2018
  end-page: 122
  ident: b0035
  article-title: Design and modeling of a soft robotic surface with hyperelastic material
  publication-title: Mech. Mach. Theory
– volume: 536
  start-page: 451
  year: 2016
  end-page: 455
  ident: b0050
  article-title: An integrated design and fabrication strategy for entirely soft, autonomous robots
  publication-title: Nature
– volume: 14
  year: 2022
  ident: b0185
  article-title: A six degrees-of-freedom soft robotic joint with tilt-arranged origami actuator
  publication-title: J. Mech. Robot.
– volume: 50
  start-page: 1890
  year: 2011
  end-page: 1895
  ident: b0015
  article-title: Soft robotics for chemists
  publication-title: Angew. Chem.
– volume: 521
  start-page: 467
  year: 2015
  end-page: 475
  ident: b0005
  article-title: Design, fabrication and control of soft robots
  publication-title: Nature
– volume: 58
  start-page: E14
  year: 2018
  end-page: E35
  ident: b0210
  article-title: Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review
  publication-title: Polym. Eng. Sci.
– volume: 29
  start-page: 1806698
  year: 2019
  ident: b0255
  article-title: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: e0204637
  year: 2018
  ident: b0030
  article-title: Reverse pneumatic artificial muscles (rPAMs): modeling, integration, and control
  publication-title: PLoS One
– volume: 25
  start-page: 205
  year: 2013
  end-page: 212
  ident: b0245
  article-title: Robotic tentacles with three-dimensional mobility based on flexible elastomers
  publication-title: Adv. Mater.
– volume: 1
  start-page: 213
  year: 2014
  end-page: 223
  ident: b0070
  article-title: A resilient, untethered soft robot
  publication-title: Soft Robot.
– reference: S. Liu, W. Lv, Y. Chen, G. Lu, Deployable prismatic structures with origami patterns, in: Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 38th Mechanisms and Robotics Conference. Buffalo, New York, USA, 2014. https://doi.org/10.1115/DETC2014-34567.
– year: 2024
  ident: b0125
  article-title: Origami-patterned rigidification for soft robotic bifurcation
  publication-title: Adv. Intell. Syst.
– volume: 37
  start-page: 817
  year: 2005
  end-page: 839
  ident: b0225
  article-title: Stress–strain behavior of thermoplastic polyurethanes
  publication-title: Mech. Mater.
– volume: 3
  start-page: 84
  year: 2018
  end-page: 100
  ident: b0055
  article-title: 3D printing of soft robotic systems
  publication-title: Nat. Rev. Mater.
– volume: 4
  year: 2019
  ident: b0145
  article-title: Bioinspired dual-morphing stretchable origami
  publication-title: Sci. Robot.
– reference: › assets › Elastollan, 2023 (accessed February 2023).
– volume: 114
  start-page: 13132
  year: 2017
  end-page: 13137
  ident: b0140
  article-title: Fluid-driven origami-inspired artificial muscles
  publication-title: Proc. Natl. Acad. Sci.
– volume: 7
  start-page: 658
  year: 2022
  end-page: 665
  ident: b0180
  article-title: Vertebraic soft robotic joint design with twisting and antagonism
  publication-title: IEEE Robot. Autom. Lett.
– volume: 24
  start-page: 2163
  year: 2014
  end-page: 2170
  ident: b0020
  article-title: Pneumatic networks for soft robotics that actuate rapidly
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 1376
  year: 2012
  end-page: 1384
  ident: b0090
  article-title: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1210217
  year: 2023
  ident: b0195
  article-title: Performance enhancement of the soft robotic segment for a trunk-like arm
  publication-title: Front. Robot. AI.
– reference: BASF, Physical properties – Plastics & Rubber,
– volume: 40
  start-page: 449
  year: 2021
  end-page: 469
  ident: b0240
  article-title: A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments
  publication-title: Int. J. Robot. Res.
– volume: 108
  start-page: 20400
  year: 2011
  end-page: 20403
  ident: b0040
  article-title: Multigait soft robot
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: 3003
  year: 2020
  end-page: 3010
  ident: b0135
  article-title: A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators
  publication-title: IEEE Robot. Autom. Lett.
– volume: 33
  start-page: 2003387
  year: 2021
  ident: b0060
  article-title: 3D printing materials for soft robotics
  publication-title: Adv. Mater.
– reference: Y. Guo, X. Chen, Z. Wang, Environmental insulation of 3d printable origamic soft actuators, in: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 2019. http://doi.org/10.1109/CYBER46603.2019.9066517.
– volume: 8
  year: 2016
  ident: b0105
  article-title: Deployable prismatic structures with rigid origami patterns
  publication-title: J. Mech. Robot.
– volume: 10
  year: 2015
  ident: b0080
  article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography
  publication-title: Bioinspir. Biomim.
– volume: 7
  start-page: 235
  year: 2022
  end-page: 249
  ident: b0010
  article-title: Soft actuators for real-world applications
  publication-title: Nat. Rev. Mater.
– year: 2015
  ident: b0085
  article-title: Mechanics of Solid Polymers
– volume: 22
  start-page: 717
  year: 2017
  end-page: 727
  ident: b0025
  article-title: Interaction forces of soft fiber reinforced bending actuators
  publication-title: IEEE-ASME Trans. Mechatron.
– volume: 3
  start-page: 109
  year: 2016
  end-page: 119
  ident: b0250
  article-title: Design and analysis of a soft pneumatic actuator with origami shell reinforcement
  publication-title: Soft Robot.
– volume: 21
  start-page: 563
  year: 2018
  end-page: 576
  ident: b0200
  article-title: Controllable and reversible tuning of material rigidity for robot applications
  publication-title: Mater. Today
– reference: S. Liu, Y. Chen, G. Lu, The rigid origami patterns for flat surface, in: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6B, ASME, Portland, Oregon, USA, 2013. https://doi.org/10.1115/DETC2013-12947.
– reference: Smooth-On, Shore Hardness Scales,
– volume: 26
  start-page: 1345
  year: 2020
  end-page: 1361
  ident: b0215
  article-title: A review of 3D printing processes and materials for soft robotics
  publication-title: Rapid Prototyp. J.
– year: 2016
  ident: b0170
  article-title: Soft Robotics: Trends, Applications and Challenges
– volume: 591
  start-page: 66
  year: 2021
  end-page: 71
  ident: b0075
  article-title: Self-powered soft robot in the Mariana Trench
  publication-title: Nature
– volume: 35
  start-page: 114
  year: 2019
  end-page: 123
  ident: b0110
  article-title: Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions
  publication-title: IEEE Trans. Robot.
– reference: , 2023 (accessed February 2023).
– volume: 3
  start-page: 84
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0055
  article-title: 3D printing of soft robotic systems
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0002-2
– volume: 13
  start-page: e0204637
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0030
  article-title: Reverse pneumatic artificial muscles (rPAMs): modeling, integration, and control
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204637
– volume: 25
  start-page: 205
  year: 2013
  ident: 10.1016/j.cej.2024.151462_b0245
  article-title: Robotic tentacles with three-dimensional mobility based on flexible elastomers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203002
– volume: 21
  start-page: 563
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0200
  article-title: Controllable and reversible tuning of material rigidity for robot applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.010
– ident: 10.1016/j.cej.2024.151462_b0100
  doi: 10.1115/DETC2014-34567
– volume: 58
  start-page: E14
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0210
  article-title: Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.24633
– volume: 28
  start-page: 104
  year: 2022
  ident: 10.1016/j.cej.2024.151462_b0230
  article-title: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation
  publication-title: IEEE-ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2022.3195985
– volume: 24
  year: 2015
  ident: 10.1016/j.cej.2024.151462_b0130
  article-title: Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/10/105031
– volume: 5
  start-page: 726
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0165
  article-title: Additive manufacture of composite soft pneumatic actuators
  publication-title: Soft Robot.
  doi: 10.1089/soro.2018.0030
– volume: 7
  start-page: 658
  year: 2022
  ident: 10.1016/j.cej.2024.151462_b0180
  article-title: Vertebraic soft robotic joint design with twisting and antagonism
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3131701
– volume: 35
  start-page: 114
  year: 2019
  ident: 10.1016/j.cej.2024.151462_b0110
  article-title: Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2018.2871440
– volume: 24
  start-page: 2163
  year: 2014
  ident: 10.1016/j.cej.2024.151462_b0020
  article-title: Pneumatic networks for soft robotics that actuate rapidly
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303288
– year: 2016
  ident: 10.1016/j.cej.2024.151462_b0170
– volume: 40
  start-page: 449
  year: 2021
  ident: 10.1016/j.cej.2024.151462_b0240
  article-title: A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364920917203
– volume: 8
  year: 2021
  ident: 10.1016/j.cej.2024.151462_b0190
  article-title: A compact soft robotic wrist brace with origami actuators
  publication-title: Front. Robot. AI.
  doi: 10.3389/frobt.2021.614623
– volume: 5
  start-page: 3003
  year: 2020
  ident: 10.1016/j.cej.2024.151462_b0135
  article-title: A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2974438
– ident: 10.1016/j.cej.2024.151462_b0220
– volume: 536
  start-page: 451
  year: 2016
  ident: 10.1016/j.cej.2024.151462_b0050
  article-title: An integrated design and fabrication strategy for entirely soft, autonomous robots
  publication-title: Nature
  doi: 10.1038/nature19100
– volume: 10
  start-page: 1210217
  year: 2023
  ident: 10.1016/j.cej.2024.151462_b0195
  article-title: Performance enhancement of the soft robotic segment for a trunk-like arm
  publication-title: Front. Robot. AI.
  doi: 10.3389/frobt.2023.1210217
– year: 2015
  ident: 10.1016/j.cej.2024.151462_b0085
– volume: 37
  start-page: 817
  year: 2005
  ident: 10.1016/j.cej.2024.151462_b0225
  article-title: Stress–strain behavior of thermoplastic polyurethanes
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2004.08.001
– volume: 10
  year: 2015
  ident: 10.1016/j.cej.2024.151462_b0080
  article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/5/055003
– volume: 7
  year: 2022
  ident: 10.1016/j.cej.2024.151462_b0150
  article-title: 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abn4155
– volume: 26
  start-page: 2747
  year: 2020
  ident: 10.1016/j.cej.2024.151462_b0045
  article-title: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami
  publication-title: IEEE-ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.3045476
– volume: 3
  start-page: 144
  year: 2016
  ident: 10.1016/j.cej.2024.151462_b0160
  article-title: High-force soft printable pneumatics for soft robotic applications
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0030
– volume: 14
  year: 2022
  ident: 10.1016/j.cej.2024.151462_b0185
  article-title: A six degrees-of-freedom soft robotic joint with tilt-arranged origami actuator
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4054731
– volume: 99
  start-page: 130
  year: 2015
  ident: 10.1016/j.cej.2024.151462_b0095
  article-title: Deformation of the Miura-ori patterned sheet
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2015.05.009
– volume: 14
  start-page: 1607
  year: 2023
  ident: 10.1016/j.cej.2024.151462_b0155
  article-title: Multimaterial 3D printed self-locking thick-panel origami metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37343-w
– volume: 50
  start-page: 1890
  year: 2011
  ident: 10.1016/j.cej.2024.151462_b0015
  article-title: Soft robotics for chemists
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201006464
– volume: 14
  start-page: 4329
  year: 2023
  ident: 10.1016/j.cej.2024.151462_b0120
  article-title: Plug & play origami modules with all-purpose deformation modes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39980-7
– volume: 22
  start-page: 717
  year: 2017
  ident: 10.1016/j.cej.2024.151462_b0025
  article-title: Interaction forces of soft fiber reinforced bending actuators
  publication-title: IEEE-ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2016.2638468
– volume: 29
  start-page: 1806698
  year: 2019
  ident: 10.1016/j.cej.2024.151462_b0255
  article-title: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806698
– volume: 8
  year: 2016
  ident: 10.1016/j.cej.2024.151462_b0105
  article-title: Deployable prismatic structures with rigid origami patterns
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4031953
– volume: 4
  year: 2019
  ident: 10.1016/j.cej.2024.151462_b0145
  article-title: Bioinspired dual-morphing stretchable origami
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aay3493
– volume: 31
  year: 2019
  ident: 10.1016/j.cej.2024.151462_b0115
  article-title: Architected origami materials: how folding creates sophisticated mechanical properties
  publication-title: Adv. Mater.
– ident: 10.1016/j.cej.2024.151462_b0235
  doi: 10.1115/DETC2013-12947
– volume: 114
  start-page: 13132
  year: 2017
  ident: 10.1016/j.cej.2024.151462_b0140
  article-title: Fluid-driven origami-inspired artificial muscles
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1713450114
– volume: 26
  start-page: 1345
  year: 2020
  ident: 10.1016/j.cej.2024.151462_b0215
  article-title: A review of 3D printing processes and materials for soft robotics
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-11-2019-0302
– volume: 521
  start-page: 467
  year: 2015
  ident: 10.1016/j.cej.2024.151462_b0005
  article-title: Design, fabrication and control of soft robots
  publication-title: Nature
  doi: 10.1038/nature14543
– volume: 1
  start-page: 213
  year: 2014
  ident: 10.1016/j.cej.2024.151462_b0070
  article-title: A resilient, untethered soft robot
  publication-title: Soft Robot.
  doi: 10.1089/soro.2014.0008
– year: 2024
  ident: 10.1016/j.cej.2024.151462_b0125
  article-title: Origami-patterned rigidification for soft robotic bifurcation
  publication-title: Adv. Intell. Syst.
– volume: 3
  start-page: 109
  year: 2016
  ident: 10.1016/j.cej.2024.151462_b0250
  article-title: Design and analysis of a soft pneumatic actuator with origami shell reinforcement
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0023
– volume: 108
  start-page: 20400
  year: 2011
  ident: 10.1016/j.cej.2024.151462_b0040
  article-title: Multigait soft robot
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1116564108
– ident: 10.1016/j.cej.2024.151462_b0205
– volume: 33
  start-page: 2003387
  year: 2021
  ident: 10.1016/j.cej.2024.151462_b0060
  article-title: 3D printing materials for soft robotics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003387
– ident: 10.1016/j.cej.2024.151462_b0175
  doi: 10.1109/CYBER46603.2019.9066517
– volume: 130
  start-page: 109
  year: 2018
  ident: 10.1016/j.cej.2024.151462_b0035
  article-title: Design and modeling of a soft robotic surface with hyperelastic material
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.08.010
– volume: 22
  start-page: 1376
  year: 2012
  ident: 10.1016/j.cej.2024.151462_b0090
  article-title: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102978
– volume: 591
  start-page: 66
  year: 2021
  ident: 10.1016/j.cej.2024.151462_b0075
  article-title: Self-powered soft robot in the Mariana Trench
  publication-title: Nature
  doi: 10.1038/s41586-020-03153-z
– volume: 7
  start-page: 235
  year: 2022
  ident: 10.1016/j.cej.2024.151462_b0010
  article-title: Soft actuators for real-world applications
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00389-7
– volume: 4
  start-page: 123
  year: 2021
  ident: 10.1016/j.cej.2024.151462_b0065
  article-title: Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications
  publication-title: Bio-Des. Manuf.
  doi: 10.1007/s42242-020-00099-z
SSID ssj0006919
Score 2.4766173
Snippet [Display omitted] •The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151462
SubjectTerms Origami
Semi-rigid elastomer
SLS printing
Small-strain folding
Soft actuator
Title Small-strain folding of semi-rigid elastomer derives high-performance 3D-printable soft origami actuators
URI https://dx.doi.org/10.1016/j.cej.2024.151462
Volume 489
WOSCitedRecordID wos001234651500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8IK5i3OQHnqhctYnjxI8T2wRompA6UHmKHMcRqdq0atJR7S_sT3NO7FzYAAESL1EVxU7q8-n487HPdwh5DTOwwLrazJuIgHFpUgasNWGRSbNQ46ZifTbn82l4dhbNZvLjYHDV5MJcLMKiiHY7uf6vpoZ7YGxMnf0Lc7edwg34DUaHK5gdrn9k-OlSLRasrGs_DDO7uYSUsDTLnGEZrHRogDJXq2VdHHxT686iajFb95II_COGIb-qzqwqwVcPsYSWWuaovrHFlXrZ57Wt7oDp9A1bVQqsGqLw9I-Nnk6_5dWlTTJ2AQkpegGJ03xbPwUQdbNqffrAuscT1d072qpiubVO86tadVsD1n19Ubu8H9PweHf2ygbabiTb1L7ZjwIWSSvQ2ThvbgsQ3ZgIbExiPtJmPsI3jIDZcOf3f9TXnmK_2C3uM0kuo1tk3wsDCS5y__D98exDO7ELWdeJab-j2SSvjwtee9HPaU6PupzfJ_fcmoMeWqw8IANTPCR3e0qUj0jeRw11qKGrjHaooS1qqEMNvY4a2kcNRdRQhxraouYx-XRyfP72HXNVOJj2ZFgxMVEeV4kAnm-8hCulsrFWIkzHoQgCL9A88aNEaM0zP_QS1HtUkZ9m0gf-lcmJ_4TsFavCPCVUw_ByrrlAUiS4htWzlxotYQ0yCVU4PiDjZtBi7STq8X8v4uYs4jyGcY5xnGM7zgfkTdtkbfVZfvcwbywRO4JpiWMMsPl1s2f_1uw5udNh-wXZqzZb85Lc1hdVXm5eOXB9B6uBnvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-strain+folding+of+semi-rigid+elastomer+derives+high-performance+3D-printable+soft+origami+actuators&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Sicong&rft.au=Chen%2C+Fang&rft.au=Duanmu%2C+Dehao&rft.au=Wang%2C+Yaxi&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=489&rft_id=info:doi/10.1016%2Fj.cej.2024.151462&rft.externalDocID=S1385894724029498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon