On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation
Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative met...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 273; s. 948 - 956 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.01.2016
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recently Caputo and Fabrizio introduced a new derivative with fractional order. In this paper, we presented useful tools about the new derivative and applied it to the nonlinear Fisher’s reaction–diffusion equation. We presented the solution of the modified equation using the notion of iterative method. Using the theory of fixed point, we presented the stability of the used method. Some numerical simulations were presented for different values of fractional order. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2015.10.021 |