Multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition
•A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel mu...
Uloženo v:
| Vydáno v: | Information sciences Ročník 509; s. 420 - 436 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2020
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel multi-layer interaction strategy for searching the accurate solutions is proposed. During evolution, the preferred region is reduced gradually, making it easier for user to get the final preferred solution(s).•Besides ZDT problems with two objectives, the proposed algorithm shows its potentiality for solving many-objective problems, i.e., DTLZ problems with 3, 5, 8, 10 objectives.
Many problems in real world have not only one objective to be met. In the majority of cases, a set of trade-off solutions which spread evenly along the entire Pareto optimal front are generated by multi-objective evolutionary algorithms (MOEAs). Taking the preference of decision maker (DM) into consideration, some specified solutions can be obtained, which is of great interest in practical applications. In this paper, a novel multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition (denoted as MLIP-MOEA/D) is proposed. In MLIP-MOEA/D, a multi-layer interactive strategy is developed during evolution, in the first-layer interaction, the DM will provide a reference vector and an initial radius to determine a preference range, then all solutions in this range will be updated. The algorithm will stop if the DM is satisfied with the first output result, otherwise it will go on to the second-layer interaction. In this step, the most preferred solution generated from the first-layer interaction will be chosen as the new preference direction, and the weight vector is redefined by the angle-based method, and the range of preferred region is reduced gradually, until the closest solution that meet the DM’s need is found. The algorithm is tested on a set of benchmark problems including DTLZ problems with more than three objectives, the experimental studies show that the proposed algorithm can effectively search the preferred solutions with the preference information and successfully deal with many-objective optimization problems. |
|---|---|
| AbstractList | •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel multi-layer interaction strategy for searching the accurate solutions is proposed. During evolution, the preferred region is reduced gradually, making it easier for user to get the final preferred solution(s).•Besides ZDT problems with two objectives, the proposed algorithm shows its potentiality for solving many-objective problems, i.e., DTLZ problems with 3, 5, 8, 10 objectives.
Many problems in real world have not only one objective to be met. In the majority of cases, a set of trade-off solutions which spread evenly along the entire Pareto optimal front are generated by multi-objective evolutionary algorithms (MOEAs). Taking the preference of decision maker (DM) into consideration, some specified solutions can be obtained, which is of great interest in practical applications. In this paper, a novel multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition (denoted as MLIP-MOEA/D) is proposed. In MLIP-MOEA/D, a multi-layer interactive strategy is developed during evolution, in the first-layer interaction, the DM will provide a reference vector and an initial radius to determine a preference range, then all solutions in this range will be updated. The algorithm will stop if the DM is satisfied with the first output result, otherwise it will go on to the second-layer interaction. In this step, the most preferred solution generated from the first-layer interaction will be chosen as the new preference direction, and the weight vector is redefined by the angle-based method, and the range of preferred region is reduced gradually, until the closest solution that meet the DM’s need is found. The algorithm is tested on a set of benchmark problems including DTLZ problems with more than three objectives, the experimental studies show that the proposed algorithm can effectively search the preferred solutions with the preference information and successfully deal with many-objective optimization problems. |
| Author | Ren, Rui Liu, Ruochen Zhou, Runan Jiao, Licheng Liu, Jiangdi |
| Author_xml | – sequence: 1 givenname: Ruochen surname: Liu fullname: Liu, Ruochen email: ruochenliu@xidian.edu.cn – sequence: 2 givenname: Runan surname: Zhou fullname: Zhou, Runan – sequence: 3 givenname: Rui surname: Ren fullname: Ren, Rui – sequence: 4 givenname: Jiangdi surname: Liu fullname: Liu, Jiangdi – sequence: 5 givenname: Licheng surname: Jiao fullname: Jiao, Licheng |
| BookMark | eNp9kL1OwzAUhS1UJNrCA7D5BRJsJ7EdMaGKP6mIBWbLsW9aR2lc2Wmlvj0OZWLodJfzXZ3zLdBs8AMgdE9JTgnlD13uhpgzQmVO6pzw-grNqRQs46ymMzQnhJGMsKq6QYsYO0JIKTifI_g49KPLen2CgN0wQtBmdH7A-wAtBBgM4EZHsHj3G_RNBylwBAxH3x-mqA4nrPuND27c7vC4Df6w2WILxu_2PropcouuW91HuPu7S_T98vy1esvWn6_vq6d1ZlgtxqxsqDFGAieyLaAWULWMWmuBtyVlwlDBCl4ZUeha6oZrZmUJ0kJT2UYKDcUS0fNfE3yMaYHaB7dLBRUlavKkOpU8qcmTIrVKnhIj_jHGjXpqPQbt-ovk45mENOnoIKho3GTMupAkKevdBfoHezKJfA |
| CitedBy_id | crossref_primary_10_1016_j_ins_2020_05_019 crossref_primary_10_1007_s00158_025_04005_y crossref_primary_10_1016_j_asoc_2022_108938 crossref_primary_10_1016_j_swevo_2025_102033 crossref_primary_10_1007_s10732_021_09470_4 crossref_primary_10_1016_j_ins_2020_11_030 crossref_primary_10_1016_j_knosys_2021_106856 crossref_primary_10_3233_JIFS_202114 crossref_primary_10_1016_j_swevo_2021_101024 crossref_primary_10_1177_14727978241299638 |
| Cites_doi | 10.1109/MCI.2014.2369894 10.1109/TEVC.2013.2281535 10.1109/ACCESS.2016.2605759 10.1109/TEVC.2014.2373386 10.1109/TEVC.2016.2519378 10.1016/S0965-9978(00)00110-1 10.1109/4235.985691 10.1109/TEVC.2013.2239648 10.1016/j.eswa.2015.05.036 10.1109/TCYB.2016.2586191 10.1109/TEVC.2010.2064323 10.1162/106365600568202 10.1109/TEVC.2007.892759 10.1002/mcda.1502 10.1109/TEVC.2013.2293776 10.1162/evco.1999.7.3.205 10.1109/4235.996017 10.1109/TEVC.2010.2058118 10.1109/TEVC.2012.2204264 10.1007/s10898-014-0214-y 10.1109/TEVC.2010.2059031 10.1162/evco.2009.17.3.411 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2018.09.069 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 436 |
| ExternalDocumentID | 10_1016_j_ins_2018_09_069 S0020025518307886 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-4b1ccc8e608f3e97e5f21ddde6f4127c172365c73a98ab6a2d84e8deb5db87ae3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494883700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:25:08 EST 2025 Tue Nov 18 21:54:59 EST 2025 Fri Feb 23 02:25:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Preference information Decomposition Many-objective optimization Multi-layer interaction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-4b1ccc8e608f3e97e5f21ddde6f4127c172365c73a98ab6a2d84e8deb5db87ae3 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2018_09_069 crossref_citationtrail_10_1016_j_ins_2018_09_069 elsevier_sciencedirect_doi_10_1016_j_ins_2018_09_069 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Ruiz, Luque, Ruiz, Saborido (bib0038) 2015; 42 Ruiz, Saborido, Luque (bib0039) 2015; 62 Deb, Jain (bib0019) 2014; 18 Liu, Wang, Feng, Huang, Jiao (bib0033) 2016; 4 Jin, Sendhoff (bib0026) 2002 Thiele, Miettinen, Korhonen, Molina (bib0041) 2014; 17 Wagner, Trautmann, Brockhoff (bib0042) 2013 Balling (bib0002) 2003 Michalewicz, Fogel (bib0036) 1988 Zuo, Gong, Zeng, Ma (bib0048) 2015; 10 Wang, Purshouse, Fleming (bib0043) 2013; 17 Li, Deb, Zhang, Kwong (bib0030) 2015; 19 Das, Suganthan (bib0016) 2011; 15 Branke, Greco, Słowiński, Zielniewicz (bib0007) 2009 Stewart, Belton (bib0005) 2003; 142 Coello, Sierra (bib0013) 1999 Cai, Yang, Fan, Zhang (bib0010) 2017; 47 (2011). Brockhoff, Bader, Thiele, Zitzler (bib0009) 2013; 20 Deb (bib0017) 1999; 7 T. Aittokoski, S. Tarkkanen, User preference extraction using dynamic query sliders in conjunction with ups-emo algorithm, arXiv preprint arXiv Zitzler, Brockhoff, Thiele (bib0046) 2007 Cheng, Jin, Olhofer, Sendhoff (bib0011) 2016; 20 Masood, Yi, Gang, Zhang (bib0035) 2016 Fonseca, Fleming (bib0023) 1993 Li, Li, Tang, Yao (bib0028) 2014 Luce, Raiffa (bib0034) 1958 Corne, Jerram, Knowles, Oates (bib0014) 2001 Deb, Sinha, Korhonen, Wallenius (bib0021) 2010; 14 Zitzler, Deb, Thiele (bib0047) 2000; 8 Wang, Purshouse, Fleming (bib0044) 2013 Cvetkovic, Parmee (bib0015) 2002; 6 Hakanen, Chugh, Sindhya, Jin, Miettinen (bib0025) 2016 Li, Zhang, Kwong, Li, Wang (bib0032) 2014; 18 Zhang, Li (bib0045) 2007; 11 Deb, Pratap, Agarwal, Meyarivan (bib0020) 2002; 6 Deb (bib0018) 2003 Chugh, Sindhya, Hakanen, Miettinen (bib0012) 2015 Li, Fialho, Kwong, Zhang (bib0031) 2014; 18 Battiti, Passerini (bib0004) 2010; 14 Deb, Sundar (bib0022) 2006 K. Li, K. Deb, X. Yao, Integration of preferences in decomposition multi-objective optimization (2017). Branke, Kauler, Schmeck (bib0008) 2001; 32 Balling, Richard (bib0003) 2000; 3 Sindhya, Ruiz, Miettinen (bib0040) 2011 Laumanns (bib0027) 2001 Gong, Liu, Zhang, Jiao, Zhang (bib0024) 2011 Branke, Deb (bib0006) 2005 Praditwong, Yao (bib0037) 2006 Branke (10.1016/j.ins.2018.09.069_bib0008) 2001; 32 Stewart (10.1016/j.ins.2018.09.069_bib0005) 2003; 142 Zuo (10.1016/j.ins.2018.09.069_bib0048) 2015; 10 Coello (10.1016/j.ins.2018.09.069_bib0013) 1999 Balling (10.1016/j.ins.2018.09.069_bib0002) 2003 Praditwong (10.1016/j.ins.2018.09.069_bib0037) 2006 Balling (10.1016/j.ins.2018.09.069_bib0003) 2000; 3 Deb (10.1016/j.ins.2018.09.069_bib0019) 2014; 18 Thiele (10.1016/j.ins.2018.09.069_bib0041) 2014; 17 Wang (10.1016/j.ins.2018.09.069_bib0044) 2013 Jin (10.1016/j.ins.2018.09.069_bib0026) 2002 Zitzler (10.1016/j.ins.2018.09.069_bib0047) 2000; 8 Li (10.1016/j.ins.2018.09.069_bib0031) 2014; 18 Branke (10.1016/j.ins.2018.09.069_bib0007) 2009 Liu (10.1016/j.ins.2018.09.069_bib0033) 2016; 4 Li (10.1016/j.ins.2018.09.069_bib0032) 2014; 18 Wagner (10.1016/j.ins.2018.09.069_bib0042) 2013 Corne (10.1016/j.ins.2018.09.069_bib0014) 2001 Das (10.1016/j.ins.2018.09.069_bib0016) 2011; 15 Battiti (10.1016/j.ins.2018.09.069_bib0004) 2010; 14 Deb (10.1016/j.ins.2018.09.069_bib0021) 2010; 14 Hakanen (10.1016/j.ins.2018.09.069_bib0025) 2016 Deb (10.1016/j.ins.2018.09.069_bib0022) 2006 Li (10.1016/j.ins.2018.09.069_bib0030) 2015; 19 Chugh (10.1016/j.ins.2018.09.069_bib0012) 2015 Deb (10.1016/j.ins.2018.09.069_bib0017) 1999; 7 Brockhoff (10.1016/j.ins.2018.09.069_bib0009) 2013; 20 Ruiz (10.1016/j.ins.2018.09.069_bib0039) 2015; 62 10.1016/j.ins.2018.09.069_bib0001 Laumanns (10.1016/j.ins.2018.09.069_bib0027) 2001 Li (10.1016/j.ins.2018.09.069_bib0028) 2014 Branke (10.1016/j.ins.2018.09.069_bib0006) 2005 Luce (10.1016/j.ins.2018.09.069_bib0034) 1958 Cvetkovic (10.1016/j.ins.2018.09.069_bib0015) 2002; 6 Cai (10.1016/j.ins.2018.09.069_bib0010) 2017; 47 10.1016/j.ins.2018.09.069_bib0029 Sindhya (10.1016/j.ins.2018.09.069_bib0040) 2011 Cheng (10.1016/j.ins.2018.09.069_bib0011) 2016; 20 Fonseca (10.1016/j.ins.2018.09.069_bib0023) 1993 Gong (10.1016/j.ins.2018.09.069_bib0024) 2011 Zitzler (10.1016/j.ins.2018.09.069_bib0046) 2007 Masood (10.1016/j.ins.2018.09.069_bib0035) 2016 Michalewicz (10.1016/j.ins.2018.09.069_bib0036) 1988 Zhang (10.1016/j.ins.2018.09.069_bib0045) 2007; 11 Deb (10.1016/j.ins.2018.09.069_bib0020) 2002; 6 Wang (10.1016/j.ins.2018.09.069_bib0043) 2013; 17 Ruiz (10.1016/j.ins.2018.09.069_bib0038) 2015; 42 Deb (10.1016/j.ins.2018.09.069_bib0018) 2003 |
| References_xml | – start-page: 337 year: 2013 end-page: 351 ident: bib0044 article-title: “Whatever works best for you”-a new method for a priori and progressive multi-objective optimisation publication-title: International Conference on Evolutionary Multi-Criterion Optimization – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: bib0016 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 189 year: 2000 end-page: 198 ident: bib0003 article-title: Pareto sets in decision-based design publication-title: J. Eng. Val. Cost Anal. – volume: 6 start-page: 42 year: 2002 end-page: 57 ident: bib0015 article-title: Preferences and their application in evolutionary multiobjective optimization publication-title: Evol. Comput. IEEE Trans. – volume: 142 start-page: 192 year: 2003 end-page: 202 ident: bib0005 article-title: Multiple criteria decision analysis: an integrated approach publication-title: International – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: bib0047 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. – start-page: 635 year: 2006 end-page: 642 ident: bib0022 article-title: Reference point based multi-objective optimization using evolutionary algorithms publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: bib0011 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – year: 2003 ident: bib0018 article-title: Multi-objective evolutionary algorithms: Introducing bias among pareto-optimal solutions – start-page: 277 year: 2015 end-page: 291 ident: bib0012 article-title: An interactive simple indicator-based evolutionary algorithm (i-sibea) for multiobjective optimization problems. publication-title: EMO – start-page: 416 year: 1993 end-page: 423 ident: bib0023 article-title: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization publication-title: International Conference on Genetic Algorithms – volume: 14 start-page: 671 year: 2010 end-page: 687 ident: bib0004 article-title: Brain–computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker publication-title: IEEE Trans. Evol. Comput. – volume: 4 start-page: 7331 year: 2016 end-page: 7346 ident: bib0033 article-title: Interactive reference region based multi-objective evolutionary algorithm through decomposition publication-title: IEEE Access – start-page: 524 year: 2014 end-page: 541 ident: bib0028 article-title: An improved two archive algorithm for many-objective optimization publication-title: Evolutionary Computation – reference: T. Aittokoski, S. Tarkkanen, User preference extraction using dynamic query sliders in conjunction with ups-emo algorithm, arXiv preprint arXiv: – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0019 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0020 article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii publication-title: IEEE Trans. Evol. Comput. – volume: 32 start-page: 499 year: 2001 end-page: 507 ident: bib0008 article-title: Guidance in evolutionary multi-objective optimization publication-title: Adv. Eng. Software – year: 1999 ident: bib0013 article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations publication-title: Evolutionary Computation – volume: 17 start-page: 411 year: 2014 end-page: 436 ident: bib0041 article-title: A preference-based evolutionary algorithm for multi-objective optimization publication-title: Evol. Comput. – year: 1988 ident: bib0036 article-title: How to Solve It: Modern Heuristics – volume: 19 start-page: 694 year: 2015 end-page: 716 ident: bib0030 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 291 year: 2013 end-page: 317 ident: bib0009 article-title: Directed multiobjective optimization based on the weighted hypervolume indicator publication-title: J. Multi-Criteria Decis. Anal. – start-page: 283 year: 2001 end-page: 290 ident: bib0014 article-title: Pesa-ii: region-based selection in evolutionary multiobjective optimization publication-title: Conference on Genetic and Evolutionary Computation – start-page: 286 year: 2006 end-page: 291 ident: bib0037 article-title: A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm publication-title: International Conference on Computational Intelligence and Security – start-page: 209 year: 2016 end-page: 216 ident: bib0035 article-title: Many-objective genetic programming for job-shop scheduling publication-title: Evolutionary Computation – start-page: 721 year: 2011 end-page: 728 ident: bib0024 article-title: Interactive moea/d for multi-objective decision making publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation – start-page: 1 year: 2003 end-page: 15 ident: bib0002 article-title: The maximin fitness function; multi-objective city and regional planning publication-title: International Conference on Evolutionary Multi-Criterion Optimization – start-page: 1 year: 2016 end-page: 8 ident: bib0025 article-title: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms publication-title: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on – volume: 42 start-page: 7466 year: 2015 end-page: 7482 ident: bib0038 article-title: A combined interactive procedure using preference-based evolutionary multiobjective optimization. application to the efficiency improvement of the auxiliary services of power plants publication-title: Expert Syst. Appl. – volume: 10 start-page: 52 year: 2015 end-page: 62 ident: bib0048 article-title: Personalized recommendation based on evolutionary multi-objective optimization [research frontier] publication-title: IEEE Comput. Intell. Mag. – reference: (2011). – start-page: 554 year: 2009 end-page: 568 ident: bib0007 article-title: Interactive evolutionary multiobjective optimization using robust ordinal regression publication-title: Evolutionary Multi-criterion Optimization – year: 1958 ident: bib0034 article-title: Games and Decisions: Introduction and Critical Survey: a Study of the Behavioral Models Project... – start-page: 683 year: 2002 ident: bib0026 article-title: Incorporation of fuzzy preferences into evolutionary multiobjective optimization. publication-title: GECCO – start-page: 212 year: 2011 end-page: 225 ident: bib0040 article-title: A preference based interactive evolutionary algorithm for multi-objective optimization: Pie publication-title: Evolutionary Multi-Criterion Optimization – volume: 17 start-page: 474 year: 2013 end-page: 494 ident: bib0043 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – reference: K. Li, K. Deb, X. Yao, Integration of preferences in decomposition multi-objective optimization (2017). – volume: 7 start-page: 205 year: 1999 end-page: 230 ident: bib0017 article-title: Multi-objective genetic algorithms: problem difficulties and construction of test problems publication-title: Evol. Comput. – year: 2001 ident: bib0027 article-title: Spea2 : improving the strength pareto evolutionary algorithm publication-title: Technical Report Gloriastrasse – year: 2005 ident: bib0006 article-title: Integrating User Preferences into Evolutionary Multi-Objective Optimization – volume: 14 start-page: 723 year: 2010 end-page: 739 ident: bib0021 article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 909 year: 2014 end-page: 923 ident: bib0032 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0045 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 114 year: 2014 end-page: 130 ident: bib0031 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 62 start-page: 101 year: 2015 end-page: 129 ident: bib0039 article-title: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm publication-title: J. Global Optim. – volume: 47 start-page: 2824 year: 2017 end-page: 2837 ident: bib0010 article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization publication-title: IEEE Trans. Cybern. – start-page: 862 year: 2007 end-page: 876 ident: bib0046 article-title: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration publication-title: Evolutionary multi-criterion optimization – year: 2013 ident: bib0042 article-title: Preference Articulation by Means of the R 2 Indicator – volume: 10 start-page: 52 issue: 1 year: 2015 ident: 10.1016/j.ins.2018.09.069_bib0048 article-title: Personalized recommendation based on evolutionary multi-objective optimization [research frontier] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2014.2369894 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ins.2018.09.069_bib0019 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – year: 1958 ident: 10.1016/j.ins.2018.09.069_bib0034 – start-page: 1 year: 2016 ident: 10.1016/j.ins.2018.09.069_bib0025 article-title: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms – volume: 4 start-page: 7331 year: 2016 ident: 10.1016/j.ins.2018.09.069_bib0033 article-title: Interactive reference region based multi-objective evolutionary algorithm through decomposition publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2605759 – volume: 19 start-page: 694 issue: 5 year: 2015 ident: 10.1016/j.ins.2018.09.069_bib0030 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – start-page: 277 year: 2015 ident: 10.1016/j.ins.2018.09.069_bib0012 article-title: An interactive simple indicator-based evolutionary algorithm (i-sibea) for multiobjective optimization problems. – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.ins.2018.09.069_bib0011 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 32 start-page: 499 issue: 6 year: 2001 ident: 10.1016/j.ins.2018.09.069_bib0008 article-title: Guidance in evolutionary multi-objective optimization publication-title: Adv. Eng. Software doi: 10.1016/S0965-9978(00)00110-1 – volume: 6 start-page: 42 issue: 1 year: 2002 ident: 10.1016/j.ins.2018.09.069_bib0015 article-title: Preferences and their application in evolutionary multiobjective optimization publication-title: Evol. Comput. IEEE Trans. doi: 10.1109/4235.985691 – start-page: 286 year: 2006 ident: 10.1016/j.ins.2018.09.069_bib0037 article-title: A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm – start-page: 524 year: 2014 ident: 10.1016/j.ins.2018.09.069_bib0028 article-title: An improved two archive algorithm for many-objective optimization – volume: 18 start-page: 114 issue: 1 year: 2014 ident: 10.1016/j.ins.2018.09.069_bib0031 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2239648 – start-page: 683 year: 2002 ident: 10.1016/j.ins.2018.09.069_bib0026 article-title: Incorporation of fuzzy preferences into evolutionary multiobjective optimization. – start-page: 209 year: 2016 ident: 10.1016/j.ins.2018.09.069_bib0035 article-title: Many-objective genetic programming for job-shop scheduling – year: 1988 ident: 10.1016/j.ins.2018.09.069_bib0036 – start-page: 721 year: 2011 ident: 10.1016/j.ins.2018.09.069_bib0024 article-title: Interactive moea/d for multi-objective decision making – year: 2003 ident: 10.1016/j.ins.2018.09.069_bib0018 – start-page: 212 year: 2011 ident: 10.1016/j.ins.2018.09.069_bib0040 article-title: A preference based interactive evolutionary algorithm for multi-objective optimization: Pie – start-page: 283 year: 2001 ident: 10.1016/j.ins.2018.09.069_bib0014 article-title: Pesa-ii: region-based selection in evolutionary multiobjective optimization – start-page: 554 year: 2009 ident: 10.1016/j.ins.2018.09.069_bib0007 article-title: Interactive evolutionary multiobjective optimization using robust ordinal regression – volume: 42 start-page: 7466 issue: 21 year: 2015 ident: 10.1016/j.ins.2018.09.069_bib0038 article-title: A combined interactive procedure using preference-based evolutionary multiobjective optimization. application to the efficiency improvement of the auxiliary services of power plants publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.05.036 – volume: 142 start-page: 192 issue: 6 year: 2003 ident: 10.1016/j.ins.2018.09.069_bib0005 article-title: Multiple criteria decision analysis: an integrated approach publication-title: International – volume: 47 start-page: 2824 issue: 9 year: 2017 ident: 10.1016/j.ins.2018.09.069_bib0010 article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2586191 – volume: 14 start-page: 723 issue: 5 year: 2010 ident: 10.1016/j.ins.2018.09.069_bib0021 article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2064323 – year: 2013 ident: 10.1016/j.ins.2018.09.069_bib0042 – start-page: 862 year: 2007 ident: 10.1016/j.ins.2018.09.069_bib0046 article-title: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.ins.2018.09.069_bib0047 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – year: 2005 ident: 10.1016/j.ins.2018.09.069_bib0006 – ident: 10.1016/j.ins.2018.09.069_bib0001 – start-page: 337 year: 2013 ident: 10.1016/j.ins.2018.09.069_bib0044 article-title: “Whatever works best for you”-a new method for a priori and progressive multi-objective optimisation – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2018.09.069_bib0045 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 20 start-page: 291 issue: 5–6 year: 2013 ident: 10.1016/j.ins.2018.09.069_bib0009 article-title: Directed multiobjective optimization based on the weighted hypervolume indicator publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.1502 – start-page: 635 year: 2006 ident: 10.1016/j.ins.2018.09.069_bib0022 article-title: Reference point based multi-objective optimization using evolutionary algorithms – volume: 18 start-page: 909 issue: 6 year: 2014 ident: 10.1016/j.ins.2018.09.069_bib0032 article-title: Stable matching-based selection in evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2293776 – volume: 7 start-page: 205 issue: 3 year: 1999 ident: 10.1016/j.ins.2018.09.069_bib0017 article-title: Multi-objective genetic algorithms: problem difficulties and construction of test problems publication-title: Evol. Comput. doi: 10.1162/evco.1999.7.3.205 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2018.09.069_bib0020 article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: 10.1016/j.ins.2018.09.069_bib0029 – start-page: 1 year: 2003 ident: 10.1016/j.ins.2018.09.069_bib0002 article-title: The maximin fitness function; multi-objective city and regional planning – volume: 3 start-page: 189 issue: 2 year: 2000 ident: 10.1016/j.ins.2018.09.069_bib0003 article-title: Pareto sets in decision-based design publication-title: J. Eng. Val. Cost Anal. – volume: 14 start-page: 671 issue: 5 year: 2010 ident: 10.1016/j.ins.2018.09.069_bib0004 article-title: Brain–computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2058118 – volume: 17 start-page: 474 issue: 4 year: 2013 ident: 10.1016/j.ins.2018.09.069_bib0043 article-title: Preference-inspired coevolutionary algorithms for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2012.2204264 – year: 1999 ident: 10.1016/j.ins.2018.09.069_bib0013 article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations – year: 2001 ident: 10.1016/j.ins.2018.09.069_bib0027 article-title: Spea2 : improving the strength pareto evolutionary algorithm publication-title: Technical Report Gloriastrasse – volume: 62 start-page: 101 issue: 1 year: 2015 ident: 10.1016/j.ins.2018.09.069_bib0039 article-title: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-014-0214-y – start-page: 416 year: 1993 ident: 10.1016/j.ins.2018.09.069_bib0023 article-title: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.ins.2018.09.069_bib0016 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – volume: 17 start-page: 411 issue: 3 year: 2014 ident: 10.1016/j.ins.2018.09.069_bib0041 article-title: A preference-based evolutionary algorithm for multi-objective optimization publication-title: Evol. Comput. doi: 10.1162/evco.2009.17.3.411 |
| SSID | ssj0004766 |
| Score | 2.369479 |
| Snippet | •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 420 |
| SubjectTerms | Decomposition Many-objective optimization Multi-layer interaction Multi-objective optimization Preference information |
| Title | Multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition |
| URI | https://dx.doi.org/10.1016/j.ins.2018.09.069 |
| Volume | 509 |
| WOSCitedRecordID | wos000494883700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEBQQBYp8QByogryOE9vHChVBVVWoKtKKS-TYTpvVkl0tu6v-A_4249jJuuFDgMQliqw4ifJexmN75g1CLzNlSZUZkxDGVeLUURIFjoArIpBxVRldeqRP-dmZmEzkx9HoW5cLs5nxphHX13LxX6GGNgDbpc7-Bdz9TaEBzgF0OALscPwj4NuU2mSmwJduxSCWoRr4oq8ocuiGLuNjCZN5OfU279Buwnu5QDo1u5wv69XVl76Sj7Eu_DzEeMU-bchoah8SBtTeUT-t1y2Ia1eYq-fh56t5aG625Dz3BvB8XQ86nwCDL00dr09QMlif6BNnbsR1kvZC6hV631hvewWnSU598a7OOGdERuaVURKN1MxLp_wwCPj1iCnMXJwe-1i0Qra-IMxAW9ttVbezKjBs4CuJ_BbapTyTYOF3jz4cT062Kbbcb3t3791tkLehgoMH_dzFidyWi_voXphv4CPPkwdoZJs9dDdSodxDByF3Bb_CEZQ4WP2HyEaMwhGj8JZRuGUUHjAKx4zCPaNwYBS-wahH6NO744u375NQnSPRVPJVwsqx1lrYnIgqtZLbrKJjA6NlXrEx5Ro84zTPNE-VFKrMFTWCWWFsmZlScGXTx2inmTf2CcJUaJpVlmlVKsZkKtJcasFENSaqIorsI9J90EIH6XpXQWVWdDGK0wIwKBwGBZEFYLCPXvddFl635XcXsw6lIvwn3qEsgFK_7vb037o9Q3e2_8lztLNaru0Buq03q_rr8kUg3nekK61z |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layer+interaction+preference+based+multi-objective+evolutionary+algorithm+through+decomposition&rft.jtitle=Information+sciences&rft.au=Liu%2C+Ruochen&rft.au=Zhou%2C+Runan&rft.au=Ren%2C+Rui&rft.au=Liu%2C+Jiangdi&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=509&rft.spage=420&rft.epage=436&rft_id=info:doi/10.1016%2Fj.ins.2018.09.069&rft.externalDocID=S0020025518307886 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |