Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation
•An extended generalized Darboux transformation method is proposed.•Three types of hybrid rogue wave and breather solutions are obtained for a classical nonlinear Schrodinger equation.•The control and interaction of the hybrid wave solution are graphically demonstrated.•An exact link is established...
Saved in:
| Published in: | Applied mathematics and computation Vol. 386; p. 125469 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.12.2020
|
| Subjects: | |
| ISSN: | 0096-3003 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An extended generalized Darboux transformation method is proposed.•Three types of hybrid rogue wave and breather solutions are obtained for a classical nonlinear Schrodinger equation.•The control and interaction of the hybrid wave solution are graphically demonstrated.•An exact link is established between the hybrid solutions and the rogue wave solutions.
An extended generalized Darboux transformation method is proposed to construct the hybrid rogue wave and breather solutions for a classical nonlinear Schrödinger equation. Three types of hybrid wave solutions are obtained: (i) the hybrid first-order rogue wave and breather; (ii) the hybrid second-order rogue wave and first-order breather; (iii) the hybrid first-order rogue wave and second-order breather. These solutions are novel and can be used to investigate the dynamical characteristic of the hybrid rogue waves and breathers. The control and interaction based on the parameters of the hybrid wave solution are graphically demonstrated. An exact link is established between the hybrid solutions and the rogue wave solutions via setting the parameter at special value. |
|---|---|
| AbstractList | •An extended generalized Darboux transformation method is proposed.•Three types of hybrid rogue wave and breather solutions are obtained for a classical nonlinear Schrodinger equation.•The control and interaction of the hybrid wave solution are graphically demonstrated.•An exact link is established between the hybrid solutions and the rogue wave solutions.
An extended generalized Darboux transformation method is proposed to construct the hybrid rogue wave and breather solutions for a classical nonlinear Schrödinger equation. Three types of hybrid wave solutions are obtained: (i) the hybrid first-order rogue wave and breather; (ii) the hybrid second-order rogue wave and first-order breather; (iii) the hybrid first-order rogue wave and second-order breather. These solutions are novel and can be used to investigate the dynamical characteristic of the hybrid rogue waves and breathers. The control and interaction based on the parameters of the hybrid wave solution are graphically demonstrated. An exact link is established between the hybrid solutions and the rogue wave solutions via setting the parameter at special value. |
| ArticleNumber | 125469 |
| Author | Ma, Yu-Lan Li, Bang-Qing |
| Author_xml | – sequence: 1 givenname: Bang-Qing surname: Li fullname: Li, Bang-Qing email: libq@th.btbu.edu.cn organization: School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, PR China – sequence: 2 givenname: Yu-Lan surname: Ma fullname: Ma, Yu-Lan email: mayl@th.btbu.edu.cn organization: School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, PR China |
| BookMark | eNp9kM1OwzAMgHMACTZ4AG55gQ2n7VIqTgjGjzSJA3CO3MTdMnUJJN3YkHgtXoAXI9s4cUCyZFvyZ9lfjx0474ixMwFDAUKez4e40MMMstRno0JWB-wYoJKDHCA_Yr0Y5wBQSlEcs8_xuiNnyPApOQrY2o9U32Co_XLNu4AuNj4ssLPe8c7z2aYO1vDgp0vi77gijs7wOhB2Mwo8-na5HY08URx5uqy1jjDwJz0L31_Gumkao7flbuMJO2ywjXT6m_vs5Xb8fH0_mDzePVxfTQY6q8puMKoujKwxB1MjoM6awpSmHgkpRgYaKopKANT1BVS5TIEyI6woKyEXWlJe5n0m9nt18DEGatRrsAsMGyVAbZ2puUrO1NaZ2jtLTPmH0bbbXZ2s2PZf8nJPUnppZSmoqC05TcYG0p0y3v5D_wCcsI5E |
| CitedBy_id | crossref_primary_10_1088_1674_1056_acf703 crossref_primary_10_1140_epjp_s13360_023_04288_4 crossref_primary_10_1088_1402_4896_ad0618 crossref_primary_10_1080_00207160_2021_1922678 crossref_primary_10_3390_fractalfract7020127 crossref_primary_10_1088_1402_4896_ad9420 crossref_primary_10_1007_s10773_024_05577_z crossref_primary_10_3390_fractalfract7060461 crossref_primary_10_1088_1402_4896_adb7a5 crossref_primary_10_1007_s11071_021_06602_0 crossref_primary_10_1155_2022_2297866 crossref_primary_10_1142_S0217732325500804 crossref_primary_10_1016_j_physleta_2023_128672 crossref_primary_10_1007_s11082_023_05623_w crossref_primary_10_1007_s11082_021_02879_y crossref_primary_10_1080_17455030_2021_1900625 crossref_primary_10_1155_2021_6643512 crossref_primary_10_1088_1572_9494_ac6155 crossref_primary_10_1007_s11071_024_09346_9 crossref_primary_10_1007_s11071_022_07912_7 crossref_primary_10_1088_1402_4896_acd5b1 crossref_primary_10_1016_j_wavemoti_2024_103334 crossref_primary_10_1002_mma_9818 crossref_primary_10_1088_1402_4896_ad9ae3 crossref_primary_10_1016_j_matcom_2021_03_012 crossref_primary_10_1088_1674_1056_ac935b crossref_primary_10_1088_1402_4896_abd3c3 crossref_primary_10_1088_1402_4896_ac07b6 crossref_primary_10_1088_1402_4896_ad741a crossref_primary_10_1016_j_cjph_2021_07_025 crossref_primary_10_1088_1572_9494_ad5719 crossref_primary_10_1016_j_amc_2021_126417 crossref_primary_10_1080_17455030_2021_1986649 crossref_primary_10_1088_1402_4896_ac046a crossref_primary_10_1155_2021_5563309 crossref_primary_10_1007_s11071_021_06357_8 crossref_primary_10_1088_1572_9494_ad2f24 crossref_primary_10_1007_s11071_020_06110_7 crossref_primary_10_1007_s11071_021_06556_3 crossref_primary_10_1088_1572_9494_ac9a3e crossref_primary_10_1088_1361_6455_abb3ae crossref_primary_10_1155_2022_9360263 crossref_primary_10_1016_j_cjph_2020_09_004 crossref_primary_10_1088_1572_9494_ad23d1 crossref_primary_10_1142_S0217984925500459 crossref_primary_10_1016_j_cjph_2021_03_001 crossref_primary_10_1142_S0217979224502321 crossref_primary_10_1140_epjp_s13360_021_01160_1 crossref_primary_10_1002_mma_7736 crossref_primary_10_1016_j_cjph_2021_01_015 |
| Cites_doi | 10.1016/j.camwa.2018.04.015 10.1098/rspa.2011.0640 10.1364/OL.35.000826 10.1016/j.aop.2015.04.010 10.1002/mma.5320 10.1016/j.ijleo.2018.08.039 10.1016/j.ijleo.2018.03.054 10.1016/j.ijleo.2018.11.008 10.4236/jmp.2013.42035 10.1364/OE.16.016467 10.1016/j.jmmm.2018.10.123 10.1016/j.camwa.2017.04.034 10.1002/mma.4818 10.1016/j.spmi.2017.11.016 10.1103/PhysRevE.85.026607 10.1016/j.optcom.2012.04.041 10.1016/j.oceaneng.2014.12.017 10.1016/j.camwa.2018.09.054 10.1038/nphys1740 10.1016/j.physrep.2013.03.001 10.1016/j.aml.2016.10.009 10.1016/j.ijleo.2017.08.034 10.1103/PhysRevE.89.012907 10.1016/j.oceaneng.2013.01.006 10.1016/j.physb.2015.12.020 10.1103/PhysRevLett.84.745 10.1103/PhysRevE.96.042209 10.1016/j.cnsns.2015.08.023 10.1364/OL.41.005198 10.1103/PhysRevE.84.056611 10.1103/PhysRevE.87.052914 10.1016/j.jmmm.2018.10.133 10.1016/j.physleta.2013.11.031 10.1016/j.physleta.2008.12.036 10.1103/PhysRevE.85.026601 10.1016/j.camwa.2017.04.036 10.1016/j.ijleo.2016.10.010 10.1007/BF01017105 10.1016/j.ijleo.2017.12.114 10.1088/1751-8113/44/43/435204 10.1103/PhysRevLett.106.204502 10.1007/s11071-015-2227-6 10.1016/j.camwa.2018.04.013 10.1103/PhysRevE.91.032928 10.1016/j.oceaneng.2016.02.027 10.1088/1751-8113/43/12/122002 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. |
| Copyright_xml | – notice: 2020 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2020.125469 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2020_125469 S0096300320304288 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-598d6ba30dba0ac2f4d7db51615d0fe449100bb80936936a62ea9e27031c6e373 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555703300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 07:25:49 EST 2025 Tue Nov 18 19:38:08 EST 2025 Sun Apr 06 06:53:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Extended generalized Darboux transformation Nonlinear Schrödinger system Breather Rogue wave Hybrid wave solution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-598d6ba30dba0ac2f4d7db51615d0fe449100bb80936936a62ea9e27031c6e373 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2020_125469 crossref_citationtrail_10_1016_j_amc_2020_125469 elsevier_sciencedirect_doi_10_1016_j_amc_2020_125469 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 2020-12-00 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Jukna, Majus, Valiulis, Dubietis (bib0022) 2012; 285 Gaillard (bib0050) 2013; 4 Guo, Ling, Liu (bib0033) 2012; 85 Ankiewicz, Akhmediev, Clarkson (bib0048) 2010; 43 Chabchoub, Hoffmann, Onorato, Akhmediev (bib0013) 2012; 2 Ma, Li (bib0019) 2019; 42 He, Zhang, Wang, Porsezian, Fokas (bib0029) 2013; 87 Chabchoub, Hoffmann, Akhmediev (bib0024) 2011; 106 Yu, Yan (bib0016) 2014; 233 Onorato, Residori, Bortolozzo, Montina, Arecchi (bib0034) 2013; 528 Li, Ma, Yang (bib0007) 2018; 113 Zhang, Sun, Xiang (bib0015) 2015; 263 Ma, Li, Fu (bib0008) 2018; 41 Gao (bib0028) 2015; 96 Li, Ma (bib0045) 2018; 174 Arteaga-Sierra, Antikainen, Agrawal (bib0023) 2016; 41 Ankiewicz, Wang, Wabnitz, Akhmediev (bib0037) 2014; 89 Rudman, Cleary (bib0026) 2013; 61 Wang, Tian, Yan, Zhang (bib0031) 2017; 74 Lu, Ma, Yu, Lin, Khalique (bib0003) 2015; 82 Xu, Murdoch (bib0021) 2010; 35 Ma (bib0002) 2013; 220 Binder, Abraimov, Ustinov, Flach, Zolotaryuk (bib0011) 2000; 84 Triki, Biswas, Moshokoa, Belic (bib0043) 2017; 128 Akhmediev, Eleonskii, Kulagin (bib0046) 1987; 72 Li, Ma (bib0017) 2018; 158 Kedziora, Ankiewica, Akhmediev (bib0047) 2011; 84 Chettouh, Triki, El-Akrmi, Zhou, Moshokoa, Ullah, Biswas, Belic (bib0006) 2017; 145 Li, Ma (bib0009) 2019; 179 Li, Ma (bib0036) 2019; 77 Akhmediev, Ankiewicz, Taki (bib0025) 2009; 373 Chowdury, Krolikowski, Akhmediev (bib0041) 2017; 96 Triki, Choudhuri, Porsezian, Dinda (bib0042) 2018; 164 Gaillard (bib0049) 2011; 44 Rudman, Cleary (bib0027) 2016; 115 Ling, Zhao, Guo (bib0035) 2016; 32 Li, Ma, Sathishkumar (bib0010) 2019; 474 Li, Ma (bib0044) 2019; 474 Li, Ma (bib0018) 2018; 76 Li, Ma, Mo, Fu (bib0004) 2017; 74 Hammani, Finot, Dudley, Millot (bib0020) 2008; 16 Chai, Tian, Zhen, Sun (bib0039) 2015; 359 Chowdury, Kedziora, Ankiewicz, Akhmediev (bib0038) 2015; 91 Yan, Tian, Dong, Zhou, Zhang (bib0005) 2018; 76 Kibler, Fatome, Finot, Millot, Dias, Genty, Akhmediev, Dudley (bib0012) 2010; 6 Yomba, Zakeri (bib0040) 2016; 483 Tao, He (bib0014) 2012; 85 Ankiewicz, Akhmediev (bib0001) 2014; 378 Feng, Tian, Wang, Zhang (bib0030) 2017; 65 Ohta, Yang (bib0032) 2012; 468 Triki (10.1016/j.amc.2020.125469_bib0042) 2018; 164 Hammani (10.1016/j.amc.2020.125469_bib0020) 2008; 16 Rudman (10.1016/j.amc.2020.125469_bib0027) 2016; 115 Kedziora (10.1016/j.amc.2020.125469_bib0047) 2011; 84 Chettouh (10.1016/j.amc.2020.125469_bib0006) 2017; 145 Wang (10.1016/j.amc.2020.125469_bib0031) 2017; 74 Rudman (10.1016/j.amc.2020.125469_bib0026) 2013; 61 Ankiewicz (10.1016/j.amc.2020.125469_bib0037) 2014; 89 Li (10.1016/j.amc.2020.125469_bib0010) 2019; 474 Chabchoub (10.1016/j.amc.2020.125469_bib0013) 2012; 2 Ohta (10.1016/j.amc.2020.125469_bib0032) 2012; 468 Kibler (10.1016/j.amc.2020.125469_bib0012) 2010; 6 Feng (10.1016/j.amc.2020.125469_bib0030) 2017; 65 Li (10.1016/j.amc.2020.125469_bib0004) 2017; 74 Arteaga-Sierra (10.1016/j.amc.2020.125469_bib0023) 2016; 41 Gaillard (10.1016/j.amc.2020.125469_bib0049) 2011; 44 Akhmediev (10.1016/j.amc.2020.125469_bib0025) 2009; 373 He (10.1016/j.amc.2020.125469_bib0029) 2013; 87 Onorato (10.1016/j.amc.2020.125469_bib0034) 2013; 528 Chai (10.1016/j.amc.2020.125469_bib0039) 2015; 359 Yan (10.1016/j.amc.2020.125469_bib0005) 2018; 76 Yu (10.1016/j.amc.2020.125469_bib0016) 2014; 233 Tao (10.1016/j.amc.2020.125469_bib0014) 2012; 85 Li (10.1016/j.amc.2020.125469_bib0017) 2018; 158 Guo (10.1016/j.amc.2020.125469_bib0033) 2012; 85 Lu (10.1016/j.amc.2020.125469_bib0003) 2015; 82 Li (10.1016/j.amc.2020.125469_bib0007) 2018; 113 Chowdury (10.1016/j.amc.2020.125469_bib0041) 2017; 96 Li (10.1016/j.amc.2020.125469_bib0036) 2019; 77 Chowdury (10.1016/j.amc.2020.125469_bib0038) 2015; 91 Jukna (10.1016/j.amc.2020.125469_bib0022) 2012; 285 Ankiewicz (10.1016/j.amc.2020.125469_bib0048) 2010; 43 Li (10.1016/j.amc.2020.125469_bib0045) 2018; 174 Triki (10.1016/j.amc.2020.125469_bib0043) 2017; 128 Li (10.1016/j.amc.2020.125469_bib0044) 2019; 474 Zhang (10.1016/j.amc.2020.125469_bib0015) 2015; 263 Binder (10.1016/j.amc.2020.125469_bib0011) 2000; 84 Ma (10.1016/j.amc.2020.125469_bib0008) 2018; 41 Gao (10.1016/j.amc.2020.125469_bib0028) 2015; 96 Ankiewicz (10.1016/j.amc.2020.125469_bib0001) 2014; 378 Ma (10.1016/j.amc.2020.125469_bib0019) 2019; 42 Akhmediev (10.1016/j.amc.2020.125469_bib0046) 1987; 72 Xu (10.1016/j.amc.2020.125469_bib0021) 2010; 35 Li (10.1016/j.amc.2020.125469_bib0018) 2018; 76 Chabchoub (10.1016/j.amc.2020.125469_bib0024) 2011; 106 Yomba (10.1016/j.amc.2020.125469_bib0040) 2016; 483 Li (10.1016/j.amc.2020.125469_bib0009) 2019; 179 Ma (10.1016/j.amc.2020.125469_bib0002) 2013; 220 Ling (10.1016/j.amc.2020.125469_bib0035) 2016; 32 Gaillard (10.1016/j.amc.2020.125469_bib0050) 2013; 4 |
| References_xml | – volume: 85 start-page: 026601 year: 2012 ident: bib0014 publication-title: Phys. Rev. E – volume: 32 start-page: 285 year: 2016 end-page: 304 ident: bib0035 publication-title: Commun. Nonlinear Sci. – volume: 87 start-page: 052914 year: 2013 ident: bib0029 publication-title: Phys. Rev. E – volume: 41 start-page: 5198 year: 2016 end-page: 5201 ident: bib0023 publication-title: Opt. Lett. – volume: 164 start-page: 661 year: 2018 end-page: 670 ident: bib0042 publication-title: Optik – volume: 96 start-page: 245 year: 2015 end-page: 247 ident: bib0028 publication-title: Ocean Eng. – volume: 65 start-page: 90 year: 2017 end-page: 97 ident: bib0030 publication-title: Appl. Math. Lett. – volume: 233 start-page: 351 year: 2014 end-page: 358 ident: bib0016 publication-title: Appl. Math. Comput. – volume: 82 start-page: 1211 year: 2015 end-page: 1220 ident: bib0003 publication-title: Nonlinear Dyn. – volume: 2 start-page: 011015 year: 2012 ident: bib0013 publication-title: Phys. Rev. X – volume: 373 start-page: 675 year: 2009 end-page: 678 ident: bib0025 publication-title: Phys. Lett. A – volume: 72 start-page: 809 year: 1987 end-page: 818 ident: bib0046 publication-title: Theor. Math. Phys. – volume: 84 start-page: 056611 year: 2011 ident: bib0047 publication-title: Phys. Rev. E – volume: 96 start-page: 042209 year: 2017 ident: bib0041 publication-title: Phys. Rev. E – volume: 42 start-page: 39 year: 2019 end-page: 48 ident: bib0019 publication-title: Math. Methods Appl. Sci. – volume: 89 start-page: 012907 year: 2014 ident: bib0037 publication-title: Phys. Rev. E – volume: 474 start-page: 661 year: 2019 end-page: 665 ident: bib0010 publication-title: J. Magn. Magn. Mater. – volume: 528 start-page: 47 year: 2013 end-page: 89 ident: bib0034 publication-title: Phys. Rep. – volume: 16 start-page: 16467 year: 2008 end-page: 16474 ident: bib0020 publication-title: Opt. Express – volume: 84 start-page: 745 year: 2000 end-page: 748 ident: bib0011 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 168 year: 2016 end-page: 181 ident: bib0027 publication-title: Ocean Eng. – volume: 85 start-page: 026607 year: 2012 ident: bib0033 publication-title: Phys. Rev. E – volume: 77 start-page: 514 year: 2019 end-page: 524 ident: bib0036 publication-title: Comput. Math. Appl. – volume: 263 start-page: 204 year: 2015 end-page: 213 ident: bib0015 publication-title: Appl. Math. Comput. – volume: 76 start-page: 179 year: 2018 end-page: 186 ident: bib0005 publication-title: Comput. Math. Appl. – volume: 468 start-page: 1716 year: 2012 end-page: 1740 ident: bib0032 publication-title: Proc. R. Soc. A – volume: 174 start-page: 178 year: 2018 end-page: 184 ident: bib0045 publication-title: Optik – volume: 285 start-page: 3654 year: 2012 end-page: 3658 ident: bib0022 publication-title: Opt. Commun. – volume: 378 start-page: 358 year: 2014 end-page: 361 ident: bib0001 publication-title: Phys. Lett. A – volume: 43 start-page: 122002 year: 2010 ident: bib0048 publication-title: J. Phys. A – volume: 4 start-page: 246 year: 2013 end-page: 266 ident: bib0050 publication-title: J. Mod. Phys. – volume: 220 start-page: 117 year: 2013 end-page: 122 ident: bib0002 publication-title: Appl. Math. Comput. – volume: 145 start-page: 644 year: 2017 end-page: 649 ident: bib0006 publication-title: Optik – volume: 61 start-page: 123 year: 2013 end-page: 138 ident: bib0026 publication-title: Ocean Eng. – volume: 158 start-page: 177 year: 2018 end-page: 184 ident: bib0017 publication-title: Optik – volume: 35 start-page: 826 year: 2010 end-page: 828 ident: bib0021 publication-title: Opt. Lett. – volume: 113 start-page: 366 year: 2018 end-page: 372 ident: bib0007 publication-title: Superlattices Microstruct. – volume: 106 start-page: 204502 year: 2011 ident: bib0024 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 790 year: 2010 end-page: 795 ident: bib0012 publication-title: Nat. Phys. – volume: 74 start-page: 556 year: 2017 end-page: 563 ident: bib0031 publication-title: Comput. Math. Appl. – volume: 483 start-page: 26 year: 2016 end-page: 36 ident: bib0040 publication-title: Phys. B – volume: 41 start-page: 3316 year: 2018 end-page: 3322 ident: bib0008 publication-title: Math. Methods Appl. Sci. – volume: 128 start-page: 63 year: 2017 end-page: 70 ident: bib0043 publication-title: Optik – volume: 44 start-page: 435204 year: 2011 ident: bib0049 publication-title: J. Phys. A – volume: 179 start-page: 854 year: 2019 end-page: 860 ident: bib0009 publication-title: Optik – volume: 74 start-page: 504 year: 2017 end-page: 512 ident: bib0004 publication-title: Comput. Math. Appl. – volume: 76 start-page: 204 year: 2018 end-page: 214 ident: bib0018 publication-title: Comput. Math. Appl. – volume: 91 start-page: 032928 year: 2015 ident: bib0038 publication-title: Phys. Rev. E – volume: 474 start-page: 537 year: 2019 end-page: 543 ident: bib0044 publication-title: J. Magn. Magn. Mater. – volume: 359 start-page: 371 year: 2015 end-page: 384 ident: bib0039 publication-title: Ann. Phys. – volume: 76 start-page: 204 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0018 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.04.015 – volume: 233 start-page: 351 year: 2014 ident: 10.1016/j.amc.2020.125469_bib0016 publication-title: Appl. Math. Comput. – volume: 468 start-page: 1716 year: 2012 ident: 10.1016/j.amc.2020.125469_bib0032 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2011.0640 – volume: 35 start-page: 826 year: 2010 ident: 10.1016/j.amc.2020.125469_bib0021 publication-title: Opt. Lett. doi: 10.1364/OL.35.000826 – volume: 359 start-page: 371 year: 2015 ident: 10.1016/j.amc.2020.125469_bib0039 publication-title: Ann. Phys. doi: 10.1016/j.aop.2015.04.010 – volume: 42 start-page: 39 year: 2019 ident: 10.1016/j.amc.2020.125469_bib0019 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5320 – volume: 263 start-page: 204 year: 2015 ident: 10.1016/j.amc.2020.125469_bib0015 publication-title: Appl. Math. Comput. – volume: 174 start-page: 178 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0045 publication-title: Optik doi: 10.1016/j.ijleo.2018.08.039 – volume: 164 start-page: 661 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0042 publication-title: Optik doi: 10.1016/j.ijleo.2018.03.054 – volume: 179 start-page: 854 year: 2019 ident: 10.1016/j.amc.2020.125469_bib0009 publication-title: Optik doi: 10.1016/j.ijleo.2018.11.008 – volume: 4 start-page: 246 year: 2013 ident: 10.1016/j.amc.2020.125469_bib0050 publication-title: J. Mod. Phys. doi: 10.4236/jmp.2013.42035 – volume: 16 start-page: 16467 year: 2008 ident: 10.1016/j.amc.2020.125469_bib0020 publication-title: Opt. Express doi: 10.1364/OE.16.016467 – volume: 474 start-page: 661 year: 2019 ident: 10.1016/j.amc.2020.125469_bib0010 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.10.123 – volume: 74 start-page: 556 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0031 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.04.034 – volume: 41 start-page: 3316 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0008 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.4818 – volume: 113 start-page: 366 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0007 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.11.016 – volume: 85 start-page: 026607 year: 2012 ident: 10.1016/j.amc.2020.125469_bib0033 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026607 – volume: 285 start-page: 3654 year: 2012 ident: 10.1016/j.amc.2020.125469_bib0022 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.04.041 – volume: 96 start-page: 245 year: 2015 ident: 10.1016/j.amc.2020.125469_bib0028 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.12.017 – volume: 77 start-page: 514 year: 2019 ident: 10.1016/j.amc.2020.125469_bib0036 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.09.054 – volume: 6 start-page: 790 year: 2010 ident: 10.1016/j.amc.2020.125469_bib0012 publication-title: Nat. Phys. doi: 10.1038/nphys1740 – volume: 528 start-page: 47 year: 2013 ident: 10.1016/j.amc.2020.125469_bib0034 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.03.001 – volume: 65 start-page: 90 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0030 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2016.10.009 – volume: 145 start-page: 644 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0006 publication-title: Optik doi: 10.1016/j.ijleo.2017.08.034 – volume: 89 start-page: 012907 year: 2014 ident: 10.1016/j.amc.2020.125469_bib0037 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.012907 – volume: 61 start-page: 123 year: 2013 ident: 10.1016/j.amc.2020.125469_bib0026 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.01.006 – volume: 483 start-page: 26 year: 2016 ident: 10.1016/j.amc.2020.125469_bib0040 publication-title: Phys. B doi: 10.1016/j.physb.2015.12.020 – volume: 84 start-page: 745 year: 2000 ident: 10.1016/j.amc.2020.125469_bib0011 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.745 – volume: 96 start-page: 042209 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0041 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.042209 – volume: 2 start-page: 011015 year: 2012 ident: 10.1016/j.amc.2020.125469_bib0013 publication-title: Phys. Rev. X – volume: 32 start-page: 285 year: 2016 ident: 10.1016/j.amc.2020.125469_bib0035 publication-title: Commun. Nonlinear Sci. doi: 10.1016/j.cnsns.2015.08.023 – volume: 41 start-page: 5198 year: 2016 ident: 10.1016/j.amc.2020.125469_bib0023 publication-title: Opt. Lett. doi: 10.1364/OL.41.005198 – volume: 84 start-page: 056611 year: 2011 ident: 10.1016/j.amc.2020.125469_bib0047 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.056611 – volume: 87 start-page: 052914 year: 2013 ident: 10.1016/j.amc.2020.125469_bib0029 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.052914 – volume: 474 start-page: 537 year: 2019 ident: 10.1016/j.amc.2020.125469_bib0044 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.10.133 – volume: 378 start-page: 358 year: 2014 ident: 10.1016/j.amc.2020.125469_bib0001 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.11.031 – volume: 373 start-page: 675 year: 2009 ident: 10.1016/j.amc.2020.125469_bib0025 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.12.036 – volume: 85 start-page: 026601 year: 2012 ident: 10.1016/j.amc.2020.125469_bib0014 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026601 – volume: 74 start-page: 504 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0004 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2017.04.036 – volume: 128 start-page: 63 year: 2017 ident: 10.1016/j.amc.2020.125469_bib0043 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.010 – volume: 72 start-page: 809 year: 1987 ident: 10.1016/j.amc.2020.125469_bib0046 publication-title: Theor. Math. Phys. doi: 10.1007/BF01017105 – volume: 158 start-page: 177 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0017 publication-title: Optik doi: 10.1016/j.ijleo.2017.12.114 – volume: 44 start-page: 435204 year: 2011 ident: 10.1016/j.amc.2020.125469_bib0049 publication-title: J. Phys. A doi: 10.1088/1751-8113/44/43/435204 – volume: 106 start-page: 204502 year: 2011 ident: 10.1016/j.amc.2020.125469_bib0024 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.204502 – volume: 82 start-page: 1211 year: 2015 ident: 10.1016/j.amc.2020.125469_bib0003 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2227-6 – volume: 76 start-page: 179 year: 2018 ident: 10.1016/j.amc.2020.125469_bib0005 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.04.013 – volume: 91 start-page: 032928 year: 2015 ident: 10.1016/j.amc.2020.125469_bib0038 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.032928 – volume: 115 start-page: 168 year: 2016 ident: 10.1016/j.amc.2020.125469_bib0027 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.02.027 – volume: 43 start-page: 122002 year: 2010 ident: 10.1016/j.amc.2020.125469_bib0048 publication-title: J. Phys. A doi: 10.1088/1751-8113/43/12/122002 – volume: 220 start-page: 117 year: 2013 ident: 10.1016/j.amc.2020.125469_bib0002 publication-title: Appl. Math. Comput. |
| SSID | ssj0007614 |
| Score | 2.6420295 |
| Snippet | •An extended generalized Darboux transformation method is proposed.•Three types of hybrid rogue wave and breather solutions are obtained for a classical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 125469 |
| SubjectTerms | Breather Extended generalized Darboux transformation Hybrid wave solution Nonlinear Schrödinger system Rogue wave |
| Title | Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation |
| URI | https://dx.doi.org/10.1016/j.amc.2020.125469 |
| Volume | 386 |
| WOSCitedRecordID | wos000555703300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZghgNzQKyaYZMPnIiCXDuxk-OAigCVEYhB6i1yNuiISUvaQGck_hZ_gD_Ge_HShUWAxCWK0tqJ3vtkP7_le4Q8qHld80GtQj4oRBjpmoU58t7WQmvN60FcRn2h8EgdHSXjcfrKlhDM-3YCqmmS5TKd_VdVwzNQNpbO_oW6_aTwAO5B6XAFtcP1jxQ_tG5tbI6MDqfJOdyjI3raLbEjhLdTMUwwDd6fYc1W0KILJ_iMvYjQlZ63xjQM_LeadMugMdQaukX-zj7M_liWhsyw-tit1OyIba2Re-rZYeeukm7WbWYBjCYm_tG8C1-7_bR3lfe7RBeOLI6ti4Jvp3v42pmN1E48PIWCMbG-FgvDi_3Dum5cDCeP9CnSTnIkxYgj0-Nliy77Dc6L03IM-vIkuUh2uYpTWPF2D58Pxy_8Pq2kYX533-Fi3n3239aLfm61rFkix1fJFXuEoIdG9dfIhaq5TvZeriR8g3xxIKBrIKAWBHQTBHQxpQYEtAcBRRBQUBJ1IKAeBBRGUU09CCiC4NtXAwDqAHCTvH06PH7yLLSNNsKCp2oRxmlSylwLVuaa6YLXUanKPMbDQMnqKorApmR5njDs_iiklrzSacWx9UEhK6HELbIDb672Ca1kqjlssDxPVCQLncLvQquiEHKgYVk4IMwJMissCz02Q_mQuXTDkwxkn6HsMyP7A_LQD5kZCpbf_Tly2smsDWlswwyg9Otht_9t2B1yeYX3u2Rn0XbVPXKp-LSYzNv7FnDfAbxemv8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended+generalized+Darboux+transformation+to+hybrid+rogue+wave+and+breather+solutions+for+a+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Li%2C+Bang-Qing&rft.au=Ma%2C+Yu-Lan&rft.date=2020-12-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=386&rft_id=info:doi/10.1016%2Fj.amc.2020.125469&rft.externalDocID=S0096300320304288 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |