Deep learning based source reconstruction method using asymmetric encoder–decoder structure and physics-induced loss
This paper proposes a novel deep learning (DL) based source reconstruction method (SRM). The proposed DL-based SRM employs the deep convolutional asymmetric encoder–decoder structure (DCAEDS), which only demands one-time single-frequency far-field measurement on EM scattered field as its input and f...
Uložené v:
| Vydané v: | Journal of computational and applied mathematics Ročník 438; s. 115503 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.03.2024
|
| Predmet: | |
| ISSN: | 0377-0427 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a novel deep learning (DL) based source reconstruction method (SRM). The proposed DL-based SRM employs the deep convolutional asymmetric encoder–decoder structure (DCAEDS), which only demands one-time single-frequency far-field measurement on EM scattered field as its input and further predicts the equivalent source on target scatterers. During the offline training, an EM scattering simulator is designed to compute EM scattered field originated from the predicted equivalent source on target scatterers. The DCAEDS is combined with the EM scattering simulator to optimize the loss function, including two parts: (1) Data-induced loss, which directly evaluates the difference between the prediction of the proposed DCAEDS and the true-labelled equivalent source of target scatterers; (2) Physics-induced loss, which evaluates the difference between received EM scattered field and the computed EM scattered field originated from the prediction of DCAEDS. Moreover, the proposed DL-based SRM can overcome the limitation of conventional methods, involving high computation cost and strong ill-conditions. Consequently, the proposed DL-based SRM can realize the reconstruction of the equivalent current source with higher accuracy and lower computation complexity. Numerical examples illustrate the feasibility of the proposed DL-based SRM, which opens the new path for DL-based EM computation approaches. |
|---|---|
| AbstractList | This paper proposes a novel deep learning (DL) based source reconstruction method (SRM). The proposed DL-based SRM employs the deep convolutional asymmetric encoder–decoder structure (DCAEDS), which only demands one-time single-frequency far-field measurement on EM scattered field as its input and further predicts the equivalent source on target scatterers. During the offline training, an EM scattering simulator is designed to compute EM scattered field originated from the predicted equivalent source on target scatterers. The DCAEDS is combined with the EM scattering simulator to optimize the loss function, including two parts: (1) Data-induced loss, which directly evaluates the difference between the prediction of the proposed DCAEDS and the true-labelled equivalent source of target scatterers; (2) Physics-induced loss, which evaluates the difference between received EM scattered field and the computed EM scattered field originated from the prediction of DCAEDS. Moreover, the proposed DL-based SRM can overcome the limitation of conventional methods, involving high computation cost and strong ill-conditions. Consequently, the proposed DL-based SRM can realize the reconstruction of the equivalent current source with higher accuracy and lower computation complexity. Numerical examples illustrate the feasibility of the proposed DL-based SRM, which opens the new path for DL-based EM computation approaches. |
| ArticleNumber | 115503 |
| Author | Yao, He Ming Ng, Michael |
| Author_xml | – sequence: 1 givenname: Michael surname: Ng fullname: Ng, Michael – sequence: 2 givenname: He Ming surname: Yao fullname: Yao, He Ming email: yaohm@hku.hk |
| BookMark | eNp9kL9OwzAQhz0UiRZ4ADa_QIodJ3EiJlT-SpVYYLYc-0JdJXZlJ0jZ2Bl5Q54ER-nE0OlOp_vu9PtWaGGdBYSuKVlTQoub_VrJbp2SlK0pzXPCFmhJGOcJyVJ-jlYh7AkhRUWzJRrvAQ64BemtsR-4lgE0Dm7wCrAH5Wzo_aB64yzuoN85jYcwLcowdnHgjcJgldPgf79-NBy7bzxjgwcsrcaH3RiMComxelDxQetCuERnjWwDXB3rBXp_fHjbPCfb16eXzd02UWnF-ySXsijLmqUaZMMkNDWvGkVLzeo6z8tS5XkGtSSEFVJrDloCTxUvGt5UTGcVu0B8vqt8_OqhEcr0ckrUe2laQYmYrIm9iNbEZE3M1iJJ_5EHbzrpx5PM7cxAjPRpwIugTDQE2kSdvdDOnKD_ADv8j7E |
| CitedBy_id | crossref_primary_10_1016_j_enganabound_2024_105813 |
| Cites_doi | 10.1029/93RS03445 10.1007/978-3-319-11179-7_36 10.1109/TAP.2013.2274032 10.1109/TAP.2022.3196496 10.1109/MAP.2021.3127514 10.2528/PIERM18082907 10.1109/TGRS.2021.3101119 10.1109/APS/URSI47566.2021.9704363 10.1109/TGRS.2007.894932 10.1109/TEMC.2018.2797132 10.1109/TIP.2017.2713099 10.1109/TAP.2020.2985172 10.1109/MAP.2017.2731203 10.1088/0266-5611/29/2/025015 10.1109/LAWP.2020.2995455 10.1038/s41598-021-00326-2 10.1109/15.974631 10.1109/TEMC.2016.2642955 10.1109/LAWP.2019.2916369 10.23919/ACES48530.2019.9060439 10.1109/TPAMI.2016.2644615 10.1111/j.1365-2478.2009.00824.x 10.1109/LAWP.2021.3056460 10.1109/TEMC.2012.2235837 10.1109/TGRS.2020.2986000 10.23919/EMCTokyo.2019.8893747 10.1109/TAP.2016.2560901 10.1109/NEMO49486.2020.9343382 10.1109/TAP.2022.3177556 10.1109/TMTT.2021.3098769 10.1109/LAWP.2019.2925578 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cam.2023.115503 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_cam_2023_115503 S0377042723004478 |
| GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AAOAW AAQFI AAXKI AAXUO ABAOU ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS 9DU AAFWJ AALRI AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HZ~ NHB R2- SSZ WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-5aa688b32deaf3aefb79fc18d3bb5588c554eba0036add7edae72c76f7f93d493 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097639300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-0427 |
| IngestDate | Sat Nov 29 07:19:26 EST 2025 Tue Nov 18 20:47:30 EST 2025 Tue Dec 03 03:44:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Source reconstruction method Real time Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-5aa688b32deaf3aefb79fc18d3bb5588c554eba0036add7edae72c76f7f93d493 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cam_2023_115503 crossref_primary_10_1016_j_cam_2023_115503 elsevier_sciencedirect_doi_10_1016_j_cam_2023_115503 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of computational and applied mathematics |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Guo, Lin, Shan, Li, Yang, Xu, Abubakar (b19) 2021; 20 Shan, Tang, Dang, Li, Yang, Xu, Wu (b20) 2020; 68 X. Song, M. Li, A. Abubakar, A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion, in: 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO, China, 2020, pp. 1–4. Chew (b1) 2001 H.M. Yao, L. Jiang, W.E.I. Sha, Source Reconstruction Method based on Machine Learning Algorithms, in: 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility, EMC Sapporo/APEMC, Sapporo, Japan, 2019, pp. 774–777. Huang, Fan (b30) 2018; 60 Li, Li, Jiang, Hu (b12) 2013; 61 Lin, Guo, Li, Abubakar, Zhao, Yang, Xu (b27) 2021; 69 Li, Jiang (b10) 2013; 55 Wuttke (b33) 2021; 11 Li (b5) 2017; 59 J. Cong, B. Xiao, Minimizing computation in convolutional neural networks, in: Proc. Int. Conf. Artif. Neural Netw., 2014, pp. 281–290. Hu (b16) 2020; 58 Massa, Marcantonio, Chen, Li, Salucci (b14) 2019; 18 L. Guo, M. Li, S. Xu, F. Yang, L. Liu, Electromagnetic Modeling Using an FDTD-Equivalent Recurrent Convolution Neural Network: Accurate Computing on a Deep Learning Framework, IEEE Antennas Propag. Mag. M. Salucci, M. Arrebola, T. Shan, M. Li, Artificial Intelligence: New Frontiers in Real–Time Inverse Scattering and Electromagnetic Imaging, IEEE Trans. Antennas and Propagation Zhang, Jiang, Yao (b24) 2016; 64 D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: Proc. Int. Conf. Learn. Represent., 2015, pp. 1–41. Yao, Jiang, Sha (b17) 2020; 19 Jin (b34) 2017; 26 Yao, Sha, Jiang (b4) 2018; 76 Shan, Song, Guo, Li, Yang, Xu (b31) 2021 Li, Semerci, Abubakar (b3) 2013; 29 T. Shan, R. Guo, M. Li, F. Yang, S. Xu, L. Liang, Application of Multitask Learning for 2-D Modeling of Magnetotelluric Surveys: TE Case, IEEE Trans. Geosci. Remote Sens. Zhang (b25) 2017; 59 Badrinarayanan, Kendall, Cipolla (b32) 2017; 39 Regue (b6) 2001; 43 Pastorino (b2) 2010 Catedra (b36) 1995 Kim (b37) 2017 Z. Lin, R. Guo, M. Li, F. Yang, S. Xu, A. Abubakar, Study on the Degrees of Freedom of Scattered Fields in Nonlinear Inverse Scattering Problems, in: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APS/URSI, 2021, pp. 1845–1846. . Yu, Carin (b7) 2007; 45 Li, Abubakar, Habashy, Zhang (b11) 2010; 58 H.M. Yao, L. Jiang, H.H. Zhang, W.E.I. Sha, Machine Learning Methodology Review for Computational Electromagnetics, in: 2019 ACES, Nanjing, China, 2019, pp. 1–4. Yao (b26) 2019; 18 Yao, Jiang, Ng (b22) 2022 Yao, Guo, Li, Jiang, Ng (b28) 2022; 70 Kleinman, van den Berg (b9) 1994; 29 Hu (10.1016/j.cam.2023.115503_b16) 2020; 58 Zhang (10.1016/j.cam.2023.115503_b24) 2016; 64 Lin (10.1016/j.cam.2023.115503_b27) 2021; 69 Guo (10.1016/j.cam.2023.115503_b19) 2021; 20 Regue (10.1016/j.cam.2023.115503_b6) 2001; 43 Huang (10.1016/j.cam.2023.115503_b30) 2018; 60 Yao (10.1016/j.cam.2023.115503_b26) 2019; 18 10.1016/j.cam.2023.115503_b29 Li (10.1016/j.cam.2023.115503_b10) 2013; 55 10.1016/j.cam.2023.115503_b23 Yao (10.1016/j.cam.2023.115503_b28) 2022; 70 Jin (10.1016/j.cam.2023.115503_b34) 2017; 26 10.1016/j.cam.2023.115503_b21 Yu (10.1016/j.cam.2023.115503_b7) 2007; 45 Zhang (10.1016/j.cam.2023.115503_b25) 2017; 59 Li (10.1016/j.cam.2023.115503_b3) 2013; 29 Yao (10.1016/j.cam.2023.115503_b4) 2018; 76 10.1016/j.cam.2023.115503_b15 10.1016/j.cam.2023.115503_b38 10.1016/j.cam.2023.115503_b13 10.1016/j.cam.2023.115503_b35 Kleinman (10.1016/j.cam.2023.115503_b9) 1994; 29 Li (10.1016/j.cam.2023.115503_b12) 2013; 61 Massa (10.1016/j.cam.2023.115503_b14) 2019; 18 Kim (10.1016/j.cam.2023.115503_b37) 2017 10.1016/j.cam.2023.115503_b8 10.1016/j.cam.2023.115503_b18 Yao (10.1016/j.cam.2023.115503_b22) 2022 Catedra (10.1016/j.cam.2023.115503_b36) 1995 Shan (10.1016/j.cam.2023.115503_b31) 2021 Wuttke (10.1016/j.cam.2023.115503_b33) 2021; 11 Pastorino (10.1016/j.cam.2023.115503_b2) 2010 Li (10.1016/j.cam.2023.115503_b5) 2017; 59 Li (10.1016/j.cam.2023.115503_b11) 2010; 58 Yao (10.1016/j.cam.2023.115503_b17) 2020; 19 Badrinarayanan (10.1016/j.cam.2023.115503_b32) 2017; 39 Shan (10.1016/j.cam.2023.115503_b20) 2020; 68 Chew (10.1016/j.cam.2023.115503_b1) 2001 |
| References_xml | – reference: J. Cong, B. Xiao, Minimizing computation in convolutional neural networks, in: Proc. Int. Conf. Artif. Neural Netw., 2014, pp. 281–290. – volume: 20 start-page: 538 year: 2021 end-page: 542 ident: b19 article-title: Solving combined field integral equation with deep neural network for 2-D conducting object publication-title: IEEE Antennas Wirel. Propag. Lett. – volume: 18 year: 2019 ident: b26 article-title: Two-step enhanced deep learning approach for electromagnetic inverse scattering problems publication-title: IEEE Antennas Wirel. Propag. Lett. – year: 2010 ident: b2 article-title: Microwave Imaging – year: 2021 ident: b31 article-title: Physics-informed supervised residual learning for 2D electromagnetic forward modeling – volume: 76 start-page: 91 year: 2018 end-page: 99 ident: b4 article-title: Applying convolutional neural networks for the source reconstruction publication-title: Prog. Electromagn. Res. M – volume: 45 start-page: 1258 year: 2007 end-page: 1270 ident: b7 article-title: Three-dimensional Bayesian inversion with application to subsurface sensing publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Z. Lin, R. Guo, M. Li, F. Yang, S. Xu, A. Abubakar, Study on the Degrees of Freedom of Scattered Fields in Nonlinear Inverse Scattering Problems, in: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APS/URSI, 2021, pp. 1845–1846. – volume: 43 start-page: 520 year: 2001 end-page: 530 ident: b6 article-title: A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization publication-title: IEEE Trans. Electromagn. Compat. – year: 2017 ident: b37 article-title: MATLAB Deep Learning – volume: 68 start-page: 6725 year: 2020 end-page: 6733 ident: b20 article-title: Study on a fast solver for Poisson’s equation based on deep learning technique publication-title: IEEE Trans. Antennas Propag. – volume: 55 start-page: 933 year: 2013 end-page: 940 ident: b10 article-title: Source reconstruction method-based radiated emission characterization for PCBs publication-title: IEEE Trans. Electromagn. Compat. – volume: 11 start-page: 1 year: 2021 end-page: 15 ident: b33 article-title: Wave based damage detection in solid structures using spatially asymmetric encoder–decoder network publication-title: Sci. Rep. – year: 1995 ident: b36 article-title: The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics – reference: X. Song, M. Li, A. Abubakar, A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion, in: 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, NEMO, China, 2020, pp. 1–4. – volume: 69 start-page: 4366 year: 2021 ident: b27 article-title: Low-frequency data prediction with iterative learning for highly nonlinear inverse scattering problems publication-title: IEEE Trans. Microw. Theory Tech. – volume: 70 start-page: 6195 year: 2022 end-page: 6206 ident: b28 article-title: Enhanced supervised descent learning technique for electromagnetic inverse scattering problems by the deep convolutional neural networks publication-title: IEEE Trans. Antennas Propag. – reference: H.M. Yao, L. Jiang, H.H. Zhang, W.E.I. Sha, Machine Learning Methodology Review for Computational Electromagnetics, in: 2019 ACES, Nanjing, China, 2019, pp. 1–4. – volume: 58 start-page: 8013 year: 2020 end-page: 8025 ident: b16 article-title: A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 1640 year: 2018 end-page: 1647 ident: b30 article-title: Machine learning based source reconstruction for RF desense publication-title: IEEE Trans. Electromagn. Compat. – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b32 article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 59 start-page: 1152 year: 2017 end-page: 1160 ident: b25 article-title: Transient heterogeneous electromagnetic simulation with DGTD and behavioral macromodel publication-title: IEEE Trans. Electromagn. Compat. – volume: 58 start-page: 455 year: 2010 end-page: 467 ident: b11 article-title: Inversion of controlled-source electromagnetic data using a model-based approach publication-title: Geophys. Prospect. – reference: M. Salucci, M. Arrebola, T. Shan, M. Li, Artificial Intelligence: New Frontiers in Real–Time Inverse Scattering and Electromagnetic Imaging, IEEE Trans. Antennas and Propagation – volume: 19 start-page: 1211 year: 2020 end-page: 1215 ident: b17 article-title: Enhanced deep learning approach based on the deep convolutional encoder-decoder architecture for electromagnetic inverse scattering problems publication-title: IEEE Antennas Wirel. Propag. Lett. – volume: 61 start-page: 5338 year: 2013 end-page: 5343 ident: b12 article-title: A wide-band equivalent source reconstruction method exploiting the stoer-bulirsch algorithm with the adaptive frequency sampling publication-title: IEEE Trans. Antennas and Propagation – reference: . – reference: D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: Proc. Int. Conf. Learn. Represent., 2015, pp. 1–41. – reference: L. Guo, M. Li, S. Xu, F. Yang, L. Liu, Electromagnetic Modeling Using an FDTD-Equivalent Recurrent Convolution Neural Network: Accurate Computing on a Deep Learning Framework, IEEE Antennas Propag. Mag. – year: 2001 ident: b1 article-title: Fast and Efficient Algorithms in Computational Electromagnetics – volume: 29 start-page: 1157 year: 1994 end-page: 1169 ident: b9 article-title: Two-dimensional location and shape reconstruction publication-title: Radio Sci. – reference: H.M. Yao, L. Jiang, W.E.I. Sha, Source Reconstruction Method based on Machine Learning Algorithms, in: 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility, EMC Sapporo/APEMC, Sapporo, Japan, 2019, pp. 774–777. – volume: 18 start-page: 2225 year: 2019 end-page: 2229 ident: b14 article-title: DNNs as applied to electromagnetics, antennas, and propagation—A review publication-title: IEEE Antennas Wirel. Propag. Lett. – year: 2022 ident: b22 article-title: Implementing the fast full wave electromagnetic forward solver using the deep convolutional encoder-decoder architecture publication-title: IEEE Trans. Antennas and Propagation – volume: 26 start-page: 4509 year: 2017 ident: b34 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans. Image Process. – reference: T. Shan, R. Guo, M. Li, F. Yang, S. Xu, L. Liang, Application of Multitask Learning for 2-D Modeling of Magnetotelluric Surveys: TE Case, IEEE Trans. Geosci. Remote Sens. – volume: 29 year: 2013 ident: b3 article-title: A contrast source inversion method in the wavelet domain publication-title: Inverse Probl. – volume: 59 start-page: 9 year: 2017 end-page: 115 ident: b5 article-title: Electromagnetic inverse problems publication-title: IEEE Antennas Propag. Mag. – volume: 64 start-page: 3233 year: 2016 end-page: 3238 ident: b24 article-title: Embedding the behavior macromodel into TDIE for transient field-circuit simulations publication-title: IEEE Trans. Antennas Propag. – volume: 29 start-page: 1157 year: 1994 ident: 10.1016/j.cam.2023.115503_b9 article-title: Two-dimensional location and shape reconstruction publication-title: Radio Sci. doi: 10.1029/93RS03445 – ident: 10.1016/j.cam.2023.115503_b35 doi: 10.1007/978-3-319-11179-7_36 – volume: 61 start-page: 5338 issue: 10 year: 2013 ident: 10.1016/j.cam.2023.115503_b12 article-title: A wide-band equivalent source reconstruction method exploiting the stoer-bulirsch algorithm with the adaptive frequency sampling publication-title: IEEE Trans. Antennas and Propagation doi: 10.1109/TAP.2013.2274032 – volume: 70 start-page: 6195 issue: 8 year: 2022 ident: 10.1016/j.cam.2023.115503_b28 article-title: Enhanced supervised descent learning technique for electromagnetic inverse scattering problems by the deep convolutional neural networks publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2022.3196496 – ident: 10.1016/j.cam.2023.115503_b21 doi: 10.1109/MAP.2021.3127514 – volume: 76 start-page: 91 year: 2018 ident: 10.1016/j.cam.2023.115503_b4 article-title: Applying convolutional neural networks for the source reconstruction publication-title: Prog. Electromagn. Res. M doi: 10.2528/PIERM18082907 – ident: 10.1016/j.cam.2023.115503_b23 doi: 10.1109/TGRS.2021.3101119 – ident: 10.1016/j.cam.2023.115503_b15 doi: 10.1109/APS/URSI47566.2021.9704363 – volume: 45 start-page: 1258 issue: 5 year: 2007 ident: 10.1016/j.cam.2023.115503_b7 article-title: Three-dimensional Bayesian inversion with application to subsurface sensing publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.894932 – volume: 60 start-page: 1640 issue: 6 year: 2018 ident: 10.1016/j.cam.2023.115503_b30 article-title: Machine learning based source reconstruction for RF desense publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2018.2797132 – volume: 26 start-page: 4509 issue: 9 year: 2017 ident: 10.1016/j.cam.2023.115503_b34 article-title: Deep convolutional neural network for inverse problems in imaging publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713099 – volume: 68 start-page: 6725 issue: 9 year: 2020 ident: 10.1016/j.cam.2023.115503_b20 article-title: Study on a fast solver for Poisson’s equation based on deep learning technique publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2020.2985172 – volume: 59 start-page: 9 issue: 5 year: 2017 ident: 10.1016/j.cam.2023.115503_b5 article-title: Electromagnetic inverse problems publication-title: IEEE Antennas Propag. Mag. doi: 10.1109/MAP.2017.2731203 – volume: 29 issue: 2 year: 2013 ident: 10.1016/j.cam.2023.115503_b3 article-title: A contrast source inversion method in the wavelet domain publication-title: Inverse Probl. doi: 10.1088/0266-5611/29/2/025015 – year: 2021 ident: 10.1016/j.cam.2023.115503_b31 – volume: 19 start-page: 1211 issue: 7 year: 2020 ident: 10.1016/j.cam.2023.115503_b17 article-title: Enhanced deep learning approach based on the deep convolutional encoder-decoder architecture for electromagnetic inverse scattering problems publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2020.2995455 – year: 2010 ident: 10.1016/j.cam.2023.115503_b2 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cam.2023.115503_b33 article-title: Wave based damage detection in solid structures using spatially asymmetric encoder–decoder network publication-title: Sci. Rep. doi: 10.1038/s41598-021-00326-2 – volume: 43 start-page: 520 issue: 4 year: 2001 ident: 10.1016/j.cam.2023.115503_b6 article-title: A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/15.974631 – volume: 59 start-page: 1152 issue: 4 year: 2017 ident: 10.1016/j.cam.2023.115503_b25 article-title: Transient heterogeneous electromagnetic simulation with DGTD and behavioral macromodel publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2016.2642955 – volume: 18 start-page: 2225 issue: 11 year: 2019 ident: 10.1016/j.cam.2023.115503_b14 article-title: DNNs as applied to electromagnetics, antennas, and propagation—A review publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2019.2916369 – ident: 10.1016/j.cam.2023.115503_b13 doi: 10.23919/ACES48530.2019.9060439 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.cam.2023.115503_b32 article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – year: 1995 ident: 10.1016/j.cam.2023.115503_b36 – year: 2017 ident: 10.1016/j.cam.2023.115503_b37 – volume: 58 start-page: 455 issue: 3 year: 2010 ident: 10.1016/j.cam.2023.115503_b11 article-title: Inversion of controlled-source electromagnetic data using a model-based approach publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2009.00824.x – volume: 20 start-page: 538 issue: 4 year: 2021 ident: 10.1016/j.cam.2023.115503_b19 article-title: Solving combined field integral equation with deep neural network for 2-D conducting object publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2021.3056460 – year: 2022 ident: 10.1016/j.cam.2023.115503_b22 article-title: Implementing the fast full wave electromagnetic forward solver using the deep convolutional encoder-decoder architecture publication-title: IEEE Trans. Antennas and Propagation – volume: 55 start-page: 933 issue: 5 year: 2013 ident: 10.1016/j.cam.2023.115503_b10 article-title: Source reconstruction method-based radiated emission characterization for PCBs publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2012.2235837 – volume: 58 start-page: 8013 issue: 11 year: 2020 ident: 10.1016/j.cam.2023.115503_b16 article-title: A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2986000 – ident: 10.1016/j.cam.2023.115503_b29 doi: 10.23919/EMCTokyo.2019.8893747 – volume: 64 start-page: 3233 issue: 7 year: 2016 ident: 10.1016/j.cam.2023.115503_b24 article-title: Embedding the behavior macromodel into TDIE for transient field-circuit simulations publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2016.2560901 – ident: 10.1016/j.cam.2023.115503_b8 doi: 10.1109/NEMO49486.2020.9343382 – ident: 10.1016/j.cam.2023.115503_b18 doi: 10.1109/TAP.2022.3177556 – volume: 69 start-page: 4366 issue: 10 year: 2021 ident: 10.1016/j.cam.2023.115503_b27 article-title: Low-frequency data prediction with iterative learning for highly nonlinear inverse scattering problems publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2021.3098769 – volume: 18 issue: 11 year: 2019 ident: 10.1016/j.cam.2023.115503_b26 article-title: Two-step enhanced deep learning approach for electromagnetic inverse scattering problems publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2019.2925578 – year: 2001 ident: 10.1016/j.cam.2023.115503_b1 – ident: 10.1016/j.cam.2023.115503_b38 |
| SSID | ssj0006914 |
| Score | 2.4173632 |
| Snippet | This paper proposes a novel deep learning (DL) based source reconstruction method (SRM). The proposed DL-based SRM employs the deep convolutional asymmetric... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115503 |
| SubjectTerms | Convolutional neural network Deep learning Real time Source reconstruction method |
| Title | Deep learning based source reconstruction method using asymmetric encoder–decoder structure and physics-induced loss |
| URI | https://dx.doi.org/10.1016/j.cam.2023.115503 |
| Volume | 438 |
| WOSCitedRecordID | wos001097639300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-0427 databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006914 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg2wEOaDDQPtjkw05EkbrYiZ3jBkXbJCqkDam3yHGciWlNK7pN2213jvyH_Ut4zx9JaQEBEpfITRuneu9nv-fn598jZN9UNTciq2NVMhZDs4xlCgPPMJOlYP9r1dO22IQYDORwmH_0O_hTW05ANI28u8sn_1XVcA-UjUdn_0LdbadwA9qgdLiC2uH6R4p_Z8wkFIO4iNBKYWQcQ_SRXf22jLG-enR0Y8MFano_GmF5LR0htyXyivg8CFaZ-c_yKHJdhK0HFxyZxrC6v8FsgquxT-pY9nm1rSER4o-WJ9Z7waOWPrZ18gcXi3n9ODupsbOW8IU3uj5mkfAuacsF0pYO07gDXELEWPpjfnLmjvtlaaJ3MYdLWMQjnUDCYOqHtRbrrFqba3iG_WK3CZKLcSEfk9VEpDlMgauHJ_3haWu4s9xRwYf_ETbBbTrgwot-7sbMuSbn6-SZly89dFh4Th6Z5gV5-qGT6Aa5R1TQgApqUUEdKuiPqKAOFdSignaooB4Vs4dvHg-zh6-0RQIFZdIFJFBEwkvy6X3__O1x7KtuxDrJxXWcKpVJWbKkMqpmytSlyGt9ICtWlmkqpQYH1JQKiYzANgpTKSMSDcNd1ABInrNXZKUZN2aT0IzxTMN458jQlPJaKWgeZCWrZC_nurdFekGIhfaU9FgZ5aoIuYeXBci9QLkXTu5b5E37yMTxsfzuxzxopvAOpXMUC4DRrx_b_rfHdsiTDuuvyQoowOySNX17_Xn6Zc-D7TtvgaBW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+source+reconstruction+method+using+asymmetric+encoder%E2%80%93decoder%E2%80%8B+structure+and+physics-induced+loss&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Ng%2C+Michael&rft.au=Yao%2C+He+Ming&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.volume=438&rft_id=info:doi/10.1016%2Fj.cam.2023.115503&rft.externalDocID=S0377042723004478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |