On discounted approximations of undiscounted stochastic games and Markov decision processes with limited randomness
It is shown that the discount factor needed to solve an undiscounted mean payoff stochastic game to optimality is exponentially close to 1, even in one-player games with a single random node and polynomially bounded rewards and transition probabilities. For the class of the so-called irreducible gam...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 41; číslo 4; s. 357 - 362 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2013
|
| Témata: | |
| ISSN: | 0167-6377, 1872-7468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is shown that the discount factor needed to solve an undiscounted mean payoff stochastic game to optimality is exponentially close to 1, even in one-player games with a single random node and polynomially bounded rewards and transition probabilities. For the class of the so-called irreducible games with perfect information and a constant number of random nodes, we obtain a pseudo-polynomial algorithm using discounts. |
|---|---|
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2013.04.006 |