On discounted approximations of undiscounted stochastic games and Markov decision processes with limited randomness

It is shown that the discount factor needed to solve an undiscounted mean payoff stochastic game to optimality is exponentially close to 1, even in one-player games with a single random node and polynomially bounded rewards and transition probabilities. For the class of the so-called irreducible gam...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Operations research letters Ročník 41; číslo 4; s. 357 - 362
Hlavní autori: Boros, Endre, Elbassioni, Khaled, Gurvich, Vladimir, Makino, Kazuhisa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2013
Predmet:
ISSN:0167-6377, 1872-7468
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:It is shown that the discount factor needed to solve an undiscounted mean payoff stochastic game to optimality is exponentially close to 1, even in one-player games with a single random node and polynomially bounded rewards and transition probabilities. For the class of the so-called irreducible games with perfect information and a constant number of random nodes, we obtain a pseudo-polynomial algorithm using discounts.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2013.04.006