Unlocking prediction and optimal design of CO2 methanation catalysts via active learning-enhanced interpretable ensemble learning

Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning. [Display omitted] •An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 509; S. 161154
Hauptverfasser: Yang, Qingchun, Bao, Runjie, Wang, Zhao, Guo, Qiwen, Pan, Yifei, Zhou, Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2025
Schlagworte:
ISSN:1385-8947
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning. [Display omitted] •An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence analysis is conducted to interpret the model.•Uncertainty sampling strategy is the most effective in enhancing the performance of ensemble learning models.•Active learning-optimized random forest model is the most suitable for the CO2 methanation reaction.•Optimized Ni/Al2O3 and Ni/CeO2 catalysts achieve CH4 yields of 92.12 % and 92.72 %. CO2 methanation technology effectively promotes the recycling of carbon resources and sustainable development. However, its intricate reaction process presents significant challenges for catalyst design and optimization. Herein, an efficient, robust, and interpretable ensemble learning model based on the active learning optimization strategy is developed to optimize and reverse design highly active catalysts for CO2 methanation. First, various feature engineering methods were compared and it found feature selection based on recursive feature elimination and cross-validation is the most suitable approach for the CO2 methanation process, outperforming the optimal feature extraction method, Autoencoders. Six ensemble learning models are then developed and automatically optimized using the Optuna framework. To enhance the prediction accuracy and generalization ability of the model, various active learning strategies are devised, with findings indicating that the uncertainty sampling strategy significantly improves the performance of ensemble learning models. In particular, the active learning optimized random forest model exhibits superior performance due to its highest R2 value (>0.92) and the most reasonable prediction range. To clearly explain the outstanding performance of the model, the Shapley additive explanations and partial dependence plot analyses are conducted to effectively illustrate the significance of each feature in predicting outcomes and elucidating their interrelationships. The optimal model is ultimately integrated with a hybrid multi-objective algorithm to optimize the reported catalysts, and successfully identified Ni/Al2O3 and Ni/CeO2 catalysts with methane yields of 92.12 % and 92.72 %, surpassing previously reported data. Additionally, the model also predicted three novel catalysts with superior performance at low temperatures and varying H2/CO2 ratios.
AbstractList Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning. [Display omitted] •An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence analysis is conducted to interpret the model.•Uncertainty sampling strategy is the most effective in enhancing the performance of ensemble learning models.•Active learning-optimized random forest model is the most suitable for the CO2 methanation reaction.•Optimized Ni/Al2O3 and Ni/CeO2 catalysts achieve CH4 yields of 92.12 % and 92.72 %. CO2 methanation technology effectively promotes the recycling of carbon resources and sustainable development. However, its intricate reaction process presents significant challenges for catalyst design and optimization. Herein, an efficient, robust, and interpretable ensemble learning model based on the active learning optimization strategy is developed to optimize and reverse design highly active catalysts for CO2 methanation. First, various feature engineering methods were compared and it found feature selection based on recursive feature elimination and cross-validation is the most suitable approach for the CO2 methanation process, outperforming the optimal feature extraction method, Autoencoders. Six ensemble learning models are then developed and automatically optimized using the Optuna framework. To enhance the prediction accuracy and generalization ability of the model, various active learning strategies are devised, with findings indicating that the uncertainty sampling strategy significantly improves the performance of ensemble learning models. In particular, the active learning optimized random forest model exhibits superior performance due to its highest R2 value (>0.92) and the most reasonable prediction range. To clearly explain the outstanding performance of the model, the Shapley additive explanations and partial dependence plot analyses are conducted to effectively illustrate the significance of each feature in predicting outcomes and elucidating their interrelationships. The optimal model is ultimately integrated with a hybrid multi-objective algorithm to optimize the reported catalysts, and successfully identified Ni/Al2O3 and Ni/CeO2 catalysts with methane yields of 92.12 % and 92.72 %, surpassing previously reported data. Additionally, the model also predicted three novel catalysts with superior performance at low temperatures and varying H2/CO2 ratios.
ArticleNumber 161154
Author Guo, Qiwen
Wang, Zhao
Zhou, Xin
Bao, Runjie
Pan, Yifei
Yang, Qingchun
Author_xml – sequence: 1
  givenname: Qingchun
  orcidid: 0000-0002-5900-524X
  surname: Yang
  fullname: Yang, Qingchun
  email: ceqcyang@hfut.edu.cn
  organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
– sequence: 2
  givenname: Runjie
  surname: Bao
  fullname: Bao, Runjie
  organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
– sequence: 3
  givenname: Zhao
  surname: Wang
  fullname: Wang, Zhao
  organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
– sequence: 4
  givenname: Qiwen
  surname: Guo
  fullname: Guo, Qiwen
  organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
– sequence: 5
  givenname: Yifei
  surname: Pan
  fullname: Pan, Yifei
  organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China
– sequence: 6
  givenname: Xin
  orcidid: 0000-0002-5921-4260
  surname: Zhou
  fullname: Zhou, Xin
  email: xinzhou@ouc.edu.cn
  organization: School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
BookMark eNp9kL1OwzAUhT0UibbwAGx-gQQ7iZNYTKjiT6rUhc7WjXNdHFKnsq1KHXlzkhYWBqZ7h_Md6XwLMnODQ0LuOEs54-V9l2rs0oxlIuUl56KYkTnPa5HUsqiuySKEjjFWSi7n5Gvr-kF_WrejB4-t1dEOjoJr6XCIdg89bTHYnaODoatNRvcYP8DBOaUhQn8KMdCjBQojekTaI3g31iXoxqDGlloX0Y_lEZoeKbqA--n5Dd6QKwN9wNufuyTb56f31Wuy3ry8rR7Xic5kFRPRABqtq6qumyIvWxDa8EzzpuFFYcrKFEJWmSiZyLmARkiJWcuMLkCaBgDyJakuvdoPIXg0Stt4HhI92F5xpiZ7qlOjPTXZUxd7I8n_kAc_qvGnf5mHC4PjpKNFr4K2OPmwHnVU7WD_ob8BvoCPtA
CitedBy_id crossref_primary_10_1016_j_measurement_2025_118571
crossref_primary_10_1016_j_ijhydene_2025_151405
crossref_primary_10_1021_acscatal_5c02227
crossref_primary_10_1016_j_watres_2025_124438
crossref_primary_10_1016_j_jclepro_2025_146662
Cites_doi 10.1016/j.aca.2022.340094
10.1016/j.engappai.2022.105151
10.1016/j.renene.2023.04.107
10.1016/j.seppur.2023.125714
10.1016/j.ijhydene.2023.12.255
10.1038/s41929-022-00744-z
10.1016/j.seppur.2023.126023
10.1016/j.jcis.2023.05.052
10.1002/er.8521
10.1002/adma.202211497
10.1016/j.jece.2023.109555
10.1016/j.ijhydene.2024.02.055
10.1016/j.jclepro.2024.141947
10.1016/j.jcou.2017.03.022
10.1016/j.molstruc.2025.141369
10.1016/j.jechem.2021.09.045
10.3390/molecules27123802
10.1016/j.psep.2022.10.005
10.1016/j.ijhydene.2024.04.173
10.1016/j.energy.2024.131221
10.1038/s42256-022-00552-x
10.1039/D3GC02644B
10.1016/j.ces.2021.117219
10.1016/j.jechem.2023.01.034
10.1002/aic.18437
10.1016/j.jechem.2021.03.040
10.1016/j.ces.2023.119553
10.1016/j.cclet.2023.108596
10.1016/j.seppur.2024.127894
10.1002/cben.201600022
10.1016/j.ces.2024.120266
10.1016/j.knosys.2019.105137
10.1016/j.jwpe.2023.104303
10.1126/science.abo3378
10.1016/j.chemosphere.2023.140422
10.1016/j.cattod.2019.03.026
10.1016/j.scitotenv.2024.175573
10.1007/s40747-021-00637-x
10.1016/j.apsusc.2019.03.331
10.1016/j.ijhydene.2018.07.013
10.1016/j.jechem.2022.12.037
10.1039/D3TA05939A
10.1016/j.aei.2022.101689
10.1016/j.chemosphere.2024.142632
10.1016/j.jcat.2015.10.025
10.1016/j.cej.2022.136651
10.1038/s42256-020-0217-y
10.1038/s41467-023-36322-5
10.1016/j.jclepro.2021.126032
10.1038/s41467-024-47403-4
10.1016/j.scitotenv.2022.159448
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.161154
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_161154
S1385894725019758
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSH
SSJ
SSZ
T5K
~G-
9DU
AAYXX
ABXDB
ACLOT
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
~HD
ID FETCH-LOGICAL-c297t-5baefcc7788b436da5cf12c1bb144f67f459725605315ab599e2d0fc4a9fbaaa3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441525100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:54:47 EST 2025
Tue Nov 18 21:49:35 EST 2025
Sat Jul 05 17:12:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ensemble models
CO2 methanation
Active learning
Interpretable
Catalyst optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-5baefcc7788b436da5cf12c1bb144f67f459725605315ab599e2d0fc4a9fbaaa3
ORCID 0000-0002-5921-4260
0000-0002-5900-524X
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2025_161154
crossref_primary_10_1016_j_cej_2025_161154
elsevier_sciencedirect_doi_10_1016_j_cej_2025_161154
PublicationCentury 2000
PublicationDate 2025-04-01
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Zhang, Li, Tian, Cheng, Chen, Wang (b0210) 2022; 53
Matthews, Wynes (b0005) 2022; 376
Numpilai, Chanlek, Poo-Arporn, Wannapaiboon, Cheng, Siri-Nguan, Sornchamni, Kongkachuichay, Chareonpanich, Rupprechter, Limtrakul, Witoon (b0240) 2019; 483
Alrafei, Polaert, Ledoux, Azzolina-Jury (b0245) 2020; 346
Wang, Zhou, Sundmacher (b0080) 2022; 444
Yao, Zhang, Li, Zhuo, Chen, Lin, Liu, Yao (b0155) 2024; 349
Esterhuizen, Goldsmith, Linic (b0060) 2022; 5
Ren, Lou, Xu, Zeng, Pei, Wang (b0025) 2023; 80
Bai, Tao, Gao, Tao, Liu (b0150) 2023; 211
Hu, Li, Liu (b0220) 2022; 27
Ganaie, Hu, Malik, Tanveer, Suganthan (b0125) 2022; 115
Valinejad Moghaddam, Rezaei, Meshkani, Daroughegi (b0045) 2018; 43
Xie, Wang, Ding, Zhang, Li, Guo, Song (b0250) 2017; 19
Cañada-Barcala, Larriba, Águeda Maté, Delgado Dobladez (b0030) 2024; 331
Yu, Hossain, Sikder, Qi, Huo, Chen, Dou, Shi, Ye (b0130) 2024; 951
Zhu, Shen, Chen, Zhang (b0175) 2024; 296
Cao, Geddes, Yang, Yang (b0120) 2020; 2
Hu, Wang, Zhang, Wang, Yang, Shi, Sun (b0065) 2024; 59
Ebrahimi, Bibak, Shakeri, Meshkani (b0265) 2025; 1328
De Piano, Andrade Gamboa, Condó, Gennari (b0050) 2024; 56
Xu, Su, Duan, Hou, Lin, Liu, Pan, Pei, Geng, Huang, Zhang (b0040) 2016; 333
Kontchouo, Gao, Fan, Zhang, Zhang, Hu, Xu, Hu (b0255) 2022; 46
Farooq, Ahmed, Akbar, Aslam, Alyousef (b0115) 2021; 292
Jia, Sun, Lian, Hou (b0145) 2022; 8
Wen, Li, Xiang, Reker (b0135) 2023; 2
Jiang, Hou, Man, Wang, Shi, Shang, Cheng (b0180) 2024; 334
Aryandoust, Patt, Pfenninger (b0195) 2022; 4
Aldrees, Awan, Javed, Mohamed (b0170) 2022; 168
Kim, Kim, Ha, Shin, Kwak, Park, Kim, Jung, Lee, Kim, Jung (b0185) 2023; 35
Ghaib, Nitz, Ben-Fares (b0260) 2016; 3
Chandana, Karka, Gujral, Kamesh, Roy (b0070) 2023; 11
Al-Qadri, Nasser, Adamu, Muraza, Saleh (b0020) 2023; 79
Yaqub, Lee (b0165) 2023; 345
Summa, Świrk Da Costa, Wang, Samojeden, Rønning, Hu, Motak, Da Costa (b0230) 2021; 25
Zhu, Chen, Tao (b0225) 2023; 857
Cheng, Mei, Long, Luo, Zhang, Xiong, Shu, Li, Gao (b0215) 2024; 450
Bakır, Orak, Yüksel (b0110) 2024; 67
Liu, Pan, Zhu, Zhou, Lu, Wang, Ding, Du, Zhou (b0105) 2023; 25
Xiao, Chang, Liu (b0205) 2020; 190
Pillai, Li, Wang, Omidvar, Mu, Achenie, Abild-Pedersen, Yang, Wu, Xin (b0190) 2023; 14
Wang, Wen, Su, Shen, Ren, Ma, Li (b0095) 2022; 248
Jayarathna, Onsree, Drummond, Naglic, Lauterbach (b0200) 2024; 12
Yang, Sun, Su, Kong, Ren, Shen (b0090) 2024; 297
Song, Shi, Li, He, Xiong, Deng, Xia (b0100) 2024; 362
Istiqomah, Jung, Khim (b0160) 2023; 56
Tang, Song, Li, Liu, Hu, Chen, Lu, Yao, Li, Lin (b0035) 2024; 15
Namdeo, Srivastava, Mohanty (b0140) 2023; 647
Yang, Fan, Rong, Bao, Zhang (b0075) 2024
Li, Liu, Wang, Sun, Dong (b0085) 2024; 35
Hussain, Jalil, Hassan, Hamid (b0010) 2021; 62
Yang, Liu, Chang, Yang, Shen (b0055) 2024; 285
Ciloglu, Hora, Gundogdu, Kahraman, Tokmakci, Aydin (b0235) 2022; 1221
Cordero-Lanzac, Ramirez, Navajas, Gevers, Brunialti, Gandía, Aguayo, Mani Sarathy, Gascon (b0015) 2022; 68
Farooq (10.1016/j.cej.2025.161154_b0115) 2021; 292
Yao (10.1016/j.cej.2025.161154_b0155) 2024; 349
Esterhuizen (10.1016/j.cej.2025.161154_b0060) 2022; 5
Ganaie (10.1016/j.cej.2025.161154_b0125) 2022; 115
Cheng (10.1016/j.cej.2025.161154_b0215) 2024; 450
Pillai (10.1016/j.cej.2025.161154_b0190) 2023; 14
De Piano (10.1016/j.cej.2025.161154_b0050) 2024; 56
Kim (10.1016/j.cej.2025.161154_b0185) 2023; 35
Cao (10.1016/j.cej.2025.161154_b0120) 2020; 2
Hu (10.1016/j.cej.2025.161154_b0065) 2024; 59
Jiang (10.1016/j.cej.2025.161154_b0180) 2024; 334
Valinejad Moghaddam (10.1016/j.cej.2025.161154_b0045) 2018; 43
Hussain (10.1016/j.cej.2025.161154_b0010) 2021; 62
Cordero-Lanzac (10.1016/j.cej.2025.161154_b0015) 2022; 68
Al-Qadri (10.1016/j.cej.2025.161154_b0020) 2023; 79
Matthews (10.1016/j.cej.2025.161154_b0005) 2022; 376
Bai (10.1016/j.cej.2025.161154_b0150) 2023; 211
Aldrees (10.1016/j.cej.2025.161154_b0170) 2022; 168
Xu (10.1016/j.cej.2025.161154_b0040) 2016; 333
Chandana (10.1016/j.cej.2025.161154_b0070) 2023; 11
Jayarathna (10.1016/j.cej.2025.161154_b0200) 2024; 12
Song (10.1016/j.cej.2025.161154_b0100) 2024; 362
Zhu (10.1016/j.cej.2025.161154_b0175) 2024; 296
Li (10.1016/j.cej.2025.161154_b0210) 2022; 53
Li (10.1016/j.cej.2025.161154_b0085) 2024; 35
Yang (10.1016/j.cej.2025.161154_b0090) 2024; 297
Aryandoust (10.1016/j.cej.2025.161154_b0195) 2022; 4
Hu (10.1016/j.cej.2025.161154_b0220) 2022; 27
Yang (10.1016/j.cej.2025.161154_b0055) 2024; 285
Wang (10.1016/j.cej.2025.161154_b0095) 2022; 248
Tang (10.1016/j.cej.2025.161154_b0035) 2024; 15
Ciloglu (10.1016/j.cej.2025.161154_b0235) 2022; 1221
Cañada-Barcala (10.1016/j.cej.2025.161154_b0030) 2024; 331
Namdeo (10.1016/j.cej.2025.161154_b0140) 2023; 647
Summa (10.1016/j.cej.2025.161154_b0230) 2021; 25
Jia (10.1016/j.cej.2025.161154_b0145) 2022; 8
Zhu (10.1016/j.cej.2025.161154_b0225) 2023; 857
Liu (10.1016/j.cej.2025.161154_b0105) 2023; 25
Bakır (10.1016/j.cej.2025.161154_b0110) 2024; 67
Yang (10.1016/j.cej.2025.161154_b0075) 2024
Xie (10.1016/j.cej.2025.161154_b0250) 2017; 19
Wang (10.1016/j.cej.2025.161154_b0080) 2022; 444
Xiao (10.1016/j.cej.2025.161154_b0205) 2020; 190
Alrafei (10.1016/j.cej.2025.161154_b0245) 2020; 346
Ren (10.1016/j.cej.2025.161154_b0025) 2023; 80
Yaqub (10.1016/j.cej.2025.161154_b0165) 2023; 345
Wen (10.1016/j.cej.2025.161154_b0135) 2023; 2
Ghaib (10.1016/j.cej.2025.161154_b0260) 2016; 3
Numpilai (10.1016/j.cej.2025.161154_b0240) 2019; 483
Istiqomah (10.1016/j.cej.2025.161154_b0160) 2023; 56
Ebrahimi (10.1016/j.cej.2025.161154_b0265) 2025; 1328
Yu (10.1016/j.cej.2025.161154_b0130) 2024; 951
Kontchouo (10.1016/j.cej.2025.161154_b0255) 2022; 46
References_xml – volume: 79
  start-page: 418
  year: 2023
  end-page: 449
  ident: b0020
  article-title: CO
  publication-title: J. Energy Chem.
– volume: 292
  year: 2021
  ident: b0115
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Cleaner Prod.
– volume: 345
  year: 2023
  ident: b0165
  article-title: Artificial intelligence models for predicting calcium and magnesium removal by polyfunctional ketone using ensemble machine learners
  publication-title: Chemosphere
– volume: 46
  start-page: 19493
  year: 2022
  end-page: 19507
  ident: b0255
  article-title: Methanation of CO
  publication-title: Int. J. Energy Res.
– volume: 68
  start-page: 255
  year: 2022
  end-page: 266
  ident: b0015
  article-title: A techno-economic and life cycle assessment for the production of green methanol from CO
  publication-title: J. Energy Chem.
– volume: 296
  year: 2024
  ident: b0175
  article-title: Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM
  publication-title: Energy
– volume: 35
  year: 2023
  ident: b0185
  article-title: Exploring optimal water splitting bifunctional alloy catalyst by pareto active learning
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3046
  year: 2024
  end-page: 3060
  ident: b0200
  article-title: Experimental discovery of novel ammonia synthesis catalysts via active learning
  publication-title: J. Mater. Chem. A
– volume: 25
  year: 2021
  ident: b0230
  article-title: Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO
  publication-title: Appl. Mater. Today
– volume: 331
  year: 2024
  ident: b0030
  article-title: Synthetic natural gas production through biogas methanation using a sorption-enhanced reaction process
  publication-title: Sep. Purif. Technol.
– volume: 59
  start-page: 1023
  year: 2024
  end-page: 1041
  ident: b0065
  article-title: Parametric analysis of CO
  publication-title: Int. J. Hydrogen Energy
– volume: 334
  year: 2024
  ident: b0180
  article-title: Guiding experiment with Machine Learning: A case study of biochar adsorption of Ciprofloxacin
  publication-title: Sep. Purif. Technol.
– volume: 444
  year: 2022
  ident: b0080
  article-title: Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation
  publication-title: Chem. Eng. J.
– year: 2024
  ident: b0075
  article-title: An auto-configurable machine learning framework to optimize and predict catalysts for CO
  publication-title: AIChE J.
– volume: 362
  year: 2024
  ident: b0100
  article-title: Prediction of g–C
  publication-title: Chemosphere
– volume: 857
  year: 2023
  ident: b0225
  article-title: Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 101
  year: 2024
  end-page: 110
  ident: b0110
  article-title: Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 2663
  year: 2022
  end-page: 2693
  ident: b0145
  article-title: Feature dimensionality reduction: a review
  publication-title: Complex Intell. Syst.
– volume: 4
  start-page: 977
  year: 2022
  end-page: 991
  ident: b0195
  article-title: Enhanced spatio-temporal electric load forecasts using less data with active deep learning
  publication-title: Nat. Mach. Intell.
– volume: 647
  start-page: 174
  year: 2023
  end-page: 187
  ident: b0140
  article-title: Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons
  publication-title: J. Colloid Interface Sci.
– volume: 43
  start-page: 16522
  year: 2018
  end-page: 16533
  ident: b0045
  article-title: Carbon dioxide methanation over Ni-M/Al
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 3802
  year: 2022
  ident: b0220
  article-title: Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence
  publication-title: Molecules
– volume: 56
  year: 2023
  ident: b0160
  article-title: Tree-based ensemble machine learning model for nitrate reduction by zero-valent iron
  publication-title: J. Water Process Eng.
– volume: 56
  start-page: 1007
  year: 2024
  end-page: 1019
  ident: b0050
  article-title: CO
  publication-title: Int. J. Hydrogen Energy
– volume: 248
  year: 2022
  ident: b0095
  article-title: Insights into ensemble learning-based data-driven model for safety-related property of chemical substances
  publication-title: Chem. Eng. Sci.
– volume: 1221
  year: 2022
  ident: b0235
  article-title: SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant
  publication-title: Anal. Chim. Acta
– volume: 3
  start-page: 247
  year: 2016
  end-page: 298
  ident: b0260
  article-title: Chemical Methanation of CO
  publication-title: ChemBioEng Rev.
– volume: 5
  start-page: 175
  year: 2022
  end-page: 184
  ident: b0060
  article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis
  publication-title: Nat. Catal.
– volume: 14
  start-page: 792
  year: 2023
  ident: b0190
  article-title: Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks
  publication-title: Nat. Commun.
– volume: 2
  start-page: 500
  year: 2020
  end-page: 508
  ident: b0120
  article-title: Ensemble deep learning in bioinformatics
  publication-title: Nat. Mach. Intell.
– volume: 115
  year: 2022
  ident: b0125
  article-title: Ensemble deep learning: A review
  publication-title: Eng. Appl. Artif. Intel.
– volume: 62
  start-page: 377
  year: 2021
  end-page: 407
  ident: b0010
  article-title: Recent advances in catalytic systems for CO
  publication-title: J. Energy Chem.
– volume: 15
  start-page: 3115
  year: 2024
  ident: b0035
  article-title: Thermally stable Ni foam-supported inverse CeAlO
  publication-title: Nat. Commun.
– volume: 349
  year: 2024
  ident: b0155
  article-title: Precise prediction of CO
  publication-title: Sep. Purif. Technol.
– volume: 25
  start-page: 8778
  year: 2023
  end-page: 8790
  ident: b0105
  article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO
  publication-title: Green Chem.
– volume: 297
  year: 2024
  ident: b0090
  article-title: Insight to the prediction of CO
  publication-title: Chem. Eng. Sci.
– volume: 19
  start-page: 202
  year: 2017
  end-page: 208
  ident: b0250
  article-title: CO
  publication-title: J. CO
– volume: 2
  start-page: 1134
  year: 2023
  end-page: 1142
  ident: b0135
  article-title: Improving molecular machine learning through adaptive subsampling with active learning, Digital
  publication-title: Discovery
– volume: 35
  year: 2024
  ident: b0085
  article-title: Prediction and interpretation of photocatalytic NO removal on g-C
  publication-title: Chin. Chem. Lett.
– volume: 376
  start-page: 1404
  year: 2022
  end-page: 1409
  ident: b0005
  article-title: Current global efforts are insufficient to limit warming to 1.5°C
  publication-title: Science
– volume: 80
  start-page: 182
  year: 2023
  end-page: 206
  ident: b0025
  article-title: Methanation of CO/CO
  publication-title: J. Energy Chem.
– volume: 211
  start-page: 412
  year: 2023
  end-page: 419
  ident: b0150
  article-title: Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing
  publication-title: Renew. Energy
– volume: 53
  year: 2022
  ident: b0210
  article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks
  publication-title: Adv. Eng. Inform.
– volume: 11
  year: 2023
  ident: b0070
  article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO
  publication-title: J. Environ. Chem. Eng.
– volume: 333
  start-page: 227
  year: 2016
  end-page: 237
  ident: b0040
  article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO
  publication-title: J. Catal.
– volume: 190
  year: 2020
  ident: b0205
  article-title: An efficient active learning method for multi-task learning
  publication-title: Knowl.-Based Syst.
– volume: 346
  start-page: 23
  year: 2020
  end-page: 33
  ident: b0245
  article-title: Remarkably stable and efficient Ni and Ni-Co catalysts for CO
  publication-title: Catal. Today
– volume: 450
  year: 2024
  ident: b0215
  article-title: Data driven multi-objective design for low-carbon self-compacting concrete considering durability
  publication-title: J. Cleaner Prod.
– volume: 168
  start-page: 344
  year: 2022
  end-page: 361
  ident: b0170
  article-title: Prediction of water quality indexes with ensemble learners: Bagging and boosting
  publication-title: Process Saf. Environ. Prot.
– volume: 285
  year: 2024
  ident: b0055
  article-title: An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system
  publication-title: Chem. Eng. Sci.
– volume: 951
  year: 2024
  ident: b0130
  article-title: Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system
  publication-title: Sci. Total Environ.
– volume: 483
  start-page: 581
  year: 2019
  end-page: 592
  ident: b0240
  article-title: Pore size effects on physicochemical properties of Fe-Co/K-Al
  publication-title: Appl. Surf. Sci.
– volume: 1328
  year: 2025
  ident: b0265
  article-title: The influence of Ce, La, and Y promoters on the catalytic performance of Ni/Cr
  publication-title: J. Mol. Struct.
– volume: 1221
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0235
  article-title: SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340094
– volume: 115
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0125
  article-title: Ensemble deep learning: A review
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.105151
– volume: 211
  start-page: 412
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0150
  article-title: Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.04.107
– volume: 331
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0030
  article-title: Synthetic natural gas production through biogas methanation using a sorption-enhanced reaction process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125714
– volume: 56
  start-page: 1007
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0050
  article-title: CO2 methanation over nickel-CeO2 catalyst supported on Al2O3: Different impregnation strategies and Ni-Ce ratios
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.12.255
– volume: 5
  start-page: 175
  issue: 3
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0060
  article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00744-z
– volume: 334
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0180
  article-title: Guiding experiment with Machine Learning: A case study of biochar adsorption of Ciprofloxacin
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.126023
– volume: 647
  start-page: 174
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0140
  article-title: Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.052
– volume: 46
  start-page: 19493
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0255
  article-title: Methanation of CO2 over Ni/clay: Effects of calcination temperature on catalyst properties and reaction intermediates formed
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8521
– volume: 35
  issue: 17
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0185
  article-title: Exploring optimal water splitting bifunctional alloy catalyst by pareto active learning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211497
– volume: 11
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0070
  article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.109555
– volume: 59
  start-page: 1023
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0065
  article-title: Parametric analysis of CO2 hydrogenation via Fischer-Tropsch synthesis: A review based on machine learning for quantitative assessment
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.02.055
– volume: 450
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0215
  article-title: Data driven multi-objective design for low-carbon self-compacting concrete considering durability
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2024.141947
– volume: 19
  start-page: 202
  year: 2017
  ident: 10.1016/j.cej.2025.161154_b0250
  article-title: CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.03.022
– volume: 1328
  year: 2025
  ident: 10.1016/j.cej.2025.161154_b0265
  article-title: The influence of Ce, La, and Y promoters on the catalytic performance of Ni/Cr2O3 catalysts for CO2 methanation
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2025.141369
– volume: 68
  start-page: 255
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0015
  article-title: A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.09.045
– volume: 27
  start-page: 3802
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0220
  article-title: Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence
  publication-title: Molecules
  doi: 10.3390/molecules27123802
– volume: 168
  start-page: 344
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0170
  article-title: Prediction of water quality indexes with ensemble learners: Bagging and boosting
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.10.005
– volume: 2
  start-page: 1134
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0135
  article-title: Improving molecular machine learning through adaptive subsampling with active learning, Digital
  publication-title: Discovery
– volume: 67
  start-page: 101
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0110
  article-title: Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.04.173
– volume: 296
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0175
  article-title: Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131221
– volume: 4
  start-page: 977
  issue: 11
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0195
  article-title: Enhanced spatio-temporal electric load forecasts using less data with active deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00552-x
– volume: 25
  start-page: 8778
  issue: 21
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0105
  article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2
  publication-title: Green Chem.
  doi: 10.1039/D3GC02644B
– volume: 248
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0095
  article-title: Insights into ensemble learning-based data-driven model for safety-related property of chemical substances
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117219
– volume: 80
  start-page: 182
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0025
  article-title: Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.01.034
– year: 2024
  ident: 10.1016/j.cej.2025.161154_b0075
  article-title: An auto-configurable machine learning framework to optimize and predict catalysts for CO2 to light olefins process
  publication-title: AIChE J.
  doi: 10.1002/aic.18437
– volume: 62
  start-page: 377
  year: 2021
  ident: 10.1016/j.cej.2025.161154_b0010
  article-title: Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.03.040
– volume: 285
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0055
  article-title: An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119553
– volume: 35
  issue: 2
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0085
  article-title: Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2023.108596
– volume: 25
  year: 2021
  ident: 10.1016/j.cej.2025.161154_b0230
  article-title: Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO2 methanation
  publication-title: Appl. Mater. Today
– volume: 349
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0155
  article-title: Precise prediction of CO2 separation performance of metal–organic framework mixed matrix membranes based on feature selection and machine learning
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.127894
– volume: 3
  start-page: 247
  issue: 6
  year: 2016
  ident: 10.1016/j.cej.2025.161154_b0260
  article-title: Chemical Methanation of CO2: A Review
  publication-title: ChemBioEng Rev.
  doi: 10.1002/cben.201600022
– volume: 297
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0090
  article-title: Insight to the prediction of CO2 solubility in ionic liquids based on the interpretable machine learning model
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2024.120266
– volume: 190
  year: 2020
  ident: 10.1016/j.cej.2025.161154_b0205
  article-title: An efficient active learning method for multi-task learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105137
– volume: 56
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0160
  article-title: Tree-based ensemble machine learning model for nitrate reduction by zero-valent iron
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.104303
– volume: 376
  start-page: 1404
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0005
  article-title: Current global efforts are insufficient to limit warming to 1.5°C
  publication-title: Science
  doi: 10.1126/science.abo3378
– volume: 345
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0165
  article-title: Artificial intelligence models for predicting calcium and magnesium removal by polyfunctional ketone using ensemble machine learners
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.140422
– volume: 346
  start-page: 23
  year: 2020
  ident: 10.1016/j.cej.2025.161154_b0245
  article-title: Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.03.026
– volume: 951
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0130
  article-title: Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.175573
– volume: 8
  start-page: 2663
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0145
  article-title: Feature dimensionality reduction: a review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00637-x
– volume: 483
  start-page: 581
  year: 2019
  ident: 10.1016/j.cej.2025.161154_b0240
  article-title: Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.331
– volume: 43
  start-page: 16522
  year: 2018
  ident: 10.1016/j.cej.2025.161154_b0045
  article-title: Carbon dioxide methanation over Ni-M/Al2O3 (M: Fe, Co, Zr, La and Cu) catalysts synthesized using the one-pot sol-gel synthesis method
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.07.013
– volume: 79
  start-page: 418
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0020
  article-title: CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.12.037
– volume: 12
  start-page: 3046
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0200
  article-title: Experimental discovery of novel ammonia synthesis catalysts via active learning
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA05939A
– volume: 53
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0210
  article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101689
– volume: 362
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0100
  article-title: Prediction of g–C3N4–based photocatalysts in tetracycline degradation based on machine learning
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2024.142632
– volume: 333
  start-page: 227
  year: 2016
  ident: 10.1016/j.cej.2025.161154_b0040
  article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.10.025
– volume: 444
  year: 2022
  ident: 10.1016/j.cej.2025.161154_b0080
  article-title: Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136651
– volume: 2
  start-page: 500
  issue: 9
  year: 2020
  ident: 10.1016/j.cej.2025.161154_b0120
  article-title: Ensemble deep learning in bioinformatics
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0217-y
– volume: 14
  start-page: 792
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0190
  article-title: Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36322-5
– volume: 292
  year: 2021
  ident: 10.1016/j.cej.2025.161154_b0115
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 15
  start-page: 3115
  issue: 1
  year: 2024
  ident: 10.1016/j.cej.2025.161154_b0035
  article-title: Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47403-4
– volume: 857
  year: 2023
  ident: 10.1016/j.cej.2025.161154_b0225
  article-title: Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159448
SSID ssj0006919
Score 2.4992123
Snippet Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning. [Display omitted]...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 161154
SubjectTerms Active learning
Catalyst optimization
CO2 methanation
Ensemble models
Interpretable
Title Unlocking prediction and optimal design of CO2 methanation catalysts via active learning-enhanced interpretable ensemble learning
URI https://dx.doi.org/10.1016/j.cej.2025.161154
Volume 509
WOSCitedRecordID wos001441525100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsoS-UDJ6qMMpk4sY8FFUGFytZKA5fI9tjMDG1SdTLTwq2_rH-N53hJ2lJED1yiKLLfRHnfvM1vQegF5VyBJpARmKMDM8KMRCzLRSTGOom5kkpmTaHw-3xnh45G7GOvd-ZrYZb7eVnSkxN2-F9ZDc-A2aZ09hrsDkThAdwD0-EKbIfrPzF-rwT99MMWmZtTmNonHFcgHQ7MmUyTtNHkYXxImhHS3IYEN5pYzs95Pd9YmlqtRhT6uRLfI1VObLrANCQqmrIr8IPVgbnxC7v2buhHoNq-h6FbhZkmwk1WkI2qfjme1r9s8bELVLCsE6j46iLbn4CEnCwCqF_xJtr7eVHOpu1Bk1v8bcKrkGK0qOz-Y1f-5oIdCenkyFj5PKQkosw26fQCnMSsI4LBhB3YvtSXtIMNVMz6Us36hnq_XXu-E_cFDRnyFn1K3KwAEoUhUVgSN9BqkhMGmmF1893WaDsYAxlrZsuE9_YH602K4YX3-LNp1DF3du-iO85PwZsWX_dQT5X30e1O98oH6DQgDbdIw8A97JCGLdJwpTEgDXeQhgPSMCANW6ThS0jD55CGPdLCwodo783W7uu3kZvoEcmE5XVEBFdayjynVKTDbMyJ1INEDoQAv15nuU7BvzVGOGgGwgVhTCXjWMuUMy0458NHaKWsSvUY4ThNiWagkCjhqVKSCvBEwHfXepjGWiRrKPYfs5Cu3b2ZurJfXMnENfQybDm0vV7-tjj1HCqcsWqN0ALQdvW2J9f5jafoVvsneIZW6qOFeo5uymU9nR-tO6j9BrGKuSM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+prediction+and+optimal+design+of+CO2+methanation+catalysts+via+active+learning-enhanced+interpretable+ensemble+learning&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Yang%2C+Qingchun&rft.au=Bao%2C+Runjie&rft.au=Wang%2C+Zhao&rft.au=Guo%2C+Qiwen&rft.date=2025-04-01&rft.issn=1385-8947&rft.volume=509&rft.spage=161154&rft_id=info:doi/10.1016%2Fj.cej.2025.161154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_161154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon