Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect

The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 413; s. 114401
Hlavní autoři: Naik, Parvaiz Ahmad, Eskandari, Zohreh, Yavuz, Mehmet, Zu, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.10.2022
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The present paper investigates the critical normal form coefficients for the one-parameter and two-parameter bifurcations of a discrete-time Bazykin–Berezovskaya prey-predator model. Based on the critical coefficients, it can be determined which scenario corresponds to each bifurcation. Further, for a better representation of the study, the complex dynamics of the model are investigated theoretically and numerically using MatcotM, which is a Matlab package. Some graphical representations of the model are presented to verify the obtained results. The outcome of the study reveals that the model undergoes multiple bifurcations including period-doubling, Neimark–Sacker, and strong resonance bifurcations.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114401