On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation

Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 273; s. 948 - 956
Hlavní autor: Atangana, Abdon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.01.2016
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order.
AbstractList Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order.
Author Atangana, Abdon
Author_xml – sequence: 1
  givenname: Abdon
  surname: Atangana
  fullname: Atangana, Abdon
  email: abdonatangana@yahoo.fr
  organization: Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9300 Bloemfontein, South Africa
BookMark eNp9kM1OAjEQxxuDiYA-gLe-wGK7340nQ0RNSLjouRnaaShZutgWjDffwZOvx5O4C548cJrMzP83H_8RGbjWISG3nE044-XdegIbNUkZL7p8wlJ-QYa8rrKkKHMxIEPGRJlkjGVXZBTCmjFWlTwfErNwNK6QOvygxoOKtnXQUI3e7iHaPVJwmsJ221gFfZPGlna7G-sQPJ3ZsEJ_-PoJ1OOJPnx9a2vMLvRifN8dqWtyaaAJePMXx-Rt9vg6fU7mi6eX6cM8UamoYpIjT6HAPGVFhllhwNTGACzTikMtAHleKhQlr1hZLpcctehERgiNBVda19mYVKe5yrcheDRS2Xi8IHqwjeRM9nbJtezskr1dfamzqyP5P3Lr7Qb851nm_sRg99LeopdBWXQKtfWootStPUP_AlXUiac
CitedBy_id crossref_primary_10_1016_j_apm_2016_05_041
crossref_primary_10_1186_s13662_020_02672_3
crossref_primary_10_1002_fld_5078
crossref_primary_10_1016_j_matcom_2021_04_001
crossref_primary_10_1080_09205071_2016_1225521
crossref_primary_10_1016_j_physa_2016_08_072
crossref_primary_10_1016_j_ifacol_2017_08_1343
crossref_primary_10_1016_j_chaos_2021_110981
crossref_primary_10_1038_s41598_022_25127_z
crossref_primary_10_1186_s13662_021_03472_z
crossref_primary_10_1016_j_aml_2018_02_014
crossref_primary_10_1155_2021_6625597
crossref_primary_10_1088_1402_4896_abd796
crossref_primary_10_1515_phys_2015_0048
crossref_primary_10_1016_j_chaos_2019_109583
crossref_primary_10_1140_epjp_i2018_11886_2
crossref_primary_10_1155_2018_8131329
crossref_primary_10_1063_5_0143690
crossref_primary_10_3390_sym11040449
crossref_primary_10_1016_j_chaos_2016_03_027
crossref_primary_10_1016_j_chaos_2016_03_026
crossref_primary_10_1186_s13662_016_0752_3
crossref_primary_10_1515_math_2016_0057
crossref_primary_10_1080_17455030_2016_1158436
crossref_primary_10_1002_num_22266
crossref_primary_10_1038_s41598_025_16977_4
crossref_primary_10_1088_1402_4896_abf67c
crossref_primary_10_2478_ama_2025_0005
crossref_primary_10_1016_j_chaos_2020_110452
crossref_primary_10_1186_s40064_016_2106_8
crossref_primary_10_1186_s13662_021_03480_z
crossref_primary_10_1140_epjp_i2018_11951_x
crossref_primary_10_1016_j_chaos_2021_111042
crossref_primary_10_1016_j_cam_2024_116017
crossref_primary_10_1177_1077546317692943
crossref_primary_10_1002_mma_7166
crossref_primary_10_1016_j_physa_2019_123806
crossref_primary_10_1140_epjp_i2018_11947_6
crossref_primary_10_1002_mma_5375
crossref_primary_10_1002_mma_5410
crossref_primary_10_1080_00207160_2018_1501479
crossref_primary_10_1515_nleng_2015_0032
crossref_primary_10_1155_2020_3842946
crossref_primary_10_1002_num_22156
crossref_primary_10_1016_j_jaubas_2016_10_002
crossref_primary_10_1142_S0218348X25401188
crossref_primary_10_1002_mma_6506
crossref_primary_10_1515_zna_2024_0201
crossref_primary_10_1002_asjc_2636
crossref_primary_10_1016_j_neucom_2016_07_013
crossref_primary_10_1016_j_cam_2016_05_019
crossref_primary_10_1155_2022_6680319
crossref_primary_10_1108_COMPEL_09_2022_0326
crossref_primary_10_1007_s00366_020_01029_4
crossref_primary_10_32604_cmc_2020_012457
crossref_primary_10_1016_j_jcp_2020_110083
crossref_primary_10_1016_j_ijnonlinmec_2018_10_001
crossref_primary_10_1186_s13662_016_0891_6
crossref_primary_10_1088_1402_4896_ad9969
crossref_primary_10_3390_e18040100
crossref_primary_10_1515_ijnsns_2018_0253
crossref_primary_10_1515_zna_2020_0322
crossref_primary_10_1186_s13662_020_02690_1
crossref_primary_10_1002_htj_22836
crossref_primary_10_1002_mma_6299
crossref_primary_10_1016_j_chaos_2016_06_007
crossref_primary_10_1002_mma_6334
crossref_primary_10_3389_fmats_2023_1143612
crossref_primary_10_1155_2021_3230272
crossref_primary_10_1140_epjp_i2018_11924_1
crossref_primary_10_1515_math_2023_0105
crossref_primary_10_3390_math7040374
crossref_primary_10_1080_17455030_2022_2038816
crossref_primary_10_1108_COMPEL_11_2022_0380
crossref_primary_10_1002_mma_7305
crossref_primary_10_1007_s12215_021_00638_2
crossref_primary_10_1007_s40314_018_0627_1
crossref_primary_10_1016_j_amc_2018_04_032
crossref_primary_10_1155_2022_6174688
crossref_primary_10_1016_j_csite_2025_105946
crossref_primary_10_1016_j_cjph_2022_10_002
crossref_primary_10_1007_s10470_018_1371_6
crossref_primary_10_1007_s41478_020_00292_4
crossref_primary_10_3389_fphy_2020_00064
crossref_primary_10_2298_TSCI23S1009N
crossref_primary_10_1007_s13370_019_00752_6
crossref_primary_10_1002_mma_10366
crossref_primary_10_3390_sym12101653
crossref_primary_10_1155_2021_8231828
crossref_primary_10_1515_ijnsns_2021_0258
crossref_primary_10_1002_mma_4270
crossref_primary_10_1108_COMPEL_11_2022_0390
crossref_primary_10_1002_mma_6568
crossref_primary_10_1002_num_22332
crossref_primary_10_3390_computation8030082
crossref_primary_10_1002_cta_2564
crossref_primary_10_1007_s12190_025_02531_y
crossref_primary_10_1515_phys_2016_0008
crossref_primary_10_1155_2021_6642957
crossref_primary_10_1515_phys_2022_0019
crossref_primary_10_1016_j_chaos_2021_110736
crossref_primary_10_1007_s10559_017_9975_x
crossref_primary_10_1016_j_chaos_2018_10_013
crossref_primary_10_1186_s13662_021_03262_7
crossref_primary_10_1016_j_chaos_2016_02_012
crossref_primary_10_1016_j_chaos_2020_110021
crossref_primary_10_1016_j_cjph_2021_09_019
crossref_primary_10_1016_j_chaos_2018_09_009
crossref_primary_10_1002_mma_4414
crossref_primary_10_1186_s40064_016_1711_x
crossref_primary_10_1007_s00521_016_2815_5
crossref_primary_10_1007_s41478_022_00419_9
crossref_primary_10_1139_cjp_2018_0602
crossref_primary_10_1140_epjp_i2017_11711_6
crossref_primary_10_1016_j_chaos_2016_12_025
crossref_primary_10_1186_s13662_018_1596_9
crossref_primary_10_1186_s13662_021_03540_4
crossref_primary_10_2478_awutm_2023_0007
crossref_primary_10_1515_phys_2023_0161
crossref_primary_10_1080_00207160_2017_1290434
crossref_primary_10_1063_5_0272781
crossref_primary_10_1002_num_22621
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_3390_fractalfract1010017
crossref_primary_10_1002_num_22197
crossref_primary_10_1088_1402_4896_abab39
crossref_primary_10_1140_epjp_i2018_12254_0
crossref_primary_10_1007_s10973_020_10287_9
crossref_primary_10_1140_epjp_i2016_16377_x
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1016_j_ijnonlinmec_2016_05_001
crossref_primary_10_1016_j_jksus_2018_07_007
crossref_primary_10_3389_fphy_2024_1490664
crossref_primary_10_1016_j_physa_2018_04_092
crossref_primary_10_1140_epjp_s13360_021_01610_w
crossref_primary_10_1002_mma_10989
crossref_primary_10_1016_j_chaos_2019_109555
crossref_primary_10_1016_j_chaos_2019_109556
crossref_primary_10_1080_17455030_2022_2039416
crossref_primary_10_3390_sym15030634
crossref_primary_10_1515_math_2017_0003
crossref_primary_10_1007_s40065_020_00293_y
crossref_primary_10_1016_j_chaos_2017_07_016
crossref_primary_10_1016_j_cjph_2020_09_032
crossref_primary_10_2478_amsil_2023_0009
crossref_primary_10_1177_1687814017690069
crossref_primary_10_1016_j_chaos_2018_08_026
crossref_primary_10_1515_phys_2017_0005
crossref_primary_10_1002_num_22525
crossref_primary_10_1002_mma_7228
crossref_primary_10_1155_2023_7906656
crossref_primary_10_1002_num_22366
crossref_primary_10_1016_j_fss_2021_04_012
crossref_primary_10_1002_mma_7507
crossref_primary_10_1016_j_chaos_2021_110886
crossref_primary_10_1038_s41598_024_70596_z
crossref_primary_10_1016_j_jcp_2016_04_009
crossref_primary_10_1002_num_22126
crossref_primary_10_1016_j_chaos_2018_09_036
crossref_primary_10_2298_TSCI23S1287P
crossref_primary_10_3846_mma_2019_005
crossref_primary_10_1016_j_chaos_2018_09_038
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1186_s13662_020_03042_9
crossref_primary_10_1140_epjp_i2016_16401_3
crossref_primary_10_3390_polym13010027
crossref_primary_10_1007_s10973_018_7054_9
crossref_primary_10_1186_s13662_016_0908_1
crossref_primary_10_1002_htj_22647
crossref_primary_10_1140_epjp_i2018_11953_8
crossref_primary_10_1186_s40064_016_2564_z
crossref_primary_10_1007_s40995_016_0136_2
crossref_primary_10_1088_1402_4896_ad1da5
crossref_primary_10_3934_naco_2024030
crossref_primary_10_1186_s13662_020_02632_x
crossref_primary_10_1016_j_camwa_2017_07_040
crossref_primary_10_1061__ASCE_EM_1943_7889_0001091
crossref_primary_10_1140_epjp_i2018_12315_4
crossref_primary_10_1615_JPorMedia_2021034897
crossref_primary_10_1007_s12517_015_2060_8
crossref_primary_10_1002_num_22650
crossref_primary_10_1080_17455030_2021_2009152
crossref_primary_10_1002_num_22655
crossref_primary_10_1016_j_chaos_2019_109454
crossref_primary_10_1007_s11587_024_00861_w
crossref_primary_10_1140_epjp_i2017_11434_8
Cites_doi 10.1111/j.1365-246X.1967.tb02303.x
10.1016/S0377-0427(01)00356-9
10.1016/j.physa.2015.06.036
10.1515/IJNSNS.2006.7.1.27
10.3390/e17064439
10.1016/S0895-7177(97)00015-0
10.1109/81.989172
10.1088/0305-4470/38/42/L03
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2015.10.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 956
ExternalDocumentID 10_1016_j_amc_2015_10_021
S0096300315013533
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-4e12a5e42053e35faf8ffaab271a89ae146ce9617066bb1ed935ff99de51cdd83
ISICitedReferencesCount 483
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365613400083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Tue Nov 18 21:55:52 EST 2025
Sat Nov 29 02:52:16 EST 2025
Fri Feb 23 02:31:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Caputo–Fabrizio fractional derivative
New theorems and properties
Nonlinear equation
Fixed point theorem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-4e12a5e42053e35faf8ffaab271a89ae146ce9617066bb1ed935ff99de51cdd83
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2015_10_021
crossref_primary_10_1016_j_amc_2015_10_021
elsevier_sciencedirect_doi_10_1016_j_amc_2015_10_021
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Podlubny (bib0003) 2002; 5
Chen, Moore (bib0005) 2002; 49
Odibat, Momani (bib0008) 2006; 7
Al-Khaled (bib0010) 2001; 137
Alquran, Al Khaled, Sardar, Chattopadhyay (bib0011) 2015; 438
Atangana, Badr (bib0015) 2015; 7
Caputo (bib0002) 1967; 13
Atangana, Badr (bib0014) 2015; 17
Al Khaled (bib0013) 2015; 60
Kilbas, Srivastava, Trujillo (bib0001) 2006
Losada, Nieto (bib0007) 2015; 1
Roessler, Huessner (bib0009) 1997; 25
Caputo, Fabrizio (bib0006) 2015; 1
Al Khaled (bib0012) 2014; 41
Chechkin, Gorenflo, Sokolov (bib0004) 2005; 38
Atangana (10.1016/j.amc.2015.10.021_bib0014) 2015; 17
Alquran (10.1016/j.amc.2015.10.021_bib0011) 2015; 438
Chen (10.1016/j.amc.2015.10.021_bib0005) 2002; 49
Losada (10.1016/j.amc.2015.10.021_bib0007) 2015; 1
Al-Khaled (10.1016/j.amc.2015.10.021_bib0010) 2001; 137
Atangana (10.1016/j.amc.2015.10.021_bib0015) 2015; 7
Caputo (10.1016/j.amc.2015.10.021_bib0002) 1967; 13
Al Khaled (10.1016/j.amc.2015.10.021_bib0013) 2015; 60
Podlubny (10.1016/j.amc.2015.10.021_bib0003) 2002; 5
Al Khaled (10.1016/j.amc.2015.10.021_bib0012) 2014; 41
Roessler (10.1016/j.amc.2015.10.021_bib0009) 1997; 25
Chechkin (10.1016/j.amc.2015.10.021_bib0004) 2005; 38
Odibat (10.1016/j.amc.2015.10.021_bib0008) 2006; 7
Kilbas (10.1016/j.amc.2015.10.021_bib0001) 2006
Caputo (10.1016/j.amc.2015.10.021_bib0006) 2015; 1
References_xml – volume: 5
  start-page: 367
  year: 2002
  end-page: 386
  ident: bib0003
  article-title: Geometric and physical interpretation of fractional integration and fractional differentiation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib0015
  article-title: Extension of the RLC electrical circuit to fractional derivative without singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 25
  start-page: 57
  year: 1997
  end-page: 67
  ident: bib0009
  article-title: Numerical solution of the
  publication-title: Math. Comput. Model.
– volume: 38
  start-page: L679
  year: 2005
  end-page: L684
  ident: bib0004
  article-title: Fractional diffusion in inhomogeneous media
  publication-title: J. Phys. A Math. Gen.
– volume: 1
  start-page: 87
  year: 2015
  end-page: 92
  ident: bib0007
  article-title: Properties of the new fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 7
  start-page: 27
  year: 2006
  end-page: 34
  ident: bib0008
  article-title: Application of variational iteration method to nonlinear differential equation of fractional order
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 60
  start-page: 99
  year: 2015
  end-page: 110
  ident: bib0013
  article-title: Numerical solution of time-fractional partial differential equations using Sumudu decomposition method
  publication-title: Rom. J. Phys.
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: bib0002
  article-title: Linear models of dissipation whose Q is almost frequency independent, part ii
  publication-title: Geophys. J. Int.
– volume: 49
  start-page: 363
  year: 2002
  end-page: 367
  ident: bib0005
  article-title: Discretization schemes for fractional-order differentiators and integrators
  publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
– volume: 41
  start-page: 234
  year: 2014
  end-page: 250
  ident: bib0012
  article-title: Sinc–Legendre collocation method for the non-linear Burgers’ fractional equation
  publication-title: Ann. Univ. Craiova Math. Comput. Sci. Ser.
– volume: 1
  start-page: 73
  year: 2015
  end-page: 85
  ident: bib0006
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– year: 2006
  ident: bib0001
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 137
  start-page: 245
  year: 2001
  end-page: 255
  ident: bib0010
  article-title: Numerical study of Fisher’s reaction–diffusion equation by the Sinc collocation method
  publication-title: J. Comput. Appl. Math.
– volume: 17
  start-page: 4439
  year: 2015
  end-page: 4453
  ident: bib0014
  article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
– volume: 438
  start-page: 81
  year: 2015
  end-page: 93
  ident: bib0011
  article-title: Revisited Fisher’s equation in a new outlook: a fractional derivative approach
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 13
  start-page: 529
  issue: 5
  year: 1967
  ident: 10.1016/j.amc.2015.10.021_bib0002
  article-title: Linear models of dissipation whose Q is almost frequency independent, part ii
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– volume: 137
  start-page: 245
  year: 2001
  ident: 10.1016/j.amc.2015.10.021_bib0010
  article-title: Numerical study of Fisher’s reaction–diffusion equation by the Sinc collocation method
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00356-9
– volume: 1
  start-page: 73
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0006
  article-title: A new definition of fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 438
  start-page: 81
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0011
  article-title: Revisited Fisher’s equation in a new outlook: a fractional derivative approach
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2015.06.036
– volume: 7
  start-page: 27
  issue: 1
  year: 2006
  ident: 10.1016/j.amc.2015.10.021_bib0008
  article-title: Application of variational iteration method to nonlinear differential equation of fractional order
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2006.7.1.27
– volume: 17
  start-page: 4439
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0014
  article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel
  publication-title: Entropy
  doi: 10.3390/e17064439
– year: 2006
  ident: 10.1016/j.amc.2015.10.021_bib0001
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0015
  article-title: Extension of the RLC electrical circuit to fractional derivative without singular kernel
  publication-title: Adv. Mech. Eng.
– volume: 25
  start-page: 57
  issue: 3
  year: 1997
  ident: 10.1016/j.amc.2015.10.021_bib0009
  article-title: Numerical solution of the 1+2 dimensional Fisher’s equation by finite elements and the Galerkin method
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(97)00015-0
– volume: 49
  start-page: 363
  issue: 3
  year: 2002
  ident: 10.1016/j.amc.2015.10.021_bib0005
  article-title: Discretization schemes for fractional-order differentiators and integrators
  publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
  doi: 10.1109/81.989172
– volume: 1
  start-page: 87
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0007
  article-title: Properties of the new fractional derivative without singular kernel
  publication-title: Progr. Fract. Differ. Appl.
– volume: 38
  start-page: L679
  issue: 42
  year: 2005
  ident: 10.1016/j.amc.2015.10.021_bib0004
  article-title: Fractional diffusion in inhomogeneous media
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/38/42/L03
– volume: 41
  start-page: 234
  issue: 2
  year: 2014
  ident: 10.1016/j.amc.2015.10.021_bib0012
  article-title: Sinc–Legendre collocation method for the non-linear Burgers’ fractional equation
  publication-title: Ann. Univ. Craiova Math. Comput. Sci. Ser.
– volume: 5
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.amc.2015.10.021_bib0003
  article-title: Geometric and physical interpretation of fractional integration and fractional differentiation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 60
  start-page: 99
  issue: 1–2
  year: 2015
  ident: 10.1016/j.amc.2015.10.021_bib0013
  article-title: Numerical solution of time-fractional partial differential equations using Sumudu decomposition method
  publication-title: Rom. J. Phys.
SSID ssj0007614
Score 2.6280282
Snippet Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 948
SubjectTerms Caputo–Fabrizio fractional derivative
Fixed point theorem
New theorems and properties
Nonlinear equation
Title On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation
URI https://dx.doi.org/10.1016/j.amc.2015.10.021
Volume 273
WOSCitedRecordID wos000365613400083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQcCiHqhQQlIJ86IlVUOI87DmuKipAKnAAaW-REzsVCMKyD8SR_8Cpf49f0nFsJwuUqhy4RBtv4jy-0czEM_MNId_Q6EWqylQgiygOEsl4UCjQQciZDllpQodl02yCHx2JwQBOXHXJuGknwOta3N3B8F2hxjEE25TOvgHudlIcwN8IOm4Rdtz-F_DHNnER3eVeNbJlCyYQg5e-tSTfDT1rF7c23mdtCTPkqOdaobsUCDBBBTuHH4pNS5WpWWPr6Ztph6tnsnVe7VVLBzv2pXPD6dOwfx_90l_S1qT1C-X-cCsQUbMCYWswvVYFkz8XxrNalfF4Ri-CpdN0JhYsl_gL7W0XEi525ZUhl4zSXZN3ZwuonzJlP7NgbV6hT1m7yHGK3EyB-3loiAYWGE8B1d5C_2BvcNgaa55Z-nf_CD7w3aQAPruPv7suM-7I6Sfy0X1H0L7Ff5nM6fozWfrZvfUVUh3XFHcpSgLtJIF2kkARGDojCXRyTVtJoFYSHu9_j6mXgcf7hxZ96tFfJWc_9k6_7weurUZQMuCTINERk6lOGOpfHaeVrERVSVkwHkkBUqPtLDUYov4sK4pIK8CDKgCl06hUSsRrZB5vRq8TKjjPdAIFZ6FKEqkFfn5mIoUQYsGUjjdI6N9YXjrOedP65DJ_FakNstOeMrSEK_86OPEw5M5jtJ5gjiL1-mlf3nKNTfKhE_qvZH4ymuotsljeTs7Ho20nT38AwimOdA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+new+fractional+derivative+and+application+to+nonlinear+Fisher%E2%80%99s+reaction%E2%80%93diffusion+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Atangana%2C+Abdon&rft.date=2016-01-15&rft.issn=0096-3003&rft.volume=273&rft.spage=948&rft.epage=956&rft_id=info:doi/10.1016%2Fj.amc.2015.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2015_10_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon