On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation
Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative met...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 273; s. 948 - 956 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.01.2016
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order. |
|---|---|
| AbstractList | Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order. |
| Author | Atangana, Abdon |
| Author_xml | – sequence: 1 givenname: Abdon surname: Atangana fullname: Atangana, Abdon email: abdonatangana@yahoo.fr organization: Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, 9300 Bloemfontein, South Africa |
| BookMark | eNp9kM1OAjEQxxuDiYA-gLe-wGK7340nQ0RNSLjouRnaaShZutgWjDffwZOvx5O4C548cJrMzP83H_8RGbjWISG3nE044-XdegIbNUkZL7p8wlJ-QYa8rrKkKHMxIEPGRJlkjGVXZBTCmjFWlTwfErNwNK6QOvygxoOKtnXQUI3e7iHaPVJwmsJ221gFfZPGlna7G-sQPJ3ZsEJ_-PoJ1OOJPnx9a2vMLvRifN8dqWtyaaAJePMXx-Rt9vg6fU7mi6eX6cM8UamoYpIjT6HAPGVFhllhwNTGACzTikMtAHleKhQlr1hZLpcctehERgiNBVda19mYVKe5yrcheDRS2Xi8IHqwjeRM9nbJtezskr1dfamzqyP5P3Lr7Qb851nm_sRg99LeopdBWXQKtfWootStPUP_AlXUiac |
| CitedBy_id | crossref_primary_10_1016_j_apm_2016_05_041 crossref_primary_10_1186_s13662_020_02672_3 crossref_primary_10_1002_fld_5078 crossref_primary_10_1016_j_matcom_2021_04_001 crossref_primary_10_1080_09205071_2016_1225521 crossref_primary_10_1016_j_physa_2016_08_072 crossref_primary_10_1016_j_ifacol_2017_08_1343 crossref_primary_10_1016_j_chaos_2021_110981 crossref_primary_10_1038_s41598_022_25127_z crossref_primary_10_1186_s13662_021_03472_z crossref_primary_10_1016_j_aml_2018_02_014 crossref_primary_10_1155_2021_6625597 crossref_primary_10_1088_1402_4896_abd796 crossref_primary_10_1515_phys_2015_0048 crossref_primary_10_1016_j_chaos_2019_109583 crossref_primary_10_1140_epjp_i2018_11886_2 crossref_primary_10_1155_2018_8131329 crossref_primary_10_1063_5_0143690 crossref_primary_10_3390_sym11040449 crossref_primary_10_1016_j_chaos_2016_03_027 crossref_primary_10_1016_j_chaos_2016_03_026 crossref_primary_10_1186_s13662_016_0752_3 crossref_primary_10_1515_math_2016_0057 crossref_primary_10_1080_17455030_2016_1158436 crossref_primary_10_1002_num_22266 crossref_primary_10_1038_s41598_025_16977_4 crossref_primary_10_1088_1402_4896_abf67c crossref_primary_10_2478_ama_2025_0005 crossref_primary_10_1016_j_chaos_2020_110452 crossref_primary_10_1186_s40064_016_2106_8 crossref_primary_10_1186_s13662_021_03480_z crossref_primary_10_1140_epjp_i2018_11951_x crossref_primary_10_1016_j_chaos_2021_111042 crossref_primary_10_1016_j_cam_2024_116017 crossref_primary_10_1177_1077546317692943 crossref_primary_10_1002_mma_7166 crossref_primary_10_1016_j_physa_2019_123806 crossref_primary_10_1140_epjp_i2018_11947_6 crossref_primary_10_1002_mma_5375 crossref_primary_10_1002_mma_5410 crossref_primary_10_1080_00207160_2018_1501479 crossref_primary_10_1515_nleng_2015_0032 crossref_primary_10_1155_2020_3842946 crossref_primary_10_1002_num_22156 crossref_primary_10_1016_j_jaubas_2016_10_002 crossref_primary_10_1142_S0218348X25401188 crossref_primary_10_1002_mma_6506 crossref_primary_10_1515_zna_2024_0201 crossref_primary_10_1002_asjc_2636 crossref_primary_10_1016_j_neucom_2016_07_013 crossref_primary_10_1016_j_cam_2016_05_019 crossref_primary_10_1155_2022_6680319 crossref_primary_10_1108_COMPEL_09_2022_0326 crossref_primary_10_1007_s00366_020_01029_4 crossref_primary_10_32604_cmc_2020_012457 crossref_primary_10_1016_j_jcp_2020_110083 crossref_primary_10_1016_j_ijnonlinmec_2018_10_001 crossref_primary_10_1186_s13662_016_0891_6 crossref_primary_10_1088_1402_4896_ad9969 crossref_primary_10_3390_e18040100 crossref_primary_10_1515_ijnsns_2018_0253 crossref_primary_10_1515_zna_2020_0322 crossref_primary_10_1186_s13662_020_02690_1 crossref_primary_10_1002_htj_22836 crossref_primary_10_1002_mma_6299 crossref_primary_10_1016_j_chaos_2016_06_007 crossref_primary_10_1002_mma_6334 crossref_primary_10_3389_fmats_2023_1143612 crossref_primary_10_1155_2021_3230272 crossref_primary_10_1140_epjp_i2018_11924_1 crossref_primary_10_1515_math_2023_0105 crossref_primary_10_3390_math7040374 crossref_primary_10_1080_17455030_2022_2038816 crossref_primary_10_1108_COMPEL_11_2022_0380 crossref_primary_10_1002_mma_7305 crossref_primary_10_1007_s12215_021_00638_2 crossref_primary_10_1007_s40314_018_0627_1 crossref_primary_10_1016_j_amc_2018_04_032 crossref_primary_10_1155_2022_6174688 crossref_primary_10_1016_j_csite_2025_105946 crossref_primary_10_1016_j_cjph_2022_10_002 crossref_primary_10_1007_s10470_018_1371_6 crossref_primary_10_1007_s41478_020_00292_4 crossref_primary_10_3389_fphy_2020_00064 crossref_primary_10_2298_TSCI23S1009N crossref_primary_10_1007_s13370_019_00752_6 crossref_primary_10_1002_mma_10366 crossref_primary_10_3390_sym12101653 crossref_primary_10_1155_2021_8231828 crossref_primary_10_1515_ijnsns_2021_0258 crossref_primary_10_1002_mma_4270 crossref_primary_10_1108_COMPEL_11_2022_0390 crossref_primary_10_1002_mma_6568 crossref_primary_10_1002_num_22332 crossref_primary_10_3390_computation8030082 crossref_primary_10_1002_cta_2564 crossref_primary_10_1007_s12190_025_02531_y crossref_primary_10_1515_phys_2016_0008 crossref_primary_10_1155_2021_6642957 crossref_primary_10_1515_phys_2022_0019 crossref_primary_10_1016_j_chaos_2021_110736 crossref_primary_10_1007_s10559_017_9975_x crossref_primary_10_1016_j_chaos_2018_10_013 crossref_primary_10_1186_s13662_021_03262_7 crossref_primary_10_1016_j_chaos_2016_02_012 crossref_primary_10_1016_j_chaos_2020_110021 crossref_primary_10_1016_j_cjph_2021_09_019 crossref_primary_10_1016_j_chaos_2018_09_009 crossref_primary_10_1002_mma_4414 crossref_primary_10_1186_s40064_016_1711_x crossref_primary_10_1007_s00521_016_2815_5 crossref_primary_10_1007_s41478_022_00419_9 crossref_primary_10_1139_cjp_2018_0602 crossref_primary_10_1140_epjp_i2017_11711_6 crossref_primary_10_1016_j_chaos_2016_12_025 crossref_primary_10_1186_s13662_018_1596_9 crossref_primary_10_1186_s13662_021_03540_4 crossref_primary_10_2478_awutm_2023_0007 crossref_primary_10_1515_phys_2023_0161 crossref_primary_10_1080_00207160_2017_1290434 crossref_primary_10_1063_5_0272781 crossref_primary_10_1002_num_22621 crossref_primary_10_1016_j_chaos_2021_111127 crossref_primary_10_3390_fractalfract1010017 crossref_primary_10_1002_num_22197 crossref_primary_10_1088_1402_4896_abab39 crossref_primary_10_1140_epjp_i2018_12254_0 crossref_primary_10_1007_s10973_020_10287_9 crossref_primary_10_1140_epjp_i2016_16377_x crossref_primary_10_1016_j_chaos_2018_10_007 crossref_primary_10_1016_j_ijnonlinmec_2016_05_001 crossref_primary_10_1016_j_jksus_2018_07_007 crossref_primary_10_3389_fphy_2024_1490664 crossref_primary_10_1016_j_physa_2018_04_092 crossref_primary_10_1140_epjp_s13360_021_01610_w crossref_primary_10_1002_mma_10989 crossref_primary_10_1016_j_chaos_2019_109555 crossref_primary_10_1016_j_chaos_2019_109556 crossref_primary_10_1080_17455030_2022_2039416 crossref_primary_10_3390_sym15030634 crossref_primary_10_1515_math_2017_0003 crossref_primary_10_1007_s40065_020_00293_y crossref_primary_10_1016_j_chaos_2017_07_016 crossref_primary_10_1016_j_cjph_2020_09_032 crossref_primary_10_2478_amsil_2023_0009 crossref_primary_10_1177_1687814017690069 crossref_primary_10_1016_j_chaos_2018_08_026 crossref_primary_10_1515_phys_2017_0005 crossref_primary_10_1002_num_22525 crossref_primary_10_1002_mma_7228 crossref_primary_10_1155_2023_7906656 crossref_primary_10_1002_num_22366 crossref_primary_10_1016_j_fss_2021_04_012 crossref_primary_10_1002_mma_7507 crossref_primary_10_1016_j_chaos_2021_110886 crossref_primary_10_1038_s41598_024_70596_z crossref_primary_10_1016_j_jcp_2016_04_009 crossref_primary_10_1002_num_22126 crossref_primary_10_1016_j_chaos_2018_09_036 crossref_primary_10_2298_TSCI23S1287P crossref_primary_10_3846_mma_2019_005 crossref_primary_10_1016_j_chaos_2018_09_038 crossref_primary_10_1016_j_chaos_2021_110891 crossref_primary_10_1186_s13662_020_03042_9 crossref_primary_10_1140_epjp_i2016_16401_3 crossref_primary_10_3390_polym13010027 crossref_primary_10_1007_s10973_018_7054_9 crossref_primary_10_1186_s13662_016_0908_1 crossref_primary_10_1002_htj_22647 crossref_primary_10_1140_epjp_i2018_11953_8 crossref_primary_10_1186_s40064_016_2564_z crossref_primary_10_1007_s40995_016_0136_2 crossref_primary_10_1088_1402_4896_ad1da5 crossref_primary_10_3934_naco_2024030 crossref_primary_10_1186_s13662_020_02632_x crossref_primary_10_1016_j_camwa_2017_07_040 crossref_primary_10_1061__ASCE_EM_1943_7889_0001091 crossref_primary_10_1140_epjp_i2018_12315_4 crossref_primary_10_1615_JPorMedia_2021034897 crossref_primary_10_1007_s12517_015_2060_8 crossref_primary_10_1002_num_22650 crossref_primary_10_1080_17455030_2021_2009152 crossref_primary_10_1002_num_22655 crossref_primary_10_1016_j_chaos_2019_109454 crossref_primary_10_1007_s11587_024_00861_w crossref_primary_10_1140_epjp_i2017_11434_8 |
| Cites_doi | 10.1111/j.1365-246X.1967.tb02303.x 10.1016/S0377-0427(01)00356-9 10.1016/j.physa.2015.06.036 10.1515/IJNSNS.2006.7.1.27 10.3390/e17064439 10.1016/S0895-7177(97)00015-0 10.1109/81.989172 10.1088/0305-4470/38/42/L03 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2015.10.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-5649 |
| EndPage | 956 |
| ExternalDocumentID | 10_1016_j_amc_2015_10_021 S0096300315013533 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-4e12a5e42053e35faf8ffaab271a89ae146ce9617066bb1ed935ff99de51cdd83 |
| ISICitedReferencesCount | 483 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365613400083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Tue Nov 18 21:55:52 EST 2025 Sat Nov 29 02:52:16 EST 2025 Fri Feb 23 02:31:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Caputo–Fabrizio fractional derivative New theorems and properties Nonlinear equation Fixed point theorem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-4e12a5e42053e35faf8ffaab271a89ae146ce9617066bb1ed935ff99de51cdd83 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_amc_2015_10_021 crossref_primary_10_1016_j_amc_2015_10_021 elsevier_sciencedirect_doi_10_1016_j_amc_2015_10_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-15 |
| PublicationDateYYYYMMDD | 2016-01-15 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Podlubny (bib0003) 2002; 5 Chen, Moore (bib0005) 2002; 49 Odibat, Momani (bib0008) 2006; 7 Al-Khaled (bib0010) 2001; 137 Alquran, Al Khaled, Sardar, Chattopadhyay (bib0011) 2015; 438 Atangana, Badr (bib0015) 2015; 7 Caputo (bib0002) 1967; 13 Atangana, Badr (bib0014) 2015; 17 Al Khaled (bib0013) 2015; 60 Kilbas, Srivastava, Trujillo (bib0001) 2006 Losada, Nieto (bib0007) 2015; 1 Roessler, Huessner (bib0009) 1997; 25 Caputo, Fabrizio (bib0006) 2015; 1 Al Khaled (bib0012) 2014; 41 Chechkin, Gorenflo, Sokolov (bib0004) 2005; 38 Atangana (10.1016/j.amc.2015.10.021_bib0014) 2015; 17 Alquran (10.1016/j.amc.2015.10.021_bib0011) 2015; 438 Chen (10.1016/j.amc.2015.10.021_bib0005) 2002; 49 Losada (10.1016/j.amc.2015.10.021_bib0007) 2015; 1 Al-Khaled (10.1016/j.amc.2015.10.021_bib0010) 2001; 137 Atangana (10.1016/j.amc.2015.10.021_bib0015) 2015; 7 Caputo (10.1016/j.amc.2015.10.021_bib0002) 1967; 13 Al Khaled (10.1016/j.amc.2015.10.021_bib0013) 2015; 60 Podlubny (10.1016/j.amc.2015.10.021_bib0003) 2002; 5 Al Khaled (10.1016/j.amc.2015.10.021_bib0012) 2014; 41 Roessler (10.1016/j.amc.2015.10.021_bib0009) 1997; 25 Chechkin (10.1016/j.amc.2015.10.021_bib0004) 2005; 38 Odibat (10.1016/j.amc.2015.10.021_bib0008) 2006; 7 Kilbas (10.1016/j.amc.2015.10.021_bib0001) 2006 Caputo (10.1016/j.amc.2015.10.021_bib0006) 2015; 1 |
| References_xml | – volume: 5 start-page: 367 year: 2002 end-page: 386 ident: bib0003 article-title: Geometric and physical interpretation of fractional integration and fractional differentiation publication-title: Fract. Calc. Appl. Anal. – volume: 7 start-page: 1 year: 2015 end-page: 6 ident: bib0015 article-title: Extension of the RLC electrical circuit to fractional derivative without singular kernel publication-title: Adv. Mech. Eng. – volume: 25 start-page: 57 year: 1997 end-page: 67 ident: bib0009 article-title: Numerical solution of the publication-title: Math. Comput. Model. – volume: 38 start-page: L679 year: 2005 end-page: L684 ident: bib0004 article-title: Fractional diffusion in inhomogeneous media publication-title: J. Phys. A Math. Gen. – volume: 1 start-page: 87 year: 2015 end-page: 92 ident: bib0007 article-title: Properties of the new fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – volume: 7 start-page: 27 year: 2006 end-page: 34 ident: bib0008 article-title: Application of variational iteration method to nonlinear differential equation of fractional order publication-title: Int. J. Nonlinear Sci. Numer. Simul. – volume: 60 start-page: 99 year: 2015 end-page: 110 ident: bib0013 article-title: Numerical solution of time-fractional partial differential equations using Sumudu decomposition method publication-title: Rom. J. Phys. – volume: 13 start-page: 529 year: 1967 end-page: 539 ident: bib0002 article-title: Linear models of dissipation whose Q is almost frequency independent, part ii publication-title: Geophys. J. Int. – volume: 49 start-page: 363 year: 2002 end-page: 367 ident: bib0005 article-title: Discretization schemes for fractional-order differentiators and integrators publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl. – volume: 41 start-page: 234 year: 2014 end-page: 250 ident: bib0012 article-title: Sinc–Legendre collocation method for the non-linear Burgers’ fractional equation publication-title: Ann. Univ. Craiova Math. Comput. Sci. Ser. – volume: 1 start-page: 73 year: 2015 end-page: 85 ident: bib0006 article-title: A new definition of fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – year: 2006 ident: bib0001 publication-title: Theory and Applications of Fractional Differential Equations – volume: 137 start-page: 245 year: 2001 end-page: 255 ident: bib0010 article-title: Numerical study of Fisher’s reaction–diffusion equation by the Sinc collocation method publication-title: J. Comput. Appl. Math. – volume: 17 start-page: 4439 year: 2015 end-page: 4453 ident: bib0014 article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel publication-title: Entropy – volume: 438 start-page: 81 year: 2015 end-page: 93 ident: bib0011 article-title: Revisited Fisher’s equation in a new outlook: a fractional derivative approach publication-title: Phys. A Stat. Mech. Appl. – volume: 13 start-page: 529 issue: 5 year: 1967 ident: 10.1016/j.amc.2015.10.021_bib0002 article-title: Linear models of dissipation whose Q is almost frequency independent, part ii publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1967.tb02303.x – volume: 137 start-page: 245 year: 2001 ident: 10.1016/j.amc.2015.10.021_bib0010 article-title: Numerical study of Fisher’s reaction–diffusion equation by the Sinc collocation method publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(01)00356-9 – volume: 1 start-page: 73 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0006 article-title: A new definition of fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – volume: 438 start-page: 81 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0011 article-title: Revisited Fisher’s equation in a new outlook: a fractional derivative approach publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2015.06.036 – volume: 7 start-page: 27 issue: 1 year: 2006 ident: 10.1016/j.amc.2015.10.021_bib0008 article-title: Application of variational iteration method to nonlinear differential equation of fractional order publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/IJNSNS.2006.7.1.27 – volume: 17 start-page: 4439 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0014 article-title: Analysis of the Keller–Segel model with a fractional derivative without singular kernel publication-title: Entropy doi: 10.3390/e17064439 – year: 2006 ident: 10.1016/j.amc.2015.10.021_bib0001 – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0015 article-title: Extension of the RLC electrical circuit to fractional derivative without singular kernel publication-title: Adv. Mech. Eng. – volume: 25 start-page: 57 issue: 3 year: 1997 ident: 10.1016/j.amc.2015.10.021_bib0009 article-title: Numerical solution of the 1+2 dimensional Fisher’s equation by finite elements and the Galerkin method publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(97)00015-0 – volume: 49 start-page: 363 issue: 3 year: 2002 ident: 10.1016/j.amc.2015.10.021_bib0005 article-title: Discretization schemes for fractional-order differentiators and integrators publication-title: IEEE Trans. Circuits Syst. I Fundam. Theory Appl. doi: 10.1109/81.989172 – volume: 1 start-page: 87 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0007 article-title: Properties of the new fractional derivative without singular kernel publication-title: Progr. Fract. Differ. Appl. – volume: 38 start-page: L679 issue: 42 year: 2005 ident: 10.1016/j.amc.2015.10.021_bib0004 article-title: Fractional diffusion in inhomogeneous media publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/38/42/L03 – volume: 41 start-page: 234 issue: 2 year: 2014 ident: 10.1016/j.amc.2015.10.021_bib0012 article-title: Sinc–Legendre collocation method for the non-linear Burgers’ fractional equation publication-title: Ann. Univ. Craiova Math. Comput. Sci. Ser. – volume: 5 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.amc.2015.10.021_bib0003 article-title: Geometric and physical interpretation of fractional integration and fractional differentiation publication-title: Fract. Calc. Appl. Anal. – volume: 60 start-page: 99 issue: 1–2 year: 2015 ident: 10.1016/j.amc.2015.10.021_bib0013 article-title: Numerical solution of time-fractional partial differential equations using Sumudu decomposition method publication-title: Rom. J. Phys. |
| SSID | ssj0007614 |
| Score | 2.6280282 |
| Snippet | Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 948 |
| SubjectTerms | Caputo–Fabrizio fractional derivative Fixed point theorem New theorems and properties Nonlinear equation |
| Title | On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation |
| URI | https://dx.doi.org/10.1016/j.amc.2015.10.021 |
| Volume | 273 |
| WOSCitedRecordID | wos000365613400083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQcCiHqhQQlIJ86IlVUOI87DmuKipAKnAAaW-REzsVCMKyD8SR_8Cpf49f0nFsJwuUqhy4RBtv4jy-0czEM_MNId_Q6EWqylQgiygOEsl4UCjQQciZDllpQodl02yCHx2JwQBOXHXJuGknwOta3N3B8F2hxjEE25TOvgHudlIcwN8IOm4Rdtz-F_DHNnER3eVeNbJlCyYQg5e-tSTfDT1rF7c23mdtCTPkqOdaobsUCDBBBTuHH4pNS5WpWWPr6Ztph6tnsnVe7VVLBzv2pXPD6dOwfx_90l_S1qT1C-X-cCsQUbMCYWswvVYFkz8XxrNalfF4Ri-CpdN0JhYsl_gL7W0XEi525ZUhl4zSXZN3ZwuonzJlP7NgbV6hT1m7yHGK3EyB-3loiAYWGE8B1d5C_2BvcNgaa55Z-nf_CD7w3aQAPruPv7suM-7I6Sfy0X1H0L7Ff5nM6fozWfrZvfUVUh3XFHcpSgLtJIF2kkARGDojCXRyTVtJoFYSHu9_j6mXgcf7hxZ96tFfJWc_9k6_7weurUZQMuCTINERk6lOGOpfHaeVrERVSVkwHkkBUqPtLDUYov4sK4pIK8CDKgCl06hUSsRrZB5vRq8TKjjPdAIFZ6FKEqkFfn5mIoUQYsGUjjdI6N9YXjrOedP65DJ_FakNstOeMrSEK_86OPEw5M5jtJ5gjiL1-mlf3nKNTfKhE_qvZH4ymuotsljeTs7Ho20nT38AwimOdA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+new+fractional+derivative+and+application+to+nonlinear+Fisher%E2%80%99s+reaction%E2%80%93diffusion+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Atangana%2C+Abdon&rft.date=2016-01-15&rft.issn=0096-3003&rft.volume=273&rft.spage=948&rft.epage=956&rft_id=info:doi/10.1016%2Fj.amc.2015.10.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2015_10_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |