Characterization of 1-quasi-greedy bases
In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the “isometric case”, i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterizatio...
Uloženo v:
| Vydáno v: | Journal of approximation theory Ročník 201; s. 7 - 12 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2016
|
| Témata: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the “isometric case”, i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if it is unconditional with suppression-unconditional constant 1. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2015.08.006 |