Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect

The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 413; s. 114401
Hlavní autori: Naik, Parvaiz Ahmad, Eskandari, Zohreh, Yavuz, Mehmet, Zu, Jian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.10.2022
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for a better representation of the study, the complex dynamics of the model are investigated theoretically and numerically using MatcotM, which is a Matlab package. Some graphical representations of the model are presented to verify the obtained results. The outcome of the study reveals that the model undergoes multiple bifurcations including period-doubling, Neimark–Sacker, and strong resonance bifurcations.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114401