Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis
•Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirec...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 426; S. 131421 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.12.2021
|
| Schlagworte: | |
| ISSN: | 1385-8947, 1873-3212 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirect ammonia synthesis.
Stranded Natural Gas (SNG) flaring has increased over the last decade resulting in additional Green House Gas (GHG) emissions and underutilization of our finite fossil fuel resources. However, utilization of SNG is difficult due to its low volume, inconsistent composition, and intermittent flow. In this paper, intensified Chemical looping for Ammonia Synthesis (CLAS) is explored as a process suitable for remote deployment at SNG sites. CLAS mediate ammonia synthesis by using compounds that carry nitrogen and hydrogen in stepwise reactions, allowing ammonia synthesis under milder conditions and smaller, more flexible processes. The challenge in CLAS is to find a feasible combination of materials and process conditions that yield ammonia at economically acceptable rates. We propose a framework that systematically evaluates CLAS to determine their suitability for SNG deployment. CLAS reaction schemes are reviewed and organized based on the mediating compounds used to synthesize ammonia. Different compounds are evaluated for each CLAS in search of a thermodynamically spontaneous pair. Spontaneous CLAS flowsheets are, then, optimized to maximize ammonia output at equilibrium. The results are ranked against performance metrics of energy intensity, efficiency, and cost. Chemical loops with Ca3N2/CaH2, SrH2/Sr3N2, MnO2/Mn5N2 and MoO2/Mo2N are found to have favorable performance, along with literature-reported evidence and are recommended for further evaluation toward a distributed ammonia synthesis solution. |
|---|---|
| AbstractList | •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirect ammonia synthesis.
Stranded Natural Gas (SNG) flaring has increased over the last decade resulting in additional Green House Gas (GHG) emissions and underutilization of our finite fossil fuel resources. However, utilization of SNG is difficult due to its low volume, inconsistent composition, and intermittent flow. In this paper, intensified Chemical looping for Ammonia Synthesis (CLAS) is explored as a process suitable for remote deployment at SNG sites. CLAS mediate ammonia synthesis by using compounds that carry nitrogen and hydrogen in stepwise reactions, allowing ammonia synthesis under milder conditions and smaller, more flexible processes. The challenge in CLAS is to find a feasible combination of materials and process conditions that yield ammonia at economically acceptable rates. We propose a framework that systematically evaluates CLAS to determine their suitability for SNG deployment. CLAS reaction schemes are reviewed and organized based on the mediating compounds used to synthesize ammonia. Different compounds are evaluated for each CLAS in search of a thermodynamically spontaneous pair. Spontaneous CLAS flowsheets are, then, optimized to maximize ammonia output at equilibrium. The results are ranked against performance metrics of energy intensity, efficiency, and cost. Chemical loops with Ca3N2/CaH2, SrH2/Sr3N2, MnO2/Mn5N2 and MoO2/Mo2N are found to have favorable performance, along with literature-reported evidence and are recommended for further evaluation toward a distributed ammonia synthesis solution. |
| ArticleNumber | 131421 |
| Author | Burrows, Laron Bollas, George M. Gao, Pu-Xian |
| Author_xml | – sequence: 1 givenname: Laron surname: Burrows fullname: Burrows, Laron organization: Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA – sequence: 2 givenname: Pu-Xian surname: Gao fullname: Gao, Pu-Xian organization: Material Science & Engineering, University of Connecticut, Storrs, CT, USA – sequence: 3 givenname: George M. surname: Bollas fullname: Bollas, George M. email: george.bollas@uconn.edu organization: Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA |
| BookMark | eNp9kMtOwzAQRS1UJErhA9jlB1I8ThsnYoUqXlIlNmVtOfaYTpXYlW2Q8vcElRWLbmZmMedK91yzmQ8eGbsDvgQO9f1hafCwFFzAEipYCbhgc2hkVVYCxGy6q2ZdNu1KXrHrlA6c87qFds52uz3GIdjR64FM4VAn6qinPBba635MlIrgCkspR-q-MtrC7HF61X3Rh3Ak_1noYQiedJFGn_c4ETfs0uk-4e3fXrCP56fd5rXcvr-8bR63pRGtzOVagtUArmtkUzUoZG2xXgmjW2PR1sLydVs72TnoGu5QonHC1muYpqgEN9WCwSnXxJBSRKeOkQYdRwVc_WpRBzVpUb9a1EnLxMh_jKGsMwWfo6b-LPlwInGq9E0YVTKE3qCliCYrG-gM_QPwzoEK |
| CitedBy_id | crossref_primary_10_1002_smll_202305095 crossref_primary_10_1016_j_cej_2023_146643 crossref_primary_10_1002_aic_18040 crossref_primary_10_1007_s11090_025_10558_z crossref_primary_10_1016_j_ijhydene_2024_08_127 crossref_primary_10_1016_j_enconman_2024_119434 crossref_primary_10_1016_j_jece_2025_116397 crossref_primary_10_1016_j_ces_2023_119063 crossref_primary_10_1016_j_fuel_2023_128088 crossref_primary_10_1007_s43938_023_00019_4 crossref_primary_10_1016_j_cej_2024_157321 crossref_primary_10_1016_j_cclet_2023_109037 crossref_primary_10_1016_j_jclepro_2025_145026 crossref_primary_10_3390_catal14020122 crossref_primary_10_1039_D4EE00037D crossref_primary_10_1016_j_ijhydene_2025_06_168 crossref_primary_10_1016_j_fuel_2024_131457 crossref_primary_10_1088_2516_1083_acac5c crossref_primary_10_1016_j_cej_2022_141263 crossref_primary_10_3390_su17188172 crossref_primary_10_1002_ppap_202400050 crossref_primary_10_1016_j_ijhydene_2024_05_428 |
| Cites_doi | 10.1021/cs400336z 10.1002/cjoc.201800586 10.1016/j.enchem.2019.100011 10.1007/s13203-014-0049-y 10.1021/ef3020475 10.1021/ie50195a006 10.1016/S1365-6937(20)30175-1 10.1021/ie50150a017 10.1016/j.energy.2012.03.062 10.1016/j.energy.2016.07.031 10.1002/jctb.5010010303 10.1016/0021-9517(67)90292-8 10.1038/s41560-018-0268-z 10.1016/j.fuproc.2017.11.016 10.1002/cphc.201801090 10.1038/s41570-018-0046-2 10.1016/j.apenergy.2020.116065 10.1039/tf9322800229 10.1016/j.joule.2018.04.017 10.1016/j.energy.2017.06.157 10.1002/zaac.19050430111 10.1021/acscatal.7b00284 10.1016/j.energy.2015.10.043 10.1039/C9EE03793D 10.1021/jp307382r 10.4209/aaqr.2013.06.0198 10.1038/s41929-018-0092-7 10.1021/ie50119a002 10.1021/ie50124a009 10.1016/j.energy.2004.03.036 10.1016/j.jechem.2019.01.027 10.1021/ie50152a008 10.1016/j.chempr.2017.10.004 10.1039/C5SC00789E 10.1016/j.energy.2007.08.011 10.1016/j.solener.2011.08.005 10.1016/j.energy.2015.12.069 10.1021/ie061550u |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2021.131421 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3212 |
| ExternalDocumentID | 10_1016_j_cej_2021_131421 S1385894721030023 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-571da11fb87838e276de642ca9cded62d0596f7bf1b80fe7ecf2d651f2d2320c3 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713670900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 07:06:47 EST 2025 Tue Nov 18 22:35:04 EST 2025 Fri Feb 23 02:40:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Chemical looping Process synthesis Ammonia synthesis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-571da11fb87838e276de642ca9cded62d0596f7bf1b80fe7ecf2d651f2d2320c3 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2021_131421 crossref_citationtrail_10_1016_j_cej_2021_131421 elsevier_sciencedirect_doi_10_1016_j_cej_2021_131421 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kaiser K, Process of Making Ammonia, U.S. Patent 797,962, Aug. 1905. Aspen Technology Inc., Aspen Plus 10, Bedford, MA, 2020. Michalsky, Avram, Peterson, Pfromm, Peterson (b0100) 2015; 6 Kaiser K, Process of Making Ammonia, U.S. Patent 797,961, Aug. 1905. Retrofit of ammonia plant for improving energy efficiency, Energy 33 (2008) 46–64. doi:10.1016/j.energy.2007.08.011. Metso Outotec, HSC Chemistry 10.0.2, Tampere, Finland, 2020. Guo, Chen (b0035) 2017; 3 Kirova-Yordanova (b0065) 2004; 29 Frankenburger, Hodler (b0165) 1932; 28 Initiative to Reduce Global Gas Flaring: Zero Routine Flaring by 2030, Technical Report, The World Bank, Washington, DC, 2019. url:https://www.worldbank.org/en/programs/zero-routine-flaring-by-2030. Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (b0085) 2018; 2 Hunter, Gregory, Hargreaves, Richard, Duprez, Bion (b0180) 2013; 3 Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (b0060) 2018; 1 Haynes (b0245) 2016 Nielsen, Aika, Christiansen, Dybkjaer, Hansen, Nielsen, Nielsen, Stoltze, Tamaru (b0045) 2012 Tan, Barton (b0025) 2016; 96 Wang, Guan, Gao, Guo, Chen (b0020) 2019; 20 Han, Bollas (b0130) 2016; 112 Gao, Guo, Chen (b0095) 2019; 37 Haber, Van Oordt (b0170) 1905; 43 Hargreaves (b0160) 2014; 4 Zhou, Han, Bollas (b0135) 2014; 14 Zhu, Imtiaz, Donat, Müller, Li (b0080) 2020; 13 Goldstein J, Sustainable Ammonia Synthesis,DOE Roundtable Report, Technical Report, U.S. Department of Energy, Office of Science, Dulles, VA, 2016. Bartell (b0215) 1922; 14 Segal, Sebba (b0155) 1967; 8 Arthur (b0150) 1951; 1 National Minerals Information Center, Commodity Statistics and Information, Technical Report, U.S. Geological Survey, accessed 2020–08-19. Flórez-Orrego, de Oliveira Junior (b0055) 2017; 137 Zhang, Wang, Pottimurthy, Kong, Hsieh, Sakadjian, Chung, Park, Xu, Bao, Velazquez-Vargas, Guo, Sandvik, Nadgouda, Flynn, Tong, Fan (b0115) 2021; 282 Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts, Technical Report, Office of Oil and Natural Gas, Office of Fossil Energy, Washington, DC, 2019. Gao, Guo, Wang, Wang, Chang, Pei, Zhang, Liu, Chen (b0105) 2018; 3 Travis AS, Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900–1918), The Seventh Wheeler Lecture, (2014), Report of the Royal Society of Chemistry Historical Group (2016). url:https://tinyurl.com/nitrogenhistorical. Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang, Sun (b0040) 2019; 1 Gao, Wang, Guo, Chang, He, Wang, Wu, Chen (b0185) 2017; 7 Tong, Zeng, Kathe, Sridhar, Fan (b0125) 2013; 27 Michalsky, Pfromm (b0110) 2011; 85 Guernsey, Yee, Braham, Sherman (b0225) 1926; 18 Michalsky, Pfromm (b0090) 2012; 116 Brown, Chas (b0200) 1919; 11 Mattisson, Keller, Linderholm, Moldenhauer, Ryden, Leion, Lyngfelt (b0120) 2018; 172 Barsky (bib246) 1940; 18 Wang, Guo, Chen (b0070) 2019; 36 Michalsky, Parman, Amanor-Boadu, Pfromm (b0195) 2012; 42 Tan, Barton (b0005) 2015; 93 Bosch C, Mittasch A, Wolf H, Stern G, Production of Ammonia, U.S. Patent 1,094,194, April. 1914. Bartell (b0210) 1922; 14 Zeng, Cheng, Fan, Fan, Gong (b0075) 2018; 2 Heise, Foote (b0205) 1920; 12 Gálvez, Halmann, Steinfeld (b0190) 2007; 46 Zeng (10.1016/j.cej.2021.131421_b0075) 2018; 2 Barsky (10.1016/j.cej.2021.131421_bib246) 1940; 18 10.1016/j.cej.2021.131421_b0220 10.1016/j.cej.2021.131421_b0145 Michalsky (10.1016/j.cej.2021.131421_b0110) 2011; 85 Wang (10.1016/j.cej.2021.131421_b0070) 2019; 36 Kirova-Yordanova (10.1016/j.cej.2021.131421_b0065) 2004; 29 Tan (10.1016/j.cej.2021.131421_b0025) 2016; 96 Zhao (10.1016/j.cej.2021.131421_b0040) 2019; 1 Zhou (10.1016/j.cej.2021.131421_b0135) 2014; 14 Wang (10.1016/j.cej.2021.131421_b0020) 2019; 20 Guernsey (10.1016/j.cej.2021.131421_b0225) 1926; 18 10.1016/j.cej.2021.131421_b0140 10.1016/j.cej.2021.131421_b0010 Tong (10.1016/j.cej.2021.131421_b0125) 2013; 27 10.1016/j.cej.2021.131421_b0175 Hargreaves (10.1016/j.cej.2021.131421_b0160) 2014; 4 10.1016/j.cej.2021.131421_b0015 Tan (10.1016/j.cej.2021.131421_b0005) 2015; 93 Nielsen (10.1016/j.cej.2021.131421_b0045) 2012 Brown (10.1016/j.cej.2021.131421_b0200) 1919; 11 Michalsky (10.1016/j.cej.2021.131421_b0090) 2012; 116 10.1016/j.cej.2021.131421_b0050 Segal (10.1016/j.cej.2021.131421_b0155) 1967; 8 10.1016/j.cej.2021.131421_b0240 Mattisson (10.1016/j.cej.2021.131421_b0120) 2018; 172 Gao (10.1016/j.cej.2021.131421_b0095) 2019; 37 Bartell (10.1016/j.cej.2021.131421_b0210) 1922; 14 Gao (10.1016/j.cej.2021.131421_b0185) 2017; 7 Frankenburger (10.1016/j.cej.2021.131421_b0165) 1932; 28 Haber (10.1016/j.cej.2021.131421_b0170) 1905; 43 Gálvez (10.1016/j.cej.2021.131421_b0190) 2007; 46 Michalsky (10.1016/j.cej.2021.131421_b0100) 2015; 6 Hunter (10.1016/j.cej.2021.131421_b0180) 2013; 3 Foster (10.1016/j.cej.2021.131421_b0060) 2018; 1 Guo (10.1016/j.cej.2021.131421_b0035) 2017; 3 Flórez-Orrego (10.1016/j.cej.2021.131421_b0055) 2017; 137 Haynes (10.1016/j.cej.2021.131421_b0245) 2016 Michalsky (10.1016/j.cej.2021.131421_b0195) 2012; 42 10.1016/j.cej.2021.131421_b0230 Han (10.1016/j.cej.2021.131421_b0130) 2016; 112 Wang (10.1016/j.cej.2021.131421_b0085) 2018; 2 Heise (10.1016/j.cej.2021.131421_b0205) 1920; 12 10.1016/j.cej.2021.131421_b0235 Bartell (10.1016/j.cej.2021.131421_b0215) 1922; 14 Zhu (10.1016/j.cej.2021.131421_b0080) 2020; 13 Zhang (10.1016/j.cej.2021.131421_b0115) 2021; 282 Arthur (10.1016/j.cej.2021.131421_b0150) 1951; 1 Gao (10.1016/j.cej.2021.131421_b0105) 2018; 3 10.1016/j.cej.2021.131421_b0030 |
| References_xml | – reference: Initiative to Reduce Global Gas Flaring: Zero Routine Flaring by 2030, Technical Report, The World Bank, Washington, DC, 2019. url:https://www.worldbank.org/en/programs/zero-routine-flaring-by-2030. – volume: 12 start-page: 331 year: 1920 end-page: 336 ident: b0205 article-title: The production of ammonia and formates from cyanides, ferrocyanides, and cyanized briquets publication-title: Ind Eng Chem – reference: Kaiser K, Process of Making Ammonia, U.S. Patent 797,962, Aug. 1905. – volume: 36 start-page: 25 year: 2019 end-page: 36 ident: b0070 article-title: Recent progress towards mild-condition ammonia synthesis publication-title: J Energy Chem – volume: 11 start-page: 1010 year: 1919 end-page: 1013 ident: b0200 article-title: Chemical plant for manufacturing sodium cyanide, Saltville, Virginia publication-title: Ind Eng Chem – volume: 93 start-page: 1581 year: 2015 end-page: 1594 ident: b0005 article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, Part I: Bakken shale play case study publication-title: Energy – volume: 14 start-page: 516 year: 1922 end-page: 520 ident: b0215 article-title: Production of Ammonia by the Sodium Cyanide Method publication-title: J Ind Eng Chem – volume: 85 start-page: 2642 year: 2011 end-page: 2654 ident: b0110 article-title: Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure publication-title: Solar Energy – reference: Bosch C, Mittasch A, Wolf H, Stern G, Production of Ammonia, U.S. Patent 1,094,194, April. 1914. – volume: 2 start-page: 349 year: 2018 end-page: 364 ident: b0075 article-title: Metal oxide redox chemistry for chemical looping processes publication-title: Nature Rev Chem – volume: 18 start-page: 243 year: 1926 end-page: 248 ident: b0225 article-title: Some Factors Affecting the Fixation of Nitrogen as Sodium Cyanide publication-title: Ind Eng Chem – volume: 6 start-page: 3965 year: 2015 end-page: 3974 ident: b0100 article-title: Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage publication-title: Chem Sci – volume: 1 start-page: 490 year: 2018 end-page: 500 ident: b0060 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nature Catal – volume: 2 start-page: 1055 year: 2018 end-page: 1074 ident: b0085 article-title: Greening Ammonia toward the Solar Ammonia Refinery publication-title: Joule – volume: 112 start-page: 1107 year: 2016 end-page: 1119 ident: b0130 article-title: Dynamic optimization of fixed bed chemical-looping combustion processes publication-title: Energy – volume: 46 start-page: 2042 year: 2007 end-page: 2046 ident: b0190 article-title: Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses publication-title: Ind Eng Chem Res – volume: 14 start-page: 559 year: 2014 end-page: 571 ident: b0135 article-title: Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency publication-title: Aerosol and Air Quality Research – volume: 14 start-page: 699 year: 1922 end-page: 703 ident: b0210 article-title: Nitrogen Fixation by the Cyanide Process publication-title: J Ind Eng Chem – volume: 7 start-page: 3654 year: 2017 end-page: 3661 ident: b0185 article-title: Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt publication-title: ACS Catal – volume: 3 start-page: 1719 year: 2013 end-page: 1725 ident: b0180 article-title: A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides publication-title: ACS Catal – reference: Metso Outotec, HSC Chemistry 10.0.2, Tampere, Finland, 2020. – reference: Travis AS, Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900–1918), The Seventh Wheeler Lecture, (2014), Report of the Royal Society of Chemistry Historical Group (2016). url:https://tinyurl.com/nitrogenhistorical. – reference: Goldstein J, Sustainable Ammonia Synthesis,DOE Roundtable Report, Technical Report, U.S. Department of Energy, Office of Science, Dulles, VA, 2016. – volume: 96 start-page: 461 year: 2016 end-page: 467 ident: b0025 article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty publication-title: Energy – volume: 3 start-page: 1067 year: 2018 end-page: 1075 ident: b0105 article-title: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers publication-title: Nature Energy – volume: 13 start-page: 772 year: 2020 end-page: 804 ident: b0080 article-title: Chemical looping beyond combustion-a perspective publication-title: Energy Environ Sci – reference: Kaiser K, Process of Making Ammonia, U.S. Patent 797,961, Aug. 1905. – volume: 37 start-page: 442 year: 2019 end-page: 451 ident: b0095 article-title: Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition publication-title: Chinese J Chem – volume: 1 start-page: 98 year: 1951 end-page: 104 ident: b0150 article-title: Formation of metallic hydrides and nitrides and their significance in the synthesis of ammonia publication-title: J Appl Chem – volume: 18 start-page: 759 year: 1940 end-page: 762 ident: bib246 article-title: Chemistry of Cyanamide publication-title: News Edition, Am Chem Soc – volume: 1 year: 2019 ident: b0040 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: EnergyChem – volume: 3 start-page: 709 year: 2017 end-page: 712 ident: b0035 article-title: Catalyst: Ammonia as an Energy Carrier publication-title: Chem – volume: 4 start-page: 3 year: 2014 end-page: 10 ident: b0160 article-title: Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents publication-title: Appl Petrochemical Res – volume: 29 start-page: 2373 year: 2004 end-page: 2384 ident: b0065 article-title: Exergy analysis of industrial ammonia synthesis publication-title: Energy – reference: Retrofit of ammonia plant for improving energy efficiency, Energy 33 (2008) 46–64. doi:10.1016/j.energy.2007.08.011. – volume: 172 start-page: 1 year: 2018 end-page: 12 ident: b0120 article-title: Chemical-looping technologies using circulating fluidized bed systems: Status of development publication-title: Fuel Processing Technol – year: 2016 ident: b0245 article-title: CRC Handbook of Chemistry and Physics – volume: 116 start-page: 23243 year: 2012 end-page: 23251 ident: b0090 article-title: An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production publication-title: J Phys Chem C – volume: 8 start-page: 105 year: 1967 end-page: 112 ident: b0155 article-title: Ammonia synthesis catalyzed by uranium nitride. I. The reaction mechanism publication-title: J Catal – volume: 28 start-page: 229 year: 1932 end-page: 242 ident: b0165 article-title: New experiments on the mechanism of the catalysis of ammonia on tungsten publication-title: Trans Faraday Soc – volume: 20 start-page: 1376 year: 2019 end-page: 1381 ident: b0020 article-title: Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides publication-title: ChemPhysChem – volume: 137 start-page: 234 year: 2017 end-page: 250 ident: b0055 article-title: Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach publication-title: Energy – volume: 43 start-page: 111 year: 1905 end-page: 115 ident: b0170 article-title: Über Bildung von Ammoniak aus den Elementen (Vorläufige Mitteilung) publication-title: Zeitschrift für anorganische Chemie – year: 2012 ident: b0045 article-title: Ammonia: Catalysis and Manufacture – reference: National Minerals Information Center, Commodity Statistics and Information, Technical Report, U.S. Geological Survey, accessed 2020–08-19. – reference: Aspen Technology Inc., Aspen Plus 10, Bedford, MA, 2020. – volume: 282 year: 2021 ident: b0115 article-title: Coal direct chemical looping process: 250 kw pilot-scale testing for power generation and carbon capture publication-title: Appl Energy – volume: 42 start-page: 251 year: 2012 end-page: 260 ident: b0195 article-title: Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses publication-title: Energy – volume: 27 start-page: 4119 year: 2013 end-page: 4128 ident: b0125 article-title: Application of the moving-bed chemical looping process for high methane conversion publication-title: Energy Fuels – reference: Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts, Technical Report, Office of Oil and Natural Gas, Office of Fossil Energy, Washington, DC, 2019. – volume: 3 start-page: 1719 year: 2013 ident: 10.1016/j.cej.2021.131421_b0180 article-title: A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides publication-title: ACS Catal doi: 10.1021/cs400336z – ident: 10.1016/j.cej.2021.131421_b0010 – volume: 37 start-page: 442 year: 2019 ident: 10.1016/j.cej.2021.131421_b0095 article-title: Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition publication-title: Chinese J Chem doi: 10.1002/cjoc.201800586 – volume: 1 year: 2019 ident: 10.1016/j.cej.2021.131421_b0040 article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions publication-title: EnergyChem doi: 10.1016/j.enchem.2019.100011 – volume: 4 start-page: 3 year: 2014 ident: 10.1016/j.cej.2021.131421_b0160 article-title: Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents publication-title: Appl Petrochemical Res doi: 10.1007/s13203-014-0049-y – ident: 10.1016/j.cej.2021.131421_b0175 – volume: 27 start-page: 4119 year: 2013 ident: 10.1016/j.cej.2021.131421_b0125 article-title: Application of the moving-bed chemical looping process for high methane conversion publication-title: Energy Fuels doi: 10.1021/ef3020475 – volume: 18 start-page: 243 year: 1926 ident: 10.1016/j.cej.2021.131421_b0225 article-title: Some Factors Affecting the Fixation of Nitrogen as Sodium Cyanide publication-title: Ind Eng Chem doi: 10.1021/ie50195a006 – ident: 10.1016/j.cej.2021.131421_b0230 doi: 10.1016/S1365-6937(20)30175-1 – volume: 14 start-page: 516 year: 1922 ident: 10.1016/j.cej.2021.131421_b0215 article-title: Production of Ammonia by the Sodium Cyanide Method publication-title: J Ind Eng Chem doi: 10.1021/ie50150a017 – ident: 10.1016/j.cej.2021.131421_b0235 – year: 2012 ident: 10.1016/j.cej.2021.131421_b0045 – volume: 42 start-page: 251 year: 2012 ident: 10.1016/j.cej.2021.131421_b0195 article-title: Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses publication-title: Energy doi: 10.1016/j.energy.2012.03.062 – ident: 10.1016/j.cej.2021.131421_b0030 – volume: 112 start-page: 1107 year: 2016 ident: 10.1016/j.cej.2021.131421_b0130 article-title: Dynamic optimization of fixed bed chemical-looping combustion processes publication-title: Energy doi: 10.1016/j.energy.2016.07.031 – volume: 1 start-page: 98 year: 1951 ident: 10.1016/j.cej.2021.131421_b0150 article-title: Formation of metallic hydrides and nitrides and their significance in the synthesis of ammonia publication-title: J Appl Chem doi: 10.1002/jctb.5010010303 – volume: 8 start-page: 105 year: 1967 ident: 10.1016/j.cej.2021.131421_b0155 article-title: Ammonia synthesis catalyzed by uranium nitride. I. The reaction mechanism publication-title: J Catal doi: 10.1016/0021-9517(67)90292-8 – volume: 3 start-page: 1067 year: 2018 ident: 10.1016/j.cej.2021.131421_b0105 article-title: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers publication-title: Nature Energy doi: 10.1038/s41560-018-0268-z – volume: 172 start-page: 1 year: 2018 ident: 10.1016/j.cej.2021.131421_b0120 article-title: Chemical-looping technologies using circulating fluidized bed systems: Status of development publication-title: Fuel Processing Technol doi: 10.1016/j.fuproc.2017.11.016 – volume: 20 start-page: 1376 year: 2019 ident: 10.1016/j.cej.2021.131421_b0020 article-title: Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides publication-title: ChemPhysChem doi: 10.1002/cphc.201801090 – volume: 2 start-page: 349 year: 2018 ident: 10.1016/j.cej.2021.131421_b0075 article-title: Metal oxide redox chemistry for chemical looping processes publication-title: Nature Rev Chem doi: 10.1038/s41570-018-0046-2 – volume: 282 year: 2021 ident: 10.1016/j.cej.2021.131421_b0115 article-title: Coal direct chemical looping process: 250 kw pilot-scale testing for power generation and carbon capture publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116065 – volume: 28 start-page: 229 year: 1932 ident: 10.1016/j.cej.2021.131421_b0165 article-title: New experiments on the mechanism of the catalysis of ammonia on tungsten publication-title: Trans Faraday Soc doi: 10.1039/tf9322800229 – volume: 2 start-page: 1055 year: 2018 ident: 10.1016/j.cej.2021.131421_b0085 article-title: Greening Ammonia toward the Solar Ammonia Refinery publication-title: Joule doi: 10.1016/j.joule.2018.04.017 – year: 2016 ident: 10.1016/j.cej.2021.131421_b0245 – volume: 137 start-page: 234 year: 2017 ident: 10.1016/j.cej.2021.131421_b0055 article-title: Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach publication-title: Energy doi: 10.1016/j.energy.2017.06.157 – volume: 43 start-page: 111 year: 1905 ident: 10.1016/j.cej.2021.131421_b0170 article-title: Über Bildung von Ammoniak aus den Elementen (Vorläufige Mitteilung) publication-title: Zeitschrift für anorganische Chemie doi: 10.1002/zaac.19050430111 – volume: 7 start-page: 3654 year: 2017 ident: 10.1016/j.cej.2021.131421_b0185 article-title: Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt publication-title: ACS Catal doi: 10.1021/acscatal.7b00284 – ident: 10.1016/j.cej.2021.131421_b0220 – volume: 93 start-page: 1581 year: 2015 ident: 10.1016/j.cej.2021.131421_b0005 article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, Part I: Bakken shale play case study publication-title: Energy doi: 10.1016/j.energy.2015.10.043 – ident: 10.1016/j.cej.2021.131421_b0140 – volume: 13 start-page: 772 year: 2020 ident: 10.1016/j.cej.2021.131421_b0080 article-title: Chemical looping beyond combustion-a perspective publication-title: Energy Environ Sci doi: 10.1039/C9EE03793D – volume: 18 start-page: 759 year: 1940 ident: 10.1016/j.cej.2021.131421_bib246 article-title: Chemistry of Cyanamide publication-title: News Edition, Am Chem Soc – volume: 116 start-page: 23243 year: 2012 ident: 10.1016/j.cej.2021.131421_b0090 article-title: An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production publication-title: J Phys Chem C doi: 10.1021/jp307382r – ident: 10.1016/j.cej.2021.131421_b0240 – volume: 14 start-page: 559 year: 2014 ident: 10.1016/j.cej.2021.131421_b0135 article-title: Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency publication-title: Aerosol and Air Quality Research doi: 10.4209/aaqr.2013.06.0198 – volume: 1 start-page: 490 year: 2018 ident: 10.1016/j.cej.2021.131421_b0060 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nature Catal doi: 10.1038/s41929-018-0092-7 – volume: 11 start-page: 1010 year: 1919 ident: 10.1016/j.cej.2021.131421_b0200 article-title: Chemical plant for manufacturing sodium cyanide, Saltville, Virginia publication-title: Ind Eng Chem doi: 10.1021/ie50119a002 – volume: 12 start-page: 331 year: 1920 ident: 10.1016/j.cej.2021.131421_b0205 article-title: The production of ammonia and formates from cyanides, ferrocyanides, and cyanized briquets publication-title: Ind Eng Chem doi: 10.1021/ie50124a009 – ident: 10.1016/j.cej.2021.131421_b0015 – volume: 29 start-page: 2373 year: 2004 ident: 10.1016/j.cej.2021.131421_b0065 article-title: Exergy analysis of industrial ammonia synthesis publication-title: Energy doi: 10.1016/j.energy.2004.03.036 – volume: 36 start-page: 25 year: 2019 ident: 10.1016/j.cej.2021.131421_b0070 article-title: Recent progress towards mild-condition ammonia synthesis publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.01.027 – ident: 10.1016/j.cej.2021.131421_b0145 – volume: 14 start-page: 699 year: 1922 ident: 10.1016/j.cej.2021.131421_b0210 article-title: Nitrogen Fixation by the Cyanide Process publication-title: J Ind Eng Chem doi: 10.1021/ie50152a008 – volume: 3 start-page: 709 year: 2017 ident: 10.1016/j.cej.2021.131421_b0035 article-title: Catalyst: Ammonia as an Energy Carrier publication-title: Chem doi: 10.1016/j.chempr.2017.10.004 – volume: 6 start-page: 3965 year: 2015 ident: 10.1016/j.cej.2021.131421_b0100 article-title: Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage publication-title: Chem Sci doi: 10.1039/C5SC00789E – ident: 10.1016/j.cej.2021.131421_b0050 doi: 10.1016/j.energy.2007.08.011 – volume: 85 start-page: 2642 year: 2011 ident: 10.1016/j.cej.2021.131421_b0110 article-title: Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure publication-title: Solar Energy doi: 10.1016/j.solener.2011.08.005 – volume: 96 start-page: 461 year: 2016 ident: 10.1016/j.cej.2021.131421_b0025 article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty publication-title: Energy doi: 10.1016/j.energy.2015.12.069 – volume: 46 start-page: 2042 year: 2007 ident: 10.1016/j.cej.2021.131421_b0190 article-title: Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses publication-title: Ind Eng Chem Res doi: 10.1021/ie061550u |
| SSID | ssj0006919 |
| Score | 2.4967036 |
| Snippet | •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 131421 |
| SubjectTerms | Ammonia synthesis Chemical looping Process synthesis |
| Title | Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis |
| URI | https://dx.doi.org/10.1016/j.cej.2021.131421 |
| Volume | 426 |
| WOSCitedRecordID | wos000713670900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-3212 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006919 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPqk6QsfemqQsWRbj2NS0hc0BLKFvRnZkmCXjTfsIw299K93xrK9TtKWttCLWMTKMjMf8ng83zeEvBasFEKnObVOJzSzLKM6TzyFY9DnzkNIYFTTbEIeH6vJRJ-MRt87LszFXNa1urzU5__V1TAHzkbq7F-4u78oTMBvcDqM4HYY_9Txy7OFDZ3m970zbQEsCi1tBUgsCuZirysIOKtONGC-CPQpg3c7NShnAPHharoahrC9xIDbShn2AhTYIMRgoU9IlJ5-na6_BT5xm3vQYpB7ONygAuQq8LOX24KA96ZJ4J5s6GSA3kOE7CCRv_85HuYsOMP6j8DaDIm0G2Sa5uxNVU6VDgKcsQtzSqY05ezKgZ0Fjv2Nwz_kIWZx5WYx7hqzlGWBf31NU_sU98KtOHZZg7DlFtnlMtdwLO4efDyafOof5kI3vWH6e-s-jDclgtc2-nloMwhXxvfJvfY9IzoI-HhARq5-SO4O1CcfkfEVpEQDpEQdUqKFjwZIiTqkRC1SohYpUY-Ux-TLu6Px2w-0bbJBK67lmuaSWcOYL5VUqXJcCuvgnbQyurLOCm6xP5OXpWelSryTrvLcipzBCMF4UqVPyE69qN1TpP9nNuXee16CpbwpjfAi96qU3pfWJXsk6exTVK0CPTZCmRddqeGsAJMWaNIimHSPvOmXnAf5ld_9OeuMXrTxY4gLC0DIr5c9-7dlz8mdLbRfkJ31cuNektvVxXq6Wr5qcfQDWIKVnw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+feasibility+analysis+of+distributed+chemical+looping+ammonia+synthesis&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Burrows%2C+Laron&rft.au=Gao%2C+Pu-Xian&rft.au=Bollas%2C+George+M.&rft.date=2021-12-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=426&rft_id=info:doi/10.1016%2Fj.cej.2021.131421&rft.externalDocID=S1385894721030023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |