Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect
The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 413; s. 114401 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.10.2022
|
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for a better representation of the study, the complex dynamics of the model are investigated theoretically and numerically using MatcotM, which is a Matlab package. Some graphical representations of the model are presented to verify the obtained results. The outcome of the study reveals that the model undergoes multiple bifurcations including period-doubling, Neimark–Sacker, and strong resonance bifurcations. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2022.114401 |