Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis

•Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 426; S. 131421
Hauptverfasser: Burrows, Laron, Gao, Pu-Xian, Bollas, George M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.12.2021
Schlagworte:
ISSN:1385-8947, 1873-3212
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirect ammonia synthesis. Stranded Natural Gas (SNG) flaring has increased over the last decade resulting in additional Green House Gas (GHG) emissions and underutilization of our finite fossil fuel resources. However, utilization of SNG is difficult due to its low volume, inconsistent composition, and intermittent flow. In this paper, intensified Chemical looping for Ammonia Synthesis (CLAS) is explored as a process suitable for remote deployment at SNG sites. CLAS mediate ammonia synthesis by using compounds that carry nitrogen and hydrogen in stepwise reactions, allowing ammonia synthesis under milder conditions and smaller, more flexible processes. The challenge in CLAS is to find a feasible combination of materials and process conditions that yield ammonia at economically acceptable rates. We propose a framework that systematically evaluates CLAS to determine their suitability for SNG deployment. CLAS reaction schemes are reviewed and organized based on the mediating compounds used to synthesize ammonia. Different compounds are evaluated for each CLAS in search of a thermodynamically spontaneous pair. Spontaneous CLAS flowsheets are, then, optimized to maximize ammonia output at equilibrium. The results are ranked against performance metrics of energy intensity, efficiency, and cost. Chemical loops with Ca3N2/CaH2, SrH2/Sr3N2, MnO2/Mn5N2 and MoO2/Mo2N are found to have favorable performance, along with literature-reported evidence and are recommended for further evaluation toward a distributed ammonia synthesis solution.
AbstractList •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process options.•Results are ranked against performance metrics of energy intensity, efficiency, and cost.•Ca, Sr, Mn and Mo are shown most favorable for indirect ammonia synthesis. Stranded Natural Gas (SNG) flaring has increased over the last decade resulting in additional Green House Gas (GHG) emissions and underutilization of our finite fossil fuel resources. However, utilization of SNG is difficult due to its low volume, inconsistent composition, and intermittent flow. In this paper, intensified Chemical looping for Ammonia Synthesis (CLAS) is explored as a process suitable for remote deployment at SNG sites. CLAS mediate ammonia synthesis by using compounds that carry nitrogen and hydrogen in stepwise reactions, allowing ammonia synthesis under milder conditions and smaller, more flexible processes. The challenge in CLAS is to find a feasible combination of materials and process conditions that yield ammonia at economically acceptable rates. We propose a framework that systematically evaluates CLAS to determine their suitability for SNG deployment. CLAS reaction schemes are reviewed and organized based on the mediating compounds used to synthesize ammonia. Different compounds are evaluated for each CLAS in search of a thermodynamically spontaneous pair. Spontaneous CLAS flowsheets are, then, optimized to maximize ammonia output at equilibrium. The results are ranked against performance metrics of energy intensity, efficiency, and cost. Chemical loops with Ca3N2/CaH2, SrH2/Sr3N2, MnO2/Mn5N2 and MoO2/Mo2N are found to have favorable performance, along with literature-reported evidence and are recommended for further evaluation toward a distributed ammonia synthesis solution.
ArticleNumber 131421
Author Burrows, Laron
Bollas, George M.
Gao, Pu-Xian
Author_xml – sequence: 1
  givenname: Laron
  surname: Burrows
  fullname: Burrows, Laron
  organization: Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Pu-Xian
  surname: Gao
  fullname: Gao, Pu-Xian
  organization: Material Science & Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 3
  givenname: George M.
  surname: Bollas
  fullname: Bollas, George M.
  email: george.bollas@uconn.edu
  organization: Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
BookMark eNp9kMtOwzAQRS1UJErhA9jlB1I8ThsnYoUqXlIlNmVtOfaYTpXYlW2Q8vcElRWLbmZmMedK91yzmQ8eGbsDvgQO9f1hafCwFFzAEipYCbhgc2hkVVYCxGy6q2ZdNu1KXrHrlA6c87qFds52uz3GIdjR64FM4VAn6qinPBba635MlIrgCkspR-q-MtrC7HF61X3Rh3Ak_1noYQiedJFGn_c4ETfs0uk-4e3fXrCP56fd5rXcvr-8bR63pRGtzOVagtUArmtkUzUoZG2xXgmjW2PR1sLydVs72TnoGu5QonHC1muYpqgEN9WCwSnXxJBSRKeOkQYdRwVc_WpRBzVpUb9a1EnLxMh_jKGsMwWfo6b-LPlwInGq9E0YVTKE3qCliCYrG-gM_QPwzoEK
CitedBy_id crossref_primary_10_1002_smll_202305095
crossref_primary_10_1016_j_cej_2023_146643
crossref_primary_10_1002_aic_18040
crossref_primary_10_1007_s11090_025_10558_z
crossref_primary_10_1016_j_ijhydene_2024_08_127
crossref_primary_10_1016_j_enconman_2024_119434
crossref_primary_10_1016_j_jece_2025_116397
crossref_primary_10_1016_j_ces_2023_119063
crossref_primary_10_1016_j_fuel_2023_128088
crossref_primary_10_1007_s43938_023_00019_4
crossref_primary_10_1016_j_cej_2024_157321
crossref_primary_10_1016_j_cclet_2023_109037
crossref_primary_10_1016_j_jclepro_2025_145026
crossref_primary_10_3390_catal14020122
crossref_primary_10_1039_D4EE00037D
crossref_primary_10_1016_j_ijhydene_2025_06_168
crossref_primary_10_1016_j_fuel_2024_131457
crossref_primary_10_1088_2516_1083_acac5c
crossref_primary_10_1016_j_cej_2022_141263
crossref_primary_10_3390_su17188172
crossref_primary_10_1002_ppap_202400050
crossref_primary_10_1016_j_ijhydene_2024_05_428
Cites_doi 10.1021/cs400336z
10.1002/cjoc.201800586
10.1016/j.enchem.2019.100011
10.1007/s13203-014-0049-y
10.1021/ef3020475
10.1021/ie50195a006
10.1016/S1365-6937(20)30175-1
10.1021/ie50150a017
10.1016/j.energy.2012.03.062
10.1016/j.energy.2016.07.031
10.1002/jctb.5010010303
10.1016/0021-9517(67)90292-8
10.1038/s41560-018-0268-z
10.1016/j.fuproc.2017.11.016
10.1002/cphc.201801090
10.1038/s41570-018-0046-2
10.1016/j.apenergy.2020.116065
10.1039/tf9322800229
10.1016/j.joule.2018.04.017
10.1016/j.energy.2017.06.157
10.1002/zaac.19050430111
10.1021/acscatal.7b00284
10.1016/j.energy.2015.10.043
10.1039/C9EE03793D
10.1021/jp307382r
10.4209/aaqr.2013.06.0198
10.1038/s41929-018-0092-7
10.1021/ie50119a002
10.1021/ie50124a009
10.1016/j.energy.2004.03.036
10.1016/j.jechem.2019.01.027
10.1021/ie50152a008
10.1016/j.chempr.2017.10.004
10.1039/C5SC00789E
10.1016/j.energy.2007.08.011
10.1016/j.solener.2011.08.005
10.1016/j.energy.2015.12.069
10.1021/ie061550u
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.131421
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_131421
S1385894721030023
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
~HD
ID FETCH-LOGICAL-c297t-571da11fb87838e276de642ca9cded62d0596f7bf1b80fe7ecf2d651f2d2320c3
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713670900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:06:47 EST 2025
Tue Nov 18 22:35:04 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chemical looping
Process synthesis
Ammonia synthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-571da11fb87838e276de642ca9cded62d0596f7bf1b80fe7ecf2d651f2d2320c3
ParticipantIDs crossref_primary_10_1016_j_cej_2021_131421
crossref_citationtrail_10_1016_j_cej_2021_131421
elsevier_sciencedirect_doi_10_1016_j_cej_2021_131421
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaiser K, Process of Making Ammonia, U.S. Patent 797,962, Aug. 1905.
Aspen Technology Inc., Aspen Plus 10, Bedford, MA, 2020.
Michalsky, Avram, Peterson, Pfromm, Peterson (b0100) 2015; 6
Kaiser K, Process of Making Ammonia, U.S. Patent 797,961, Aug. 1905.
Retrofit of ammonia plant for improving energy efficiency, Energy 33 (2008) 46–64. doi:10.1016/j.energy.2007.08.011.
Metso Outotec, HSC Chemistry 10.0.2, Tampere, Finland, 2020.
Guo, Chen (b0035) 2017; 3
Kirova-Yordanova (b0065) 2004; 29
Frankenburger, Hodler (b0165) 1932; 28
Initiative to Reduce Global Gas Flaring: Zero Routine Flaring by 2030, Technical Report, The World Bank, Washington, DC, 2019. url:https://www.worldbank.org/en/programs/zero-routine-flaring-by-2030.
Wang, Xia, Wang, Huang, Qian, Maravelias, Ozin (b0085) 2018; 2
Hunter, Gregory, Hargreaves, Richard, Duprez, Bion (b0180) 2013; 3
Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (b0060) 2018; 1
Haynes (b0245) 2016
Nielsen, Aika, Christiansen, Dybkjaer, Hansen, Nielsen, Nielsen, Stoltze, Tamaru (b0045) 2012
Tan, Barton (b0025) 2016; 96
Wang, Guan, Gao, Guo, Chen (b0020) 2019; 20
Han, Bollas (b0130) 2016; 112
Gao, Guo, Chen (b0095) 2019; 37
Haber, Van Oordt (b0170) 1905; 43
Hargreaves (b0160) 2014; 4
Zhou, Han, Bollas (b0135) 2014; 14
Zhu, Imtiaz, Donat, Müller, Li (b0080) 2020; 13
Goldstein J, Sustainable Ammonia Synthesis,DOE Roundtable Report, Technical Report, U.S. Department of Energy, Office of Science, Dulles, VA, 2016.
Bartell (b0215) 1922; 14
Segal, Sebba (b0155) 1967; 8
Arthur (b0150) 1951; 1
National Minerals Information Center, Commodity Statistics and Information, Technical Report, U.S. Geological Survey, accessed 2020–08-19.
Flórez-Orrego, de Oliveira Junior (b0055) 2017; 137
Zhang, Wang, Pottimurthy, Kong, Hsieh, Sakadjian, Chung, Park, Xu, Bao, Velazquez-Vargas, Guo, Sandvik, Nadgouda, Flynn, Tong, Fan (b0115) 2021; 282
Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts, Technical Report, Office of Oil and Natural Gas, Office of Fossil Energy, Washington, DC, 2019.
Gao, Guo, Wang, Wang, Chang, Pei, Zhang, Liu, Chen (b0105) 2018; 3
Travis AS, Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900–1918), The Seventh Wheeler Lecture, (2014), Report of the Royal Society of Chemistry Historical Group (2016). url:https://tinyurl.com/nitrogenhistorical.
Zhao, Xie, Chang, Zhang, Zhu, Tong, Wang, Luo, Wei, Wang, Sun (b0040) 2019; 1
Gao, Wang, Guo, Chang, He, Wang, Wu, Chen (b0185) 2017; 7
Tong, Zeng, Kathe, Sridhar, Fan (b0125) 2013; 27
Michalsky, Pfromm (b0110) 2011; 85
Guernsey, Yee, Braham, Sherman (b0225) 1926; 18
Michalsky, Pfromm (b0090) 2012; 116
Brown, Chas (b0200) 1919; 11
Mattisson, Keller, Linderholm, Moldenhauer, Ryden, Leion, Lyngfelt (b0120) 2018; 172
Barsky (bib246) 1940; 18
Wang, Guo, Chen (b0070) 2019; 36
Michalsky, Parman, Amanor-Boadu, Pfromm (b0195) 2012; 42
Tan, Barton (b0005) 2015; 93
Bosch C, Mittasch A, Wolf H, Stern G, Production of Ammonia, U.S. Patent 1,094,194, April. 1914.
Bartell (b0210) 1922; 14
Zeng, Cheng, Fan, Fan, Gong (b0075) 2018; 2
Heise, Foote (b0205) 1920; 12
Gálvez, Halmann, Steinfeld (b0190) 2007; 46
Zeng (10.1016/j.cej.2021.131421_b0075) 2018; 2
Barsky (10.1016/j.cej.2021.131421_bib246) 1940; 18
10.1016/j.cej.2021.131421_b0220
10.1016/j.cej.2021.131421_b0145
Michalsky (10.1016/j.cej.2021.131421_b0110) 2011; 85
Wang (10.1016/j.cej.2021.131421_b0070) 2019; 36
Kirova-Yordanova (10.1016/j.cej.2021.131421_b0065) 2004; 29
Tan (10.1016/j.cej.2021.131421_b0025) 2016; 96
Zhao (10.1016/j.cej.2021.131421_b0040) 2019; 1
Zhou (10.1016/j.cej.2021.131421_b0135) 2014; 14
Wang (10.1016/j.cej.2021.131421_b0020) 2019; 20
Guernsey (10.1016/j.cej.2021.131421_b0225) 1926; 18
10.1016/j.cej.2021.131421_b0140
10.1016/j.cej.2021.131421_b0010
Tong (10.1016/j.cej.2021.131421_b0125) 2013; 27
10.1016/j.cej.2021.131421_b0175
Hargreaves (10.1016/j.cej.2021.131421_b0160) 2014; 4
10.1016/j.cej.2021.131421_b0015
Tan (10.1016/j.cej.2021.131421_b0005) 2015; 93
Nielsen (10.1016/j.cej.2021.131421_b0045) 2012
Brown (10.1016/j.cej.2021.131421_b0200) 1919; 11
Michalsky (10.1016/j.cej.2021.131421_b0090) 2012; 116
10.1016/j.cej.2021.131421_b0050
Segal (10.1016/j.cej.2021.131421_b0155) 1967; 8
10.1016/j.cej.2021.131421_b0240
Mattisson (10.1016/j.cej.2021.131421_b0120) 2018; 172
Gao (10.1016/j.cej.2021.131421_b0095) 2019; 37
Bartell (10.1016/j.cej.2021.131421_b0210) 1922; 14
Gao (10.1016/j.cej.2021.131421_b0185) 2017; 7
Frankenburger (10.1016/j.cej.2021.131421_b0165) 1932; 28
Haber (10.1016/j.cej.2021.131421_b0170) 1905; 43
Gálvez (10.1016/j.cej.2021.131421_b0190) 2007; 46
Michalsky (10.1016/j.cej.2021.131421_b0100) 2015; 6
Hunter (10.1016/j.cej.2021.131421_b0180) 2013; 3
Foster (10.1016/j.cej.2021.131421_b0060) 2018; 1
Guo (10.1016/j.cej.2021.131421_b0035) 2017; 3
Flórez-Orrego (10.1016/j.cej.2021.131421_b0055) 2017; 137
Haynes (10.1016/j.cej.2021.131421_b0245) 2016
Michalsky (10.1016/j.cej.2021.131421_b0195) 2012; 42
10.1016/j.cej.2021.131421_b0230
Han (10.1016/j.cej.2021.131421_b0130) 2016; 112
Wang (10.1016/j.cej.2021.131421_b0085) 2018; 2
Heise (10.1016/j.cej.2021.131421_b0205) 1920; 12
10.1016/j.cej.2021.131421_b0235
Bartell (10.1016/j.cej.2021.131421_b0215) 1922; 14
Zhu (10.1016/j.cej.2021.131421_b0080) 2020; 13
Zhang (10.1016/j.cej.2021.131421_b0115) 2021; 282
Arthur (10.1016/j.cej.2021.131421_b0150) 1951; 1
Gao (10.1016/j.cej.2021.131421_b0105) 2018; 3
10.1016/j.cej.2021.131421_b0030
References_xml – reference: Initiative to Reduce Global Gas Flaring: Zero Routine Flaring by 2030, Technical Report, The World Bank, Washington, DC, 2019. url:https://www.worldbank.org/en/programs/zero-routine-flaring-by-2030.
– volume: 12
  start-page: 331
  year: 1920
  end-page: 336
  ident: b0205
  article-title: The production of ammonia and formates from cyanides, ferrocyanides, and cyanized briquets
  publication-title: Ind Eng Chem
– reference: Kaiser K, Process of Making Ammonia, U.S. Patent 797,962, Aug. 1905.
– volume: 36
  start-page: 25
  year: 2019
  end-page: 36
  ident: b0070
  article-title: Recent progress towards mild-condition ammonia synthesis
  publication-title: J Energy Chem
– volume: 11
  start-page: 1010
  year: 1919
  end-page: 1013
  ident: b0200
  article-title: Chemical plant for manufacturing sodium cyanide, Saltville, Virginia
  publication-title: Ind Eng Chem
– volume: 93
  start-page: 1581
  year: 2015
  end-page: 1594
  ident: b0005
  article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, Part I: Bakken shale play case study
  publication-title: Energy
– volume: 14
  start-page: 516
  year: 1922
  end-page: 520
  ident: b0215
  article-title: Production of Ammonia by the Sodium Cyanide Method
  publication-title: J Ind Eng Chem
– volume: 85
  start-page: 2642
  year: 2011
  end-page: 2654
  ident: b0110
  article-title: Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure
  publication-title: Solar Energy
– reference: Bosch C, Mittasch A, Wolf H, Stern G, Production of Ammonia, U.S. Patent 1,094,194, April. 1914.
– volume: 2
  start-page: 349
  year: 2018
  end-page: 364
  ident: b0075
  article-title: Metal oxide redox chemistry for chemical looping processes
  publication-title: Nature Rev Chem
– volume: 18
  start-page: 243
  year: 1926
  end-page: 248
  ident: b0225
  article-title: Some Factors Affecting the Fixation of Nitrogen as Sodium Cyanide
  publication-title: Ind Eng Chem
– volume: 6
  start-page: 3965
  year: 2015
  end-page: 3974
  ident: b0100
  article-title: Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage
  publication-title: Chem Sci
– volume: 1
  start-page: 490
  year: 2018
  end-page: 500
  ident: b0060
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nature Catal
– volume: 2
  start-page: 1055
  year: 2018
  end-page: 1074
  ident: b0085
  article-title: Greening Ammonia toward the Solar Ammonia Refinery
  publication-title: Joule
– volume: 112
  start-page: 1107
  year: 2016
  end-page: 1119
  ident: b0130
  article-title: Dynamic optimization of fixed bed chemical-looping combustion processes
  publication-title: Energy
– volume: 46
  start-page: 2042
  year: 2007
  end-page: 2046
  ident: b0190
  article-title: Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses
  publication-title: Ind Eng Chem Res
– volume: 14
  start-page: 559
  year: 2014
  end-page: 571
  ident: b0135
  article-title: Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency
  publication-title: Aerosol and Air Quality Research
– volume: 14
  start-page: 699
  year: 1922
  end-page: 703
  ident: b0210
  article-title: Nitrogen Fixation by the Cyanide Process
  publication-title: J Ind Eng Chem
– volume: 7
  start-page: 3654
  year: 2017
  end-page: 3661
  ident: b0185
  article-title: Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt
  publication-title: ACS Catal
– volume: 3
  start-page: 1719
  year: 2013
  end-page: 1725
  ident: b0180
  article-title: A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides
  publication-title: ACS Catal
– reference: Metso Outotec, HSC Chemistry 10.0.2, Tampere, Finland, 2020.
– reference: Travis AS, Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900–1918), The Seventh Wheeler Lecture, (2014), Report of the Royal Society of Chemistry Historical Group (2016). url:https://tinyurl.com/nitrogenhistorical.
– reference: Goldstein J, Sustainable Ammonia Synthesis,DOE Roundtable Report, Technical Report, U.S. Department of Energy, Office of Science, Dulles, VA, 2016.
– volume: 96
  start-page: 461
  year: 2016
  end-page: 467
  ident: b0025
  article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty
  publication-title: Energy
– volume: 3
  start-page: 1067
  year: 2018
  end-page: 1075
  ident: b0105
  article-title: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers
  publication-title: Nature Energy
– volume: 13
  start-page: 772
  year: 2020
  end-page: 804
  ident: b0080
  article-title: Chemical looping beyond combustion-a perspective
  publication-title: Energy Environ Sci
– reference: Kaiser K, Process of Making Ammonia, U.S. Patent 797,961, Aug. 1905.
– volume: 37
  start-page: 442
  year: 2019
  end-page: 451
  ident: b0095
  article-title: Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition
  publication-title: Chinese J Chem
– volume: 1
  start-page: 98
  year: 1951
  end-page: 104
  ident: b0150
  article-title: Formation of metallic hydrides and nitrides and their significance in the synthesis of ammonia
  publication-title: J Appl Chem
– volume: 18
  start-page: 759
  year: 1940
  end-page: 762
  ident: bib246
  article-title: Chemistry of Cyanamide
  publication-title: News Edition, Am Chem Soc
– volume: 1
  year: 2019
  ident: b0040
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: EnergyChem
– volume: 3
  start-page: 709
  year: 2017
  end-page: 712
  ident: b0035
  article-title: Catalyst: Ammonia as an Energy Carrier
  publication-title: Chem
– volume: 4
  start-page: 3
  year: 2014
  end-page: 10
  ident: b0160
  article-title: Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents
  publication-title: Appl Petrochemical Res
– volume: 29
  start-page: 2373
  year: 2004
  end-page: 2384
  ident: b0065
  article-title: Exergy analysis of industrial ammonia synthesis
  publication-title: Energy
– reference: Retrofit of ammonia plant for improving energy efficiency, Energy 33 (2008) 46–64. doi:10.1016/j.energy.2007.08.011.
– volume: 172
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0120
  article-title: Chemical-looping technologies using circulating fluidized bed systems: Status of development
  publication-title: Fuel Processing Technol
– year: 2016
  ident: b0245
  article-title: CRC Handbook of Chemistry and Physics
– volume: 116
  start-page: 23243
  year: 2012
  end-page: 23251
  ident: b0090
  article-title: An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production
  publication-title: J Phys Chem C
– volume: 8
  start-page: 105
  year: 1967
  end-page: 112
  ident: b0155
  article-title: Ammonia synthesis catalyzed by uranium nitride. I. The reaction mechanism
  publication-title: J Catal
– volume: 28
  start-page: 229
  year: 1932
  end-page: 242
  ident: b0165
  article-title: New experiments on the mechanism of the catalysis of ammonia on tungsten
  publication-title: Trans Faraday Soc
– volume: 20
  start-page: 1376
  year: 2019
  end-page: 1381
  ident: b0020
  article-title: Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides
  publication-title: ChemPhysChem
– volume: 137
  start-page: 234
  year: 2017
  end-page: 250
  ident: b0055
  article-title: Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach
  publication-title: Energy
– volume: 43
  start-page: 111
  year: 1905
  end-page: 115
  ident: b0170
  article-title: Über Bildung von Ammoniak aus den Elementen (Vorläufige Mitteilung)
  publication-title: Zeitschrift für anorganische Chemie
– year: 2012
  ident: b0045
  article-title: Ammonia: Catalysis and Manufacture
– reference: National Minerals Information Center, Commodity Statistics and Information, Technical Report, U.S. Geological Survey, accessed 2020–08-19.
– reference: Aspen Technology Inc., Aspen Plus 10, Bedford, MA, 2020.
– volume: 282
  year: 2021
  ident: b0115
  article-title: Coal direct chemical looping process: 250 kw pilot-scale testing for power generation and carbon capture
  publication-title: Appl Energy
– volume: 42
  start-page: 251
  year: 2012
  end-page: 260
  ident: b0195
  article-title: Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses
  publication-title: Energy
– volume: 27
  start-page: 4119
  year: 2013
  end-page: 4128
  ident: b0125
  article-title: Application of the moving-bed chemical looping process for high methane conversion
  publication-title: Energy Fuels
– reference: Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts, Technical Report, Office of Oil and Natural Gas, Office of Fossil Energy, Washington, DC, 2019.
– volume: 3
  start-page: 1719
  year: 2013
  ident: 10.1016/j.cej.2021.131421_b0180
  article-title: A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides
  publication-title: ACS Catal
  doi: 10.1021/cs400336z
– ident: 10.1016/j.cej.2021.131421_b0010
– volume: 37
  start-page: 442
  year: 2019
  ident: 10.1016/j.cej.2021.131421_b0095
  article-title: Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition
  publication-title: Chinese J Chem
  doi: 10.1002/cjoc.201800586
– volume: 1
  year: 2019
  ident: 10.1016/j.cej.2021.131421_b0040
  article-title: Recent progress in the electrochemical ammonia synthesis under ambient conditions
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2019.100011
– volume: 4
  start-page: 3
  year: 2014
  ident: 10.1016/j.cej.2021.131421_b0160
  article-title: Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents
  publication-title: Appl Petrochemical Res
  doi: 10.1007/s13203-014-0049-y
– ident: 10.1016/j.cej.2021.131421_b0175
– volume: 27
  start-page: 4119
  year: 2013
  ident: 10.1016/j.cej.2021.131421_b0125
  article-title: Application of the moving-bed chemical looping process for high methane conversion
  publication-title: Energy Fuels
  doi: 10.1021/ef3020475
– volume: 18
  start-page: 243
  year: 1926
  ident: 10.1016/j.cej.2021.131421_b0225
  article-title: Some Factors Affecting the Fixation of Nitrogen as Sodium Cyanide
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50195a006
– ident: 10.1016/j.cej.2021.131421_b0230
  doi: 10.1016/S1365-6937(20)30175-1
– volume: 14
  start-page: 516
  year: 1922
  ident: 10.1016/j.cej.2021.131421_b0215
  article-title: Production of Ammonia by the Sodium Cyanide Method
  publication-title: J Ind Eng Chem
  doi: 10.1021/ie50150a017
– ident: 10.1016/j.cej.2021.131421_b0235
– year: 2012
  ident: 10.1016/j.cej.2021.131421_b0045
– volume: 42
  start-page: 251
  year: 2012
  ident: 10.1016/j.cej.2021.131421_b0195
  article-title: Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.062
– ident: 10.1016/j.cej.2021.131421_b0030
– volume: 112
  start-page: 1107
  year: 2016
  ident: 10.1016/j.cej.2021.131421_b0130
  article-title: Dynamic optimization of fixed bed chemical-looping combustion processes
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.031
– volume: 1
  start-page: 98
  year: 1951
  ident: 10.1016/j.cej.2021.131421_b0150
  article-title: Formation of metallic hydrides and nitrides and their significance in the synthesis of ammonia
  publication-title: J Appl Chem
  doi: 10.1002/jctb.5010010303
– volume: 8
  start-page: 105
  year: 1967
  ident: 10.1016/j.cej.2021.131421_b0155
  article-title: Ammonia synthesis catalyzed by uranium nitride. I. The reaction mechanism
  publication-title: J Catal
  doi: 10.1016/0021-9517(67)90292-8
– volume: 3
  start-page: 1067
  year: 2018
  ident: 10.1016/j.cej.2021.131421_b0105
  article-title: Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers
  publication-title: Nature Energy
  doi: 10.1038/s41560-018-0268-z
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.cej.2021.131421_b0120
  article-title: Chemical-looping technologies using circulating fluidized bed systems: Status of development
  publication-title: Fuel Processing Technol
  doi: 10.1016/j.fuproc.2017.11.016
– volume: 20
  start-page: 1376
  year: 2019
  ident: 10.1016/j.cej.2021.131421_b0020
  article-title: Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201801090
– volume: 2
  start-page: 349
  year: 2018
  ident: 10.1016/j.cej.2021.131421_b0075
  article-title: Metal oxide redox chemistry for chemical looping processes
  publication-title: Nature Rev Chem
  doi: 10.1038/s41570-018-0046-2
– volume: 282
  year: 2021
  ident: 10.1016/j.cej.2021.131421_b0115
  article-title: Coal direct chemical looping process: 250 kw pilot-scale testing for power generation and carbon capture
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116065
– volume: 28
  start-page: 229
  year: 1932
  ident: 10.1016/j.cej.2021.131421_b0165
  article-title: New experiments on the mechanism of the catalysis of ammonia on tungsten
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9322800229
– volume: 2
  start-page: 1055
  year: 2018
  ident: 10.1016/j.cej.2021.131421_b0085
  article-title: Greening Ammonia toward the Solar Ammonia Refinery
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
– year: 2016
  ident: 10.1016/j.cej.2021.131421_b0245
– volume: 137
  start-page: 234
  year: 2017
  ident: 10.1016/j.cej.2021.131421_b0055
  article-title: Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.157
– volume: 43
  start-page: 111
  year: 1905
  ident: 10.1016/j.cej.2021.131421_b0170
  article-title: Über Bildung von Ammoniak aus den Elementen (Vorläufige Mitteilung)
  publication-title: Zeitschrift für anorganische Chemie
  doi: 10.1002/zaac.19050430111
– volume: 7
  start-page: 3654
  year: 2017
  ident: 10.1016/j.cej.2021.131421_b0185
  article-title: Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00284
– ident: 10.1016/j.cej.2021.131421_b0220
– volume: 93
  start-page: 1581
  year: 2015
  ident: 10.1016/j.cej.2021.131421_b0005
  article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, Part I: Bakken shale play case study
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.043
– ident: 10.1016/j.cej.2021.131421_b0140
– volume: 13
  start-page: 772
  year: 2020
  ident: 10.1016/j.cej.2021.131421_b0080
  article-title: Chemical looping beyond combustion-a perspective
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE03793D
– volume: 18
  start-page: 759
  year: 1940
  ident: 10.1016/j.cej.2021.131421_bib246
  article-title: Chemistry of Cyanamide
  publication-title: News Edition, Am Chem Soc
– volume: 116
  start-page: 23243
  year: 2012
  ident: 10.1016/j.cej.2021.131421_b0090
  article-title: An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production
  publication-title: J Phys Chem C
  doi: 10.1021/jp307382r
– ident: 10.1016/j.cej.2021.131421_b0240
– volume: 14
  start-page: 559
  year: 2014
  ident: 10.1016/j.cej.2021.131421_b0135
  article-title: Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency
  publication-title: Aerosol and Air Quality Research
  doi: 10.4209/aaqr.2013.06.0198
– volume: 1
  start-page: 490
  year: 2018
  ident: 10.1016/j.cej.2021.131421_b0060
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nature Catal
  doi: 10.1038/s41929-018-0092-7
– volume: 11
  start-page: 1010
  year: 1919
  ident: 10.1016/j.cej.2021.131421_b0200
  article-title: Chemical plant for manufacturing sodium cyanide, Saltville, Virginia
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50119a002
– volume: 12
  start-page: 331
  year: 1920
  ident: 10.1016/j.cej.2021.131421_b0205
  article-title: The production of ammonia and formates from cyanides, ferrocyanides, and cyanized briquets
  publication-title: Ind Eng Chem
  doi: 10.1021/ie50124a009
– ident: 10.1016/j.cej.2021.131421_b0015
– volume: 29
  start-page: 2373
  year: 2004
  ident: 10.1016/j.cej.2021.131421_b0065
  article-title: Exergy analysis of industrial ammonia synthesis
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.036
– volume: 36
  start-page: 25
  year: 2019
  ident: 10.1016/j.cej.2021.131421_b0070
  article-title: Recent progress towards mild-condition ammonia synthesis
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.01.027
– ident: 10.1016/j.cej.2021.131421_b0145
– volume: 14
  start-page: 699
  year: 1922
  ident: 10.1016/j.cej.2021.131421_b0210
  article-title: Nitrogen Fixation by the Cyanide Process
  publication-title: J Ind Eng Chem
  doi: 10.1021/ie50152a008
– volume: 3
  start-page: 709
  year: 2017
  ident: 10.1016/j.cej.2021.131421_b0035
  article-title: Catalyst: Ammonia as an Energy Carrier
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.004
– volume: 6
  start-page: 3965
  year: 2015
  ident: 10.1016/j.cej.2021.131421_b0100
  article-title: Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage
  publication-title: Chem Sci
  doi: 10.1039/C5SC00789E
– ident: 10.1016/j.cej.2021.131421_b0050
  doi: 10.1016/j.energy.2007.08.011
– volume: 85
  start-page: 2642
  year: 2011
  ident: 10.1016/j.cej.2021.131421_b0110
  article-title: Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2011.08.005
– volume: 96
  start-page: 461
  year: 2016
  ident: 10.1016/j.cej.2021.131421_b0025
  article-title: Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.069
– volume: 46
  start-page: 2042
  year: 2007
  ident: 10.1016/j.cej.2021.131421_b0190
  article-title: Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie061550u
SSID ssj0006919
Score 2.4967036
Snippet •Intensified ammonia synthesis is feasible through chemical looping.•Framework systematically evaluates chemical looping ammonia synthesis process...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131421
SubjectTerms Ammonia synthesis
Chemical looping
Process synthesis
Title Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis
URI https://dx.doi.org/10.1016/j.cej.2021.131421
Volume 426
WOSCitedRecordID wos000713670900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPqk6QsfemqQsWRbj2NS0hc0BLKFvRnZkmCXjTfsIw299K93xrK9TtKWttCLWMTKMjMf8ng83zeEvBasFEKnObVOJzSzLKM6TzyFY9DnzkNIYFTTbEIeH6vJRJ-MRt87LszFXNa1urzU5__V1TAHzkbq7F-4u78oTMBvcDqM4HYY_9Txy7OFDZ3m970zbQEsCi1tBUgsCuZirysIOKtONGC-CPQpg3c7NShnAPHharoahrC9xIDbShn2AhTYIMRgoU9IlJ5-na6_BT5xm3vQYpB7ONygAuQq8LOX24KA96ZJ4J5s6GSA3kOE7CCRv_85HuYsOMP6j8DaDIm0G2Sa5uxNVU6VDgKcsQtzSqY05ezKgZ0Fjv2Nwz_kIWZx5WYx7hqzlGWBf31NU_sU98KtOHZZg7DlFtnlMtdwLO4efDyafOof5kI3vWH6e-s-jDclgtc2-nloMwhXxvfJvfY9IzoI-HhARq5-SO4O1CcfkfEVpEQDpEQdUqKFjwZIiTqkRC1SohYpUY-Ux-TLu6Px2w-0bbJBK67lmuaSWcOYL5VUqXJcCuvgnbQyurLOCm6xP5OXpWelSryTrvLcipzBCMF4UqVPyE69qN1TpP9nNuXee16CpbwpjfAi96qU3pfWJXsk6exTVK0CPTZCmRddqeGsAJMWaNIimHSPvOmXnAf5ld_9OeuMXrTxY4gLC0DIr5c9-7dlz8mdLbRfkJ31cuNektvVxXq6Wr5qcfQDWIKVnw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+feasibility+analysis+of+distributed+chemical+looping+ammonia+synthesis&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Burrows%2C+Laron&rft.au=Gao%2C+Pu-Xian&rft.au=Bollas%2C+George+M.&rft.date=2021-12-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=426&rft_id=info:doi/10.1016%2Fj.cej.2021.131421&rft.externalDocID=S1385894721030023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon