Algebraic algorithms for least squares problem in quaternionic quantum theory

Quaternionic least squares (QLS) problem is one method of solving overdetermined sets of quaternion linear equations A X ≈ B that is appropriate when there is error in the matrix B. In this paper, by means of complex representation of a quaternion matrix, we introduce a concept of norm of quaternion...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer physics communications Ročník 176; číslo 7; s. 481 - 485
Hlavní autoři: Jiang, Tongsong, Chen, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2007
Témata:
ISSN:0010-4655, 1879-2944
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quaternionic least squares (QLS) problem is one method of solving overdetermined sets of quaternion linear equations A X ≈ B that is appropriate when there is error in the matrix B. In this paper, by means of complex representation of a quaternion matrix, we introduce a concept of norm of quaternion matrices, discuss singular values and generalized inverses of a quaternion matrix, study the QLS problem and derive two algebraic methods for finding solutions of the QLS problem in quaternionic quantum theory.
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2006.12.005