A unified hybrid iterative method for hierarchical minimization problems

In this paper, we introduce and analyze a new unified hybrid iterative method to compute the approximate solution of the general optimization problem defined over the set D=Fix(T)∩Ω[GMEP(Φ,Ψ,φ)], where Fix(T) is the set of common fixed points of a family T={T(t):0≤t<∞} of nonexpansive self-mappin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 253; s. 208 - 221
Hlavní autoři: Sahu, D.R., Ansari, Q.H., Yao, J.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2013
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce and analyze a new unified hybrid iterative method to compute the approximate solution of the general optimization problem defined over the set D=Fix(T)∩Ω[GMEP(Φ,Ψ,φ)], where Fix(T) is the set of common fixed points of a family T={T(t):0≤t<∞} of nonexpansive self-mappings on a Hilbert space H, and Ω[GMEP(Φ,Ψ,φ)] is the set of solutions of the generalized mixed equilibrium problem (in short, GMEP). Such type of minimization problem is called the hierarchical minimization problem. We establish the strong convergence of the sequences generated by the proposed algorithm. Our strong convergence theorem extends, improves and unifies the previously known results in the literature. We also give a numerical example to illustrate our algorithm and results.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2013.04.018