Unlocking prediction and optimal design of CO2 methanation catalysts via active learning-enhanced interpretable ensemble learning
Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning. [Display omitted] •An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence a...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 509; S. 161154 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.04.2025
|
| Schlagworte: | |
| ISSN: | 1385-8947 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning.
[Display omitted]
•An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence analysis is conducted to interpret the model.•Uncertainty sampling strategy is the most effective in enhancing the performance of ensemble learning models.•Active learning-optimized random forest model is the most suitable for the CO2 methanation reaction.•Optimized Ni/Al2O3 and Ni/CeO2 catalysts achieve CH4 yields of 92.12 % and 92.72 %.
CO2 methanation technology effectively promotes the recycling of carbon resources and sustainable development. However, its intricate reaction process presents significant challenges for catalyst design and optimization. Herein, an efficient, robust, and interpretable ensemble learning model based on the active learning optimization strategy is developed to optimize and reverse design highly active catalysts for CO2 methanation. First, various feature engineering methods were compared and it found feature selection based on recursive feature elimination and cross-validation is the most suitable approach for the CO2 methanation process, outperforming the optimal feature extraction method, Autoencoders. Six ensemble learning models are then developed and automatically optimized using the Optuna framework. To enhance the prediction accuracy and generalization ability of the model, various active learning strategies are devised, with findings indicating that the uncertainty sampling strategy significantly improves the performance of ensemble learning models. In particular, the active learning optimized random forest model exhibits superior performance due to its highest R2 value (>0.92) and the most reasonable prediction range. To clearly explain the outstanding performance of the model, the Shapley additive explanations and partial dependence plot analyses are conducted to effectively illustrate the significance of each feature in predicting outcomes and elucidating their interrelationships. The optimal model is ultimately integrated with a hybrid multi-objective algorithm to optimize the reported catalysts, and successfully identified Ni/Al2O3 and Ni/CeO2 catalysts with methane yields of 92.12 % and 92.72 %, surpassing previously reported data. Additionally, the model also predicted three novel catalysts with superior performance at low temperatures and varying H2/CO2 ratios. |
|---|---|
| AbstractList | Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning.
[Display omitted]
•An active learning-enhanced ensemble framework is proposed for catalyst optimization.•Shapley additive explanations and partial dependence analysis is conducted to interpret the model.•Uncertainty sampling strategy is the most effective in enhancing the performance of ensemble learning models.•Active learning-optimized random forest model is the most suitable for the CO2 methanation reaction.•Optimized Ni/Al2O3 and Ni/CeO2 catalysts achieve CH4 yields of 92.12 % and 92.72 %.
CO2 methanation technology effectively promotes the recycling of carbon resources and sustainable development. However, its intricate reaction process presents significant challenges for catalyst design and optimization. Herein, an efficient, robust, and interpretable ensemble learning model based on the active learning optimization strategy is developed to optimize and reverse design highly active catalysts for CO2 methanation. First, various feature engineering methods were compared and it found feature selection based on recursive feature elimination and cross-validation is the most suitable approach for the CO2 methanation process, outperforming the optimal feature extraction method, Autoencoders. Six ensemble learning models are then developed and automatically optimized using the Optuna framework. To enhance the prediction accuracy and generalization ability of the model, various active learning strategies are devised, with findings indicating that the uncertainty sampling strategy significantly improves the performance of ensemble learning models. In particular, the active learning optimized random forest model exhibits superior performance due to its highest R2 value (>0.92) and the most reasonable prediction range. To clearly explain the outstanding performance of the model, the Shapley additive explanations and partial dependence plot analyses are conducted to effectively illustrate the significance of each feature in predicting outcomes and elucidating their interrelationships. The optimal model is ultimately integrated with a hybrid multi-objective algorithm to optimize the reported catalysts, and successfully identified Ni/Al2O3 and Ni/CeO2 catalysts with methane yields of 92.12 % and 92.72 %, surpassing previously reported data. Additionally, the model also predicted three novel catalysts with superior performance at low temperatures and varying H2/CO2 ratios. |
| ArticleNumber | 161154 |
| Author | Guo, Qiwen Wang, Zhao Zhou, Xin Bao, Runjie Pan, Yifei Yang, Qingchun |
| Author_xml | – sequence: 1 givenname: Qingchun orcidid: 0000-0002-5900-524X surname: Yang fullname: Yang, Qingchun email: ceqcyang@hfut.edu.cn organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China – sequence: 2 givenname: Runjie surname: Bao fullname: Bao, Runjie organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China – sequence: 3 givenname: Zhao surname: Wang fullname: Wang, Zhao organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China – sequence: 4 givenname: Qiwen surname: Guo fullname: Guo, Qiwen organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China – sequence: 5 givenname: Yifei surname: Pan fullname: Pan, Yifei organization: School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China – sequence: 6 givenname: Xin orcidid: 0000-0002-5921-4260 surname: Zhou fullname: Zhou, Xin email: xinzhou@ouc.edu.cn organization: School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China |
| BookMark | eNp9kL1OwzAUhT0UibbwAGx-gQQ7iZNYTKjiT6rUhc7WjXNdHFKnsq1KHXlzkhYWBqZ7h_Md6XwLMnODQ0LuOEs54-V9l2rs0oxlIuUl56KYkTnPa5HUsqiuySKEjjFWSi7n5Gvr-kF_WrejB4-t1dEOjoJr6XCIdg89bTHYnaODoatNRvcYP8DBOaUhQn8KMdCjBQojekTaI3g31iXoxqDGlloX0Y_lEZoeKbqA--n5Dd6QKwN9wNufuyTb56f31Wuy3ry8rR7Xic5kFRPRABqtq6qumyIvWxDa8EzzpuFFYcrKFEJWmSiZyLmARkiJWcuMLkCaBgDyJakuvdoPIXg0Stt4HhI92F5xpiZ7qlOjPTXZUxd7I8n_kAc_qvGnf5mHC4PjpKNFr4K2OPmwHnVU7WD_ob8BvoCPtA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_118571 crossref_primary_10_1016_j_ijhydene_2025_151405 crossref_primary_10_1021_acscatal_5c02227 crossref_primary_10_1016_j_watres_2025_124438 crossref_primary_10_1016_j_jclepro_2025_146662 |
| Cites_doi | 10.1016/j.aca.2022.340094 10.1016/j.engappai.2022.105151 10.1016/j.renene.2023.04.107 10.1016/j.seppur.2023.125714 10.1016/j.ijhydene.2023.12.255 10.1038/s41929-022-00744-z 10.1016/j.seppur.2023.126023 10.1016/j.jcis.2023.05.052 10.1002/er.8521 10.1002/adma.202211497 10.1016/j.jece.2023.109555 10.1016/j.ijhydene.2024.02.055 10.1016/j.jclepro.2024.141947 10.1016/j.jcou.2017.03.022 10.1016/j.molstruc.2025.141369 10.1016/j.jechem.2021.09.045 10.3390/molecules27123802 10.1016/j.psep.2022.10.005 10.1016/j.ijhydene.2024.04.173 10.1016/j.energy.2024.131221 10.1038/s42256-022-00552-x 10.1039/D3GC02644B 10.1016/j.ces.2021.117219 10.1016/j.jechem.2023.01.034 10.1002/aic.18437 10.1016/j.jechem.2021.03.040 10.1016/j.ces.2023.119553 10.1016/j.cclet.2023.108596 10.1016/j.seppur.2024.127894 10.1002/cben.201600022 10.1016/j.ces.2024.120266 10.1016/j.knosys.2019.105137 10.1016/j.jwpe.2023.104303 10.1126/science.abo3378 10.1016/j.chemosphere.2023.140422 10.1016/j.cattod.2019.03.026 10.1016/j.scitotenv.2024.175573 10.1007/s40747-021-00637-x 10.1016/j.apsusc.2019.03.331 10.1016/j.ijhydene.2018.07.013 10.1016/j.jechem.2022.12.037 10.1039/D3TA05939A 10.1016/j.aei.2022.101689 10.1016/j.chemosphere.2024.142632 10.1016/j.jcat.2015.10.025 10.1016/j.cej.2022.136651 10.1038/s42256-020-0217-y 10.1038/s41467-023-36322-5 10.1016/j.jclepro.2021.126032 10.1038/s41467-024-47403-4 10.1016/j.scitotenv.2022.159448 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2025.161154 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2025_161154 S1385894725019758 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSJ SSZ T5K ~G- 9DU AAYXX ABXDB ACLOT AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-5baefcc7788b436da5cf12c1bb144f67f459725605315ab599e2d0fc4a9fbaaa3 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441525100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:54:47 EST 2025 Tue Nov 18 21:49:35 EST 2025 Sat Jul 05 17:12:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble models CO2 methanation Active learning Interpretable Catalyst optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-5baefcc7788b436da5cf12c1bb144f67f459725605315ab599e2d0fc4a9fbaaa3 |
| ORCID | 0000-0002-5921-4260 0000-0002-5900-524X |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2025_161154 crossref_primary_10_1016_j_cej_2025_161154 elsevier_sciencedirect_doi_10_1016_j_cej_2025_161154 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Zhang, Li, Tian, Cheng, Chen, Wang (b0210) 2022; 53 Matthews, Wynes (b0005) 2022; 376 Numpilai, Chanlek, Poo-Arporn, Wannapaiboon, Cheng, Siri-Nguan, Sornchamni, Kongkachuichay, Chareonpanich, Rupprechter, Limtrakul, Witoon (b0240) 2019; 483 Alrafei, Polaert, Ledoux, Azzolina-Jury (b0245) 2020; 346 Wang, Zhou, Sundmacher (b0080) 2022; 444 Yao, Zhang, Li, Zhuo, Chen, Lin, Liu, Yao (b0155) 2024; 349 Esterhuizen, Goldsmith, Linic (b0060) 2022; 5 Ren, Lou, Xu, Zeng, Pei, Wang (b0025) 2023; 80 Bai, Tao, Gao, Tao, Liu (b0150) 2023; 211 Hu, Li, Liu (b0220) 2022; 27 Ganaie, Hu, Malik, Tanveer, Suganthan (b0125) 2022; 115 Valinejad Moghaddam, Rezaei, Meshkani, Daroughegi (b0045) 2018; 43 Xie, Wang, Ding, Zhang, Li, Guo, Song (b0250) 2017; 19 Cañada-Barcala, Larriba, Águeda Maté, Delgado Dobladez (b0030) 2024; 331 Yu, Hossain, Sikder, Qi, Huo, Chen, Dou, Shi, Ye (b0130) 2024; 951 Zhu, Shen, Chen, Zhang (b0175) 2024; 296 Cao, Geddes, Yang, Yang (b0120) 2020; 2 Hu, Wang, Zhang, Wang, Yang, Shi, Sun (b0065) 2024; 59 Ebrahimi, Bibak, Shakeri, Meshkani (b0265) 2025; 1328 De Piano, Andrade Gamboa, Condó, Gennari (b0050) 2024; 56 Xu, Su, Duan, Hou, Lin, Liu, Pan, Pei, Geng, Huang, Zhang (b0040) 2016; 333 Kontchouo, Gao, Fan, Zhang, Zhang, Hu, Xu, Hu (b0255) 2022; 46 Farooq, Ahmed, Akbar, Aslam, Alyousef (b0115) 2021; 292 Jia, Sun, Lian, Hou (b0145) 2022; 8 Wen, Li, Xiang, Reker (b0135) 2023; 2 Jiang, Hou, Man, Wang, Shi, Shang, Cheng (b0180) 2024; 334 Aryandoust, Patt, Pfenninger (b0195) 2022; 4 Aldrees, Awan, Javed, Mohamed (b0170) 2022; 168 Kim, Kim, Ha, Shin, Kwak, Park, Kim, Jung, Lee, Kim, Jung (b0185) 2023; 35 Ghaib, Nitz, Ben-Fares (b0260) 2016; 3 Chandana, Karka, Gujral, Kamesh, Roy (b0070) 2023; 11 Al-Qadri, Nasser, Adamu, Muraza, Saleh (b0020) 2023; 79 Yaqub, Lee (b0165) 2023; 345 Summa, Świrk Da Costa, Wang, Samojeden, Rønning, Hu, Motak, Da Costa (b0230) 2021; 25 Zhu, Chen, Tao (b0225) 2023; 857 Cheng, Mei, Long, Luo, Zhang, Xiong, Shu, Li, Gao (b0215) 2024; 450 Bakır, Orak, Yüksel (b0110) 2024; 67 Liu, Pan, Zhu, Zhou, Lu, Wang, Ding, Du, Zhou (b0105) 2023; 25 Xiao, Chang, Liu (b0205) 2020; 190 Pillai, Li, Wang, Omidvar, Mu, Achenie, Abild-Pedersen, Yang, Wu, Xin (b0190) 2023; 14 Wang, Wen, Su, Shen, Ren, Ma, Li (b0095) 2022; 248 Jayarathna, Onsree, Drummond, Naglic, Lauterbach (b0200) 2024; 12 Yang, Sun, Su, Kong, Ren, Shen (b0090) 2024; 297 Song, Shi, Li, He, Xiong, Deng, Xia (b0100) 2024; 362 Istiqomah, Jung, Khim (b0160) 2023; 56 Tang, Song, Li, Liu, Hu, Chen, Lu, Yao, Li, Lin (b0035) 2024; 15 Namdeo, Srivastava, Mohanty (b0140) 2023; 647 Yang, Fan, Rong, Bao, Zhang (b0075) 2024 Li, Liu, Wang, Sun, Dong (b0085) 2024; 35 Hussain, Jalil, Hassan, Hamid (b0010) 2021; 62 Yang, Liu, Chang, Yang, Shen (b0055) 2024; 285 Ciloglu, Hora, Gundogdu, Kahraman, Tokmakci, Aydin (b0235) 2022; 1221 Cordero-Lanzac, Ramirez, Navajas, Gevers, Brunialti, Gandía, Aguayo, Mani Sarathy, Gascon (b0015) 2022; 68 Farooq (10.1016/j.cej.2025.161154_b0115) 2021; 292 Yao (10.1016/j.cej.2025.161154_b0155) 2024; 349 Esterhuizen (10.1016/j.cej.2025.161154_b0060) 2022; 5 Ganaie (10.1016/j.cej.2025.161154_b0125) 2022; 115 Cheng (10.1016/j.cej.2025.161154_b0215) 2024; 450 Pillai (10.1016/j.cej.2025.161154_b0190) 2023; 14 De Piano (10.1016/j.cej.2025.161154_b0050) 2024; 56 Kim (10.1016/j.cej.2025.161154_b0185) 2023; 35 Cao (10.1016/j.cej.2025.161154_b0120) 2020; 2 Hu (10.1016/j.cej.2025.161154_b0065) 2024; 59 Jiang (10.1016/j.cej.2025.161154_b0180) 2024; 334 Valinejad Moghaddam (10.1016/j.cej.2025.161154_b0045) 2018; 43 Hussain (10.1016/j.cej.2025.161154_b0010) 2021; 62 Cordero-Lanzac (10.1016/j.cej.2025.161154_b0015) 2022; 68 Al-Qadri (10.1016/j.cej.2025.161154_b0020) 2023; 79 Matthews (10.1016/j.cej.2025.161154_b0005) 2022; 376 Bai (10.1016/j.cej.2025.161154_b0150) 2023; 211 Aldrees (10.1016/j.cej.2025.161154_b0170) 2022; 168 Xu (10.1016/j.cej.2025.161154_b0040) 2016; 333 Chandana (10.1016/j.cej.2025.161154_b0070) 2023; 11 Jayarathna (10.1016/j.cej.2025.161154_b0200) 2024; 12 Song (10.1016/j.cej.2025.161154_b0100) 2024; 362 Zhu (10.1016/j.cej.2025.161154_b0175) 2024; 296 Li (10.1016/j.cej.2025.161154_b0210) 2022; 53 Li (10.1016/j.cej.2025.161154_b0085) 2024; 35 Yang (10.1016/j.cej.2025.161154_b0090) 2024; 297 Aryandoust (10.1016/j.cej.2025.161154_b0195) 2022; 4 Hu (10.1016/j.cej.2025.161154_b0220) 2022; 27 Yang (10.1016/j.cej.2025.161154_b0055) 2024; 285 Wang (10.1016/j.cej.2025.161154_b0095) 2022; 248 Tang (10.1016/j.cej.2025.161154_b0035) 2024; 15 Ciloglu (10.1016/j.cej.2025.161154_b0235) 2022; 1221 Cañada-Barcala (10.1016/j.cej.2025.161154_b0030) 2024; 331 Namdeo (10.1016/j.cej.2025.161154_b0140) 2023; 647 Summa (10.1016/j.cej.2025.161154_b0230) 2021; 25 Jia (10.1016/j.cej.2025.161154_b0145) 2022; 8 Zhu (10.1016/j.cej.2025.161154_b0225) 2023; 857 Liu (10.1016/j.cej.2025.161154_b0105) 2023; 25 Bakır (10.1016/j.cej.2025.161154_b0110) 2024; 67 Yang (10.1016/j.cej.2025.161154_b0075) 2024 Xie (10.1016/j.cej.2025.161154_b0250) 2017; 19 Wang (10.1016/j.cej.2025.161154_b0080) 2022; 444 Xiao (10.1016/j.cej.2025.161154_b0205) 2020; 190 Alrafei (10.1016/j.cej.2025.161154_b0245) 2020; 346 Ren (10.1016/j.cej.2025.161154_b0025) 2023; 80 Yaqub (10.1016/j.cej.2025.161154_b0165) 2023; 345 Wen (10.1016/j.cej.2025.161154_b0135) 2023; 2 Ghaib (10.1016/j.cej.2025.161154_b0260) 2016; 3 Numpilai (10.1016/j.cej.2025.161154_b0240) 2019; 483 Istiqomah (10.1016/j.cej.2025.161154_b0160) 2023; 56 Ebrahimi (10.1016/j.cej.2025.161154_b0265) 2025; 1328 Yu (10.1016/j.cej.2025.161154_b0130) 2024; 951 Kontchouo (10.1016/j.cej.2025.161154_b0255) 2022; 46 |
| References_xml | – volume: 79 start-page: 418 year: 2023 end-page: 449 ident: b0020 article-title: CO publication-title: J. Energy Chem. – volume: 292 year: 2021 ident: b0115 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Cleaner Prod. – volume: 345 year: 2023 ident: b0165 article-title: Artificial intelligence models for predicting calcium and magnesium removal by polyfunctional ketone using ensemble machine learners publication-title: Chemosphere – volume: 46 start-page: 19493 year: 2022 end-page: 19507 ident: b0255 article-title: Methanation of CO publication-title: Int. J. Energy Res. – volume: 68 start-page: 255 year: 2022 end-page: 266 ident: b0015 article-title: A techno-economic and life cycle assessment for the production of green methanol from CO publication-title: J. Energy Chem. – volume: 296 year: 2024 ident: b0175 article-title: Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM publication-title: Energy – volume: 35 year: 2023 ident: b0185 article-title: Exploring optimal water splitting bifunctional alloy catalyst by pareto active learning publication-title: Adv. Mater. – volume: 12 start-page: 3046 year: 2024 end-page: 3060 ident: b0200 article-title: Experimental discovery of novel ammonia synthesis catalysts via active learning publication-title: J. Mater. Chem. A – volume: 25 year: 2021 ident: b0230 article-title: Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO publication-title: Appl. Mater. Today – volume: 331 year: 2024 ident: b0030 article-title: Synthetic natural gas production through biogas methanation using a sorption-enhanced reaction process publication-title: Sep. Purif. Technol. – volume: 59 start-page: 1023 year: 2024 end-page: 1041 ident: b0065 article-title: Parametric analysis of CO publication-title: Int. J. Hydrogen Energy – volume: 334 year: 2024 ident: b0180 article-title: Guiding experiment with Machine Learning: A case study of biochar adsorption of Ciprofloxacin publication-title: Sep. Purif. Technol. – volume: 444 year: 2022 ident: b0080 article-title: Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation publication-title: Chem. Eng. J. – year: 2024 ident: b0075 article-title: An auto-configurable machine learning framework to optimize and predict catalysts for CO publication-title: AIChE J. – volume: 362 year: 2024 ident: b0100 article-title: Prediction of g–C publication-title: Chemosphere – volume: 857 year: 2023 ident: b0225 article-title: Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS publication-title: Sci. Total Environ. – volume: 67 start-page: 101 year: 2024 end-page: 110 ident: b0110 article-title: Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 2663 year: 2022 end-page: 2693 ident: b0145 article-title: Feature dimensionality reduction: a review publication-title: Complex Intell. Syst. – volume: 4 start-page: 977 year: 2022 end-page: 991 ident: b0195 article-title: Enhanced spatio-temporal electric load forecasts using less data with active deep learning publication-title: Nat. Mach. Intell. – volume: 647 start-page: 174 year: 2023 end-page: 187 ident: b0140 article-title: Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons publication-title: J. Colloid Interface Sci. – volume: 43 start-page: 16522 year: 2018 end-page: 16533 ident: b0045 article-title: Carbon dioxide methanation over Ni-M/Al publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 3802 year: 2022 ident: b0220 article-title: Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence publication-title: Molecules – volume: 56 year: 2023 ident: b0160 article-title: Tree-based ensemble machine learning model for nitrate reduction by zero-valent iron publication-title: J. Water Process Eng. – volume: 56 start-page: 1007 year: 2024 end-page: 1019 ident: b0050 article-title: CO publication-title: Int. J. Hydrogen Energy – volume: 248 year: 2022 ident: b0095 article-title: Insights into ensemble learning-based data-driven model for safety-related property of chemical substances publication-title: Chem. Eng. Sci. – volume: 1221 year: 2022 ident: b0235 article-title: SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant publication-title: Anal. Chim. Acta – volume: 3 start-page: 247 year: 2016 end-page: 298 ident: b0260 article-title: Chemical Methanation of CO publication-title: ChemBioEng Rev. – volume: 5 start-page: 175 year: 2022 end-page: 184 ident: b0060 article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis publication-title: Nat. Catal. – volume: 14 start-page: 792 year: 2023 ident: b0190 article-title: Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks publication-title: Nat. Commun. – volume: 2 start-page: 500 year: 2020 end-page: 508 ident: b0120 article-title: Ensemble deep learning in bioinformatics publication-title: Nat. Mach. Intell. – volume: 115 year: 2022 ident: b0125 article-title: Ensemble deep learning: A review publication-title: Eng. Appl. Artif. Intel. – volume: 62 start-page: 377 year: 2021 end-page: 407 ident: b0010 article-title: Recent advances in catalytic systems for CO publication-title: J. Energy Chem. – volume: 15 start-page: 3115 year: 2024 ident: b0035 article-title: Thermally stable Ni foam-supported inverse CeAlO publication-title: Nat. Commun. – volume: 349 year: 2024 ident: b0155 article-title: Precise prediction of CO publication-title: Sep. Purif. Technol. – volume: 25 start-page: 8778 year: 2023 end-page: 8790 ident: b0105 article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO publication-title: Green Chem. – volume: 297 year: 2024 ident: b0090 article-title: Insight to the prediction of CO publication-title: Chem. Eng. Sci. – volume: 19 start-page: 202 year: 2017 end-page: 208 ident: b0250 article-title: CO publication-title: J. CO – volume: 2 start-page: 1134 year: 2023 end-page: 1142 ident: b0135 article-title: Improving molecular machine learning through adaptive subsampling with active learning, Digital publication-title: Discovery – volume: 35 year: 2024 ident: b0085 article-title: Prediction and interpretation of photocatalytic NO removal on g-C publication-title: Chin. Chem. Lett. – volume: 376 start-page: 1404 year: 2022 end-page: 1409 ident: b0005 article-title: Current global efforts are insufficient to limit warming to 1.5°C publication-title: Science – volume: 80 start-page: 182 year: 2023 end-page: 206 ident: b0025 article-title: Methanation of CO/CO publication-title: J. Energy Chem. – volume: 211 start-page: 412 year: 2023 end-page: 419 ident: b0150 article-title: Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing publication-title: Renew. Energy – volume: 53 year: 2022 ident: b0210 article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks publication-title: Adv. Eng. Inform. – volume: 11 year: 2023 ident: b0070 article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO publication-title: J. Environ. Chem. Eng. – volume: 333 start-page: 227 year: 2016 end-page: 237 ident: b0040 article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO publication-title: J. Catal. – volume: 190 year: 2020 ident: b0205 article-title: An efficient active learning method for multi-task learning publication-title: Knowl.-Based Syst. – volume: 346 start-page: 23 year: 2020 end-page: 33 ident: b0245 article-title: Remarkably stable and efficient Ni and Ni-Co catalysts for CO publication-title: Catal. Today – volume: 450 year: 2024 ident: b0215 article-title: Data driven multi-objective design for low-carbon self-compacting concrete considering durability publication-title: J. Cleaner Prod. – volume: 168 start-page: 344 year: 2022 end-page: 361 ident: b0170 article-title: Prediction of water quality indexes with ensemble learners: Bagging and boosting publication-title: Process Saf. Environ. Prot. – volume: 285 year: 2024 ident: b0055 article-title: An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system publication-title: Chem. Eng. Sci. – volume: 951 year: 2024 ident: b0130 article-title: Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system publication-title: Sci. Total Environ. – volume: 483 start-page: 581 year: 2019 end-page: 592 ident: b0240 article-title: Pore size effects on physicochemical properties of Fe-Co/K-Al publication-title: Appl. Surf. Sci. – volume: 1328 year: 2025 ident: b0265 article-title: The influence of Ce, La, and Y promoters on the catalytic performance of Ni/Cr publication-title: J. Mol. Struct. – volume: 1221 year: 2022 ident: 10.1016/j.cej.2025.161154_b0235 article-title: SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340094 – volume: 115 year: 2022 ident: 10.1016/j.cej.2025.161154_b0125 article-title: Ensemble deep learning: A review publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.105151 – volume: 211 start-page: 412 year: 2023 ident: 10.1016/j.cej.2025.161154_b0150 article-title: Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing publication-title: Renew. Energy doi: 10.1016/j.renene.2023.04.107 – volume: 331 year: 2024 ident: 10.1016/j.cej.2025.161154_b0030 article-title: Synthetic natural gas production through biogas methanation using a sorption-enhanced reaction process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125714 – volume: 56 start-page: 1007 year: 2024 ident: 10.1016/j.cej.2025.161154_b0050 article-title: CO2 methanation over nickel-CeO2 catalyst supported on Al2O3: Different impregnation strategies and Ni-Ce ratios publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.12.255 – volume: 5 start-page: 175 issue: 3 year: 2022 ident: 10.1016/j.cej.2025.161154_b0060 article-title: Interpretable machine learning for knowledge generation in heterogeneous catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-022-00744-z – volume: 334 year: 2024 ident: 10.1016/j.cej.2025.161154_b0180 article-title: Guiding experiment with Machine Learning: A case study of biochar adsorption of Ciprofloxacin publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.126023 – volume: 647 start-page: 174 year: 2023 ident: 10.1016/j.cej.2025.161154_b0140 article-title: Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.052 – volume: 46 start-page: 19493 year: 2022 ident: 10.1016/j.cej.2025.161154_b0255 article-title: Methanation of CO2 over Ni/clay: Effects of calcination temperature on catalyst properties and reaction intermediates formed publication-title: Int. J. Energy Res. doi: 10.1002/er.8521 – volume: 35 issue: 17 year: 2023 ident: 10.1016/j.cej.2025.161154_b0185 article-title: Exploring optimal water splitting bifunctional alloy catalyst by pareto active learning publication-title: Adv. Mater. doi: 10.1002/adma.202211497 – volume: 11 year: 2023 ident: 10.1016/j.cej.2025.161154_b0070 article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.109555 – volume: 59 start-page: 1023 year: 2024 ident: 10.1016/j.cej.2025.161154_b0065 article-title: Parametric analysis of CO2 hydrogenation via Fischer-Tropsch synthesis: A review based on machine learning for quantitative assessment publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.02.055 – volume: 450 year: 2024 ident: 10.1016/j.cej.2025.161154_b0215 article-title: Data driven multi-objective design for low-carbon self-compacting concrete considering durability publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2024.141947 – volume: 19 start-page: 202 year: 2017 ident: 10.1016/j.cej.2025.161154_b0250 article-title: CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.03.022 – volume: 1328 year: 2025 ident: 10.1016/j.cej.2025.161154_b0265 article-title: The influence of Ce, La, and Y promoters on the catalytic performance of Ni/Cr2O3 catalysts for CO2 methanation publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2025.141369 – volume: 68 start-page: 255 year: 2022 ident: 10.1016/j.cej.2025.161154_b0015 article-title: A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.09.045 – volume: 27 start-page: 3802 year: 2022 ident: 10.1016/j.cej.2025.161154_b0220 article-title: Enhancing the Performance of Evolutionary Algorithm by Differential Evolution for Optimizing Distillation Sequence publication-title: Molecules doi: 10.3390/molecules27123802 – volume: 168 start-page: 344 year: 2022 ident: 10.1016/j.cej.2025.161154_b0170 article-title: Prediction of water quality indexes with ensemble learners: Bagging and boosting publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.10.005 – volume: 2 start-page: 1134 year: 2023 ident: 10.1016/j.cej.2025.161154_b0135 article-title: Improving molecular machine learning through adaptive subsampling with active learning, Digital publication-title: Discovery – volume: 67 start-page: 101 year: 2024 ident: 10.1016/j.cej.2025.161154_b0110 article-title: Optimizing hydrogen evolution prediction: A unified approach using random forests, lightGBM, and Bagging Regressor ensemble model publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.04.173 – volume: 296 year: 2024 ident: 10.1016/j.cej.2025.161154_b0175 article-title: Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM publication-title: Energy doi: 10.1016/j.energy.2024.131221 – volume: 4 start-page: 977 issue: 11 year: 2022 ident: 10.1016/j.cej.2025.161154_b0195 article-title: Enhanced spatio-temporal electric load forecasts using less data with active deep learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00552-x – volume: 25 start-page: 8778 issue: 21 year: 2023 ident: 10.1016/j.cej.2025.161154_b0105 article-title: Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2 publication-title: Green Chem. doi: 10.1039/D3GC02644B – volume: 248 year: 2022 ident: 10.1016/j.cej.2025.161154_b0095 article-title: Insights into ensemble learning-based data-driven model for safety-related property of chemical substances publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117219 – volume: 80 start-page: 182 year: 2023 ident: 10.1016/j.cej.2025.161154_b0025 article-title: Methanation of CO/CO2 for power to methane process: Fundamentals, status, and perspectives publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.01.034 – year: 2024 ident: 10.1016/j.cej.2025.161154_b0075 article-title: An auto-configurable machine learning framework to optimize and predict catalysts for CO2 to light olefins process publication-title: AIChE J. doi: 10.1002/aic.18437 – volume: 62 start-page: 377 year: 2021 ident: 10.1016/j.cej.2025.161154_b0010 article-title: Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.03.040 – volume: 285 year: 2024 ident: 10.1016/j.cej.2025.161154_b0055 article-title: An efficient and invertible machine learning-driven multi-objective optimization architecture for light olefins separation system publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119553 – volume: 35 issue: 2 year: 2024 ident: 10.1016/j.cej.2025.161154_b0085 article-title: Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2023.108596 – volume: 25 year: 2021 ident: 10.1016/j.cej.2025.161154_b0230 article-title: Effect of cobalt promotion on hydrotalcite-derived nickel catalyst for CO2 methanation publication-title: Appl. Mater. Today – volume: 349 year: 2024 ident: 10.1016/j.cej.2025.161154_b0155 article-title: Precise prediction of CO2 separation performance of metal–organic framework mixed matrix membranes based on feature selection and machine learning publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.127894 – volume: 3 start-page: 247 issue: 6 year: 2016 ident: 10.1016/j.cej.2025.161154_b0260 article-title: Chemical Methanation of CO2: A Review publication-title: ChemBioEng Rev. doi: 10.1002/cben.201600022 – volume: 297 year: 2024 ident: 10.1016/j.cej.2025.161154_b0090 article-title: Insight to the prediction of CO2 solubility in ionic liquids based on the interpretable machine learning model publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2024.120266 – volume: 190 year: 2020 ident: 10.1016/j.cej.2025.161154_b0205 article-title: An efficient active learning method for multi-task learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105137 – volume: 56 year: 2023 ident: 10.1016/j.cej.2025.161154_b0160 article-title: Tree-based ensemble machine learning model for nitrate reduction by zero-valent iron publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.104303 – volume: 376 start-page: 1404 year: 2022 ident: 10.1016/j.cej.2025.161154_b0005 article-title: Current global efforts are insufficient to limit warming to 1.5°C publication-title: Science doi: 10.1126/science.abo3378 – volume: 345 year: 2023 ident: 10.1016/j.cej.2025.161154_b0165 article-title: Artificial intelligence models for predicting calcium and magnesium removal by polyfunctional ketone using ensemble machine learners publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140422 – volume: 346 start-page: 23 year: 2020 ident: 10.1016/j.cej.2025.161154_b0245 article-title: Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation publication-title: Catal. Today doi: 10.1016/j.cattod.2019.03.026 – volume: 951 year: 2024 ident: 10.1016/j.cej.2025.161154_b0130 article-title: Exploring the potential of machine learning to understand the occurrence and health risks of haloacetic acids in a drinking water distribution system publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.175573 – volume: 8 start-page: 2663 year: 2022 ident: 10.1016/j.cej.2025.161154_b0145 article-title: Feature dimensionality reduction: a review publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00637-x – volume: 483 start-page: 581 year: 2019 ident: 10.1016/j.cej.2025.161154_b0240 article-title: Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.331 – volume: 43 start-page: 16522 year: 2018 ident: 10.1016/j.cej.2025.161154_b0045 article-title: Carbon dioxide methanation over Ni-M/Al2O3 (M: Fe, Co, Zr, La and Cu) catalysts synthesized using the one-pot sol-gel synthesis method publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.07.013 – volume: 79 start-page: 418 year: 2023 ident: 10.1016/j.cej.2025.161154_b0020 article-title: CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.12.037 – volume: 12 start-page: 3046 year: 2024 ident: 10.1016/j.cej.2025.161154_b0200 article-title: Experimental discovery of novel ammonia synthesis catalysts via active learning publication-title: J. Mater. Chem. A doi: 10.1039/D3TA05939A – volume: 53 year: 2022 ident: 10.1016/j.cej.2025.161154_b0210 article-title: On-line transfer learning for multi-fidelity data fusion with ensemble of deep neural networks publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101689 – volume: 362 year: 2024 ident: 10.1016/j.cej.2025.161154_b0100 article-title: Prediction of g–C3N4–based photocatalysts in tetracycline degradation based on machine learning publication-title: Chemosphere doi: 10.1016/j.chemosphere.2024.142632 – volume: 333 start-page: 227 year: 2016 ident: 10.1016/j.cej.2025.161154_b0040 article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation publication-title: J. Catal. doi: 10.1016/j.jcat.2015.10.025 – volume: 444 year: 2022 ident: 10.1016/j.cej.2025.161154_b0080 article-title: Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136651 – volume: 2 start-page: 500 issue: 9 year: 2020 ident: 10.1016/j.cej.2025.161154_b0120 article-title: Ensemble deep learning in bioinformatics publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0217-y – volume: 14 start-page: 792 issue: 1 year: 2023 ident: 10.1016/j.cej.2025.161154_b0190 article-title: Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-023-36322-5 – volume: 292 year: 2021 ident: 10.1016/j.cej.2025.161154_b0115 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 15 start-page: 3115 issue: 1 year: 2024 ident: 10.1016/j.cej.2025.161154_b0035 article-title: Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane publication-title: Nat. Commun. doi: 10.1038/s41467-024-47403-4 – volume: 857 year: 2023 ident: 10.1016/j.cej.2025.161154_b0225 article-title: Multiple machine learning algorithms assisted QSPR models for aqueous solubility: Comprehensive assessment with CRITIC-TOPSIS publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159448 |
| SSID | ssj0006919 |
| Score | 2.4992123 |
| Snippet | Proposed a framework for predicting and optimizing CO2 methanation catalysts using active learning-enhanced interpretable ensemble learning.
[Display omitted]... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 161154 |
| SubjectTerms | Active learning Catalyst optimization CO2 methanation Ensemble models Interpretable |
| Title | Unlocking prediction and optimal design of CO2 methanation catalysts via active learning-enhanced interpretable ensemble learning |
| URI | https://dx.doi.org/10.1016/j.cej.2025.161154 |
| Volume | 509 |
| WOSCitedRecordID | wos001441525100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006919 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsoS-UDJ6qMMpk4sY8FFUGFytZKA5fI9tjMDG1SdTLTwq2_rH-N53hJ2lJED1yiKLLfRHnfvM1vQegF5VyBJpARmKMDM8KMRCzLRSTGOom5kkpmTaHw-3xnh45G7GOvd-ZrYZb7eVnSkxN2-F9ZDc-A2aZ09hrsDkThAdwD0-EKbIfrPzF-rwT99MMWmZtTmNonHFcgHQ7MmUyTtNHkYXxImhHS3IYEN5pYzs95Pd9YmlqtRhT6uRLfI1VObLrANCQqmrIr8IPVgbnxC7v2buhHoNq-h6FbhZkmwk1WkI2qfjme1r9s8bELVLCsE6j46iLbn4CEnCwCqF_xJtr7eVHOpu1Bk1v8bcKrkGK0qOz-Y1f-5oIdCenkyFj5PKQkosw26fQCnMSsI4LBhB3YvtSXtIMNVMz6Us36hnq_XXu-E_cFDRnyFn1K3KwAEoUhUVgSN9BqkhMGmmF1893WaDsYAxlrZsuE9_YH602K4YX3-LNp1DF3du-iO85PwZsWX_dQT5X30e1O98oH6DQgDbdIw8A97JCGLdJwpTEgDXeQhgPSMCANW6ThS0jD55CGPdLCwodo783W7uu3kZvoEcmE5XVEBFdayjynVKTDbMyJ1INEDoQAv15nuU7BvzVGOGgGwgVhTCXjWMuUMy0458NHaKWsSvUY4ThNiWagkCjhqVKSCvBEwHfXepjGWiRrKPYfs5Cu3b2ZurJfXMnENfQybDm0vV7-tjj1HCqcsWqN0ALQdvW2J9f5jafoVvsneIZW6qOFeo5uymU9nR-tO6j9BrGKuSM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unlocking+prediction+and+optimal+design+of+CO2+methanation+catalysts+via+active+learning-enhanced+interpretable+ensemble+learning&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Yang%2C+Qingchun&rft.au=Bao%2C+Runjie&rft.au=Wang%2C+Zhao&rft.au=Guo%2C+Qiwen&rft.date=2025-04-01&rft.issn=1385-8947&rft.volume=509&rft.spage=161154&rft_id=info:doi/10.1016%2Fj.cej.2025.161154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_161154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |