Multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition

•A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel mu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 509; s. 420 - 436
Hlavní autoři: Liu, Ruochen, Zhou, Runan, Ren, Rui, Liu, Jiangdi, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2020
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel multi-layer interaction strategy for searching the accurate solutions is proposed. During evolution, the preferred region is reduced gradually, making it easier for user to get the final preferred solution(s).•Besides ZDT problems with two objectives, the proposed algorithm shows its potentiality for solving many-objective problems, i.e., DTLZ problems with 3, 5, 8, 10 objectives. Many problems in real world have not only one objective to be met. In the majority of cases, a set of trade-off solutions which spread evenly along the entire Pareto optimal front are generated by multi-objective evolutionary algorithms (MOEAs). Taking the preference of decision maker (DM) into consideration, some specified solutions can be obtained, which is of great interest in practical applications. In this paper, a novel multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition (denoted as MLIP-MOEA/D) is proposed. In MLIP-MOEA/D, a multi-layer interactive strategy is developed during evolution, in the first-layer interaction, the DM will provide a reference vector and an initial radius to determine a preference range, then all solutions in this range will be updated. The algorithm will stop if the DM is satisfied with the first output result, otherwise it will go on to the second-layer interaction. In this step, the most preferred solution generated from the first-layer interaction will be chosen as the new preference direction, and the weight vector is redefined by the angle-based method, and the range of preferred region is reduced gradually, until the closest solution that meet the DM’s need is found. The algorithm is tested on a set of benchmark problems including DTLZ problems with more than three objectives, the experimental studies show that the proposed algorithm can effectively search the preferred solutions with the preference information and successfully deal with many-objective optimization problems.
AbstractList •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get preference region is established, during the selection process, the preference weight vector is redefined using the angle-based method.•A novel multi-layer interaction strategy for searching the accurate solutions is proposed. During evolution, the preferred region is reduced gradually, making it easier for user to get the final preferred solution(s).•Besides ZDT problems with two objectives, the proposed algorithm shows its potentiality for solving many-objective problems, i.e., DTLZ problems with 3, 5, 8, 10 objectives. Many problems in real world have not only one objective to be met. In the majority of cases, a set of trade-off solutions which spread evenly along the entire Pareto optimal front are generated by multi-objective evolutionary algorithms (MOEAs). Taking the preference of decision maker (DM) into consideration, some specified solutions can be obtained, which is of great interest in practical applications. In this paper, a novel multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition (denoted as MLIP-MOEA/D) is proposed. In MLIP-MOEA/D, a multi-layer interactive strategy is developed during evolution, in the first-layer interaction, the DM will provide a reference vector and an initial radius to determine a preference range, then all solutions in this range will be updated. The algorithm will stop if the DM is satisfied with the first output result, otherwise it will go on to the second-layer interaction. In this step, the most preferred solution generated from the first-layer interaction will be chosen as the new preference direction, and the weight vector is redefined by the angle-based method, and the range of preferred region is reduced gradually, until the closest solution that meet the DM’s need is found. The algorithm is tested on a set of benchmark problems including DTLZ problems with more than three objectives, the experimental studies show that the proposed algorithm can effectively search the preferred solutions with the preference information and successfully deal with many-objective optimization problems.
Author Ren, Rui
Liu, Ruochen
Zhou, Runan
Jiao, Licheng
Liu, Jiangdi
Author_xml – sequence: 1
  givenname: Ruochen
  surname: Liu
  fullname: Liu, Ruochen
  email: ruochenliu@xidian.edu.cn
– sequence: 2
  givenname: Runan
  surname: Zhou
  fullname: Zhou, Runan
– sequence: 3
  givenname: Rui
  surname: Ren
  fullname: Ren, Rui
– sequence: 4
  givenname: Jiangdi
  surname: Liu
  fullname: Liu, Jiangdi
– sequence: 5
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
BookMark eNp9kL1OwzAUhS1UJNrCA7D5BRJsJ7EdMaGKP6mIBWbLsW9aR2lc2Wmlvj0OZWLodJfzXZ3zLdBs8AMgdE9JTgnlD13uhpgzQmVO6pzw-grNqRQs46ymMzQnhJGMsKq6QYsYO0JIKTifI_g49KPLen2CgN0wQtBmdH7A-wAtBBgM4EZHsHj3G_RNBylwBAxH3x-mqA4nrPuND27c7vC4Df6w2WILxu_2PropcouuW91HuPu7S_T98vy1esvWn6_vq6d1ZlgtxqxsqDFGAieyLaAWULWMWmuBtyVlwlDBCl4ZUeha6oZrZmUJ0kJT2UYKDcUS0fNfE3yMaYHaB7dLBRUlavKkOpU8qcmTIrVKnhIj_jHGjXpqPQbt-ovk45mENOnoIKho3GTMupAkKevdBfoHezKJfA
CitedBy_id crossref_primary_10_1016_j_ins_2020_05_019
crossref_primary_10_1007_s00158_025_04005_y
crossref_primary_10_1016_j_asoc_2022_108938
crossref_primary_10_1016_j_swevo_2025_102033
crossref_primary_10_1007_s10732_021_09470_4
crossref_primary_10_1016_j_ins_2020_11_030
crossref_primary_10_1016_j_knosys_2021_106856
crossref_primary_10_3233_JIFS_202114
crossref_primary_10_1016_j_swevo_2021_101024
crossref_primary_10_1177_14727978241299638
Cites_doi 10.1109/MCI.2014.2369894
10.1109/TEVC.2013.2281535
10.1109/ACCESS.2016.2605759
10.1109/TEVC.2014.2373386
10.1109/TEVC.2016.2519378
10.1016/S0965-9978(00)00110-1
10.1109/4235.985691
10.1109/TEVC.2013.2239648
10.1016/j.eswa.2015.05.036
10.1109/TCYB.2016.2586191
10.1109/TEVC.2010.2064323
10.1162/106365600568202
10.1109/TEVC.2007.892759
10.1002/mcda.1502
10.1109/TEVC.2013.2293776
10.1162/evco.1999.7.3.205
10.1109/4235.996017
10.1109/TEVC.2010.2058118
10.1109/TEVC.2012.2204264
10.1007/s10898-014-0214-y
10.1109/TEVC.2010.2059031
10.1162/evco.2009.17.3.411
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.09.069
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 436
ExternalDocumentID 10_1016_j_ins_2018_09_069
S0020025518307886
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-4b1ccc8e608f3e97e5f21ddde6f4127c172365c73a98ab6a2d84e8deb5db87ae3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494883700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:25:08 EST 2025
Tue Nov 18 21:54:59 EST 2025
Fri Feb 23 02:25:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Preference information
Decomposition
Many-objective optimization
Multi-layer interaction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-4b1ccc8e608f3e97e5f21ddde6f4127c172365c73a98ab6a2d84e8deb5db87ae3
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ins_2018_09_069
crossref_citationtrail_10_1016_j_ins_2018_09_069
elsevier_sciencedirect_doi_10_1016_j_ins_2018_09_069
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ruiz, Luque, Ruiz, Saborido (bib0038) 2015; 42
Ruiz, Saborido, Luque (bib0039) 2015; 62
Deb, Jain (bib0019) 2014; 18
Liu, Wang, Feng, Huang, Jiao (bib0033) 2016; 4
Jin, Sendhoff (bib0026) 2002
Thiele, Miettinen, Korhonen, Molina (bib0041) 2014; 17
Wagner, Trautmann, Brockhoff (bib0042) 2013
Balling (bib0002) 2003
Michalewicz, Fogel (bib0036) 1988
Zuo, Gong, Zeng, Ma (bib0048) 2015; 10
Wang, Purshouse, Fleming (bib0043) 2013; 17
Li, Deb, Zhang, Kwong (bib0030) 2015; 19
Das, Suganthan (bib0016) 2011; 15
Branke, Greco, Słowiński, Zielniewicz (bib0007) 2009
Stewart, Belton (bib0005) 2003; 142
Coello, Sierra (bib0013) 1999
Cai, Yang, Fan, Zhang (bib0010) 2017; 47
(2011).
Brockhoff, Bader, Thiele, Zitzler (bib0009) 2013; 20
Deb (bib0017) 1999; 7
T. Aittokoski, S. Tarkkanen, User preference extraction using dynamic query sliders in conjunction with ups-emo algorithm, arXiv preprint arXiv
Zitzler, Brockhoff, Thiele (bib0046) 2007
Cheng, Jin, Olhofer, Sendhoff (bib0011) 2016; 20
Masood, Yi, Gang, Zhang (bib0035) 2016
Fonseca, Fleming (bib0023) 1993
Li, Li, Tang, Yao (bib0028) 2014
Luce, Raiffa (bib0034) 1958
Corne, Jerram, Knowles, Oates (bib0014) 2001
Deb, Sinha, Korhonen, Wallenius (bib0021) 2010; 14
Zitzler, Deb, Thiele (bib0047) 2000; 8
Wang, Purshouse, Fleming (bib0044) 2013
Cvetkovic, Parmee (bib0015) 2002; 6
Hakanen, Chugh, Sindhya, Jin, Miettinen (bib0025) 2016
Li, Zhang, Kwong, Li, Wang (bib0032) 2014; 18
Zhang, Li (bib0045) 2007; 11
Deb, Pratap, Agarwal, Meyarivan (bib0020) 2002; 6
Deb (bib0018) 2003
Chugh, Sindhya, Hakanen, Miettinen (bib0012) 2015
Li, Fialho, Kwong, Zhang (bib0031) 2014; 18
Battiti, Passerini (bib0004) 2010; 14
Deb, Sundar (bib0022) 2006
K. Li, K. Deb, X. Yao, Integration of preferences in decomposition multi-objective optimization (2017).
Branke, Kauler, Schmeck (bib0008) 2001; 32
Balling, Richard (bib0003) 2000; 3
Sindhya, Ruiz, Miettinen (bib0040) 2011
Laumanns (bib0027) 2001
Gong, Liu, Zhang, Jiao, Zhang (bib0024) 2011
Branke, Deb (bib0006) 2005
Praditwong, Yao (bib0037) 2006
Branke (10.1016/j.ins.2018.09.069_bib0008) 2001; 32
Stewart (10.1016/j.ins.2018.09.069_bib0005) 2003; 142
Zuo (10.1016/j.ins.2018.09.069_bib0048) 2015; 10
Coello (10.1016/j.ins.2018.09.069_bib0013) 1999
Balling (10.1016/j.ins.2018.09.069_bib0002) 2003
Praditwong (10.1016/j.ins.2018.09.069_bib0037) 2006
Balling (10.1016/j.ins.2018.09.069_bib0003) 2000; 3
Deb (10.1016/j.ins.2018.09.069_bib0019) 2014; 18
Thiele (10.1016/j.ins.2018.09.069_bib0041) 2014; 17
Wang (10.1016/j.ins.2018.09.069_bib0044) 2013
Jin (10.1016/j.ins.2018.09.069_bib0026) 2002
Zitzler (10.1016/j.ins.2018.09.069_bib0047) 2000; 8
Li (10.1016/j.ins.2018.09.069_bib0031) 2014; 18
Branke (10.1016/j.ins.2018.09.069_bib0007) 2009
Liu (10.1016/j.ins.2018.09.069_bib0033) 2016; 4
Li (10.1016/j.ins.2018.09.069_bib0032) 2014; 18
Wagner (10.1016/j.ins.2018.09.069_bib0042) 2013
Corne (10.1016/j.ins.2018.09.069_bib0014) 2001
Das (10.1016/j.ins.2018.09.069_bib0016) 2011; 15
Battiti (10.1016/j.ins.2018.09.069_bib0004) 2010; 14
Deb (10.1016/j.ins.2018.09.069_bib0021) 2010; 14
Hakanen (10.1016/j.ins.2018.09.069_bib0025) 2016
Deb (10.1016/j.ins.2018.09.069_bib0022) 2006
Li (10.1016/j.ins.2018.09.069_bib0030) 2015; 19
Chugh (10.1016/j.ins.2018.09.069_bib0012) 2015
Deb (10.1016/j.ins.2018.09.069_bib0017) 1999; 7
Brockhoff (10.1016/j.ins.2018.09.069_bib0009) 2013; 20
Ruiz (10.1016/j.ins.2018.09.069_bib0039) 2015; 62
10.1016/j.ins.2018.09.069_bib0001
Laumanns (10.1016/j.ins.2018.09.069_bib0027) 2001
Li (10.1016/j.ins.2018.09.069_bib0028) 2014
Branke (10.1016/j.ins.2018.09.069_bib0006) 2005
Luce (10.1016/j.ins.2018.09.069_bib0034) 1958
Cvetkovic (10.1016/j.ins.2018.09.069_bib0015) 2002; 6
Cai (10.1016/j.ins.2018.09.069_bib0010) 2017; 47
10.1016/j.ins.2018.09.069_bib0029
Sindhya (10.1016/j.ins.2018.09.069_bib0040) 2011
Cheng (10.1016/j.ins.2018.09.069_bib0011) 2016; 20
Fonseca (10.1016/j.ins.2018.09.069_bib0023) 1993
Gong (10.1016/j.ins.2018.09.069_bib0024) 2011
Zitzler (10.1016/j.ins.2018.09.069_bib0046) 2007
Masood (10.1016/j.ins.2018.09.069_bib0035) 2016
Michalewicz (10.1016/j.ins.2018.09.069_bib0036) 1988
Zhang (10.1016/j.ins.2018.09.069_bib0045) 2007; 11
Deb (10.1016/j.ins.2018.09.069_bib0020) 2002; 6
Wang (10.1016/j.ins.2018.09.069_bib0043) 2013; 17
Ruiz (10.1016/j.ins.2018.09.069_bib0038) 2015; 42
Deb (10.1016/j.ins.2018.09.069_bib0018) 2003
References_xml – start-page: 337
  year: 2013
  end-page: 351
  ident: bib0044
  article-title: “Whatever works best for you”-a new method for a priori and progressive multi-objective optimisation
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib0016
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 189
  year: 2000
  end-page: 198
  ident: bib0003
  article-title: Pareto sets in decision-based design
  publication-title: J. Eng. Val. Cost Anal.
– volume: 6
  start-page: 42
  year: 2002
  end-page: 57
  ident: bib0015
  article-title: Preferences and their application in evolutionary multiobjective optimization
  publication-title: Evol. Comput. IEEE Trans.
– volume: 142
  start-page: 192
  year: 2003
  end-page: 202
  ident: bib0005
  article-title: Multiple criteria decision analysis: an integrated approach
  publication-title: International
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: bib0047
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
– start-page: 635
  year: 2006
  end-page: 642
  ident: bib0022
  article-title: Reference point based multi-objective optimization using evolutionary algorithms
  publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0011
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2003
  ident: bib0018
  article-title: Multi-objective evolutionary algorithms: Introducing bias among pareto-optimal solutions
– start-page: 277
  year: 2015
  end-page: 291
  ident: bib0012
  article-title: An interactive simple indicator-based evolutionary algorithm (i-sibea) for multiobjective optimization problems.
  publication-title: EMO
– start-page: 416
  year: 1993
  end-page: 423
  ident: bib0023
  article-title: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization
  publication-title: International Conference on Genetic Algorithms
– volume: 14
  start-page: 671
  year: 2010
  end-page: 687
  ident: bib0004
  article-title: Brain–computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker
  publication-title: IEEE Trans. Evol. Comput.
– volume: 4
  start-page: 7331
  year: 2016
  end-page: 7346
  ident: bib0033
  article-title: Interactive reference region based multi-objective evolutionary algorithm through decomposition
  publication-title: IEEE Access
– start-page: 524
  year: 2014
  end-page: 541
  ident: bib0028
  article-title: An improved two archive algorithm for many-objective optimization
  publication-title: Evolutionary Computation
– reference: T. Aittokoski, S. Tarkkanen, User preference extraction using dynamic query sliders in conjunction with ups-emo algorithm, arXiv preprint arXiv:
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0019
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0020
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 32
  start-page: 499
  year: 2001
  end-page: 507
  ident: bib0008
  article-title: Guidance in evolutionary multi-objective optimization
  publication-title: Adv. Eng. Software
– year: 1999
  ident: bib0013
  article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations
  publication-title: Evolutionary Computation
– volume: 17
  start-page: 411
  year: 2014
  end-page: 436
  ident: bib0041
  article-title: A preference-based evolutionary algorithm for multi-objective optimization
  publication-title: Evol. Comput.
– year: 1988
  ident: bib0036
  article-title: How to Solve It: Modern Heuristics
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: bib0030
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 291
  year: 2013
  end-page: 317
  ident: bib0009
  article-title: Directed multiobjective optimization based on the weighted hypervolume indicator
  publication-title: J. Multi-Criteria Decis. Anal.
– start-page: 283
  year: 2001
  end-page: 290
  ident: bib0014
  article-title: Pesa-ii: region-based selection in evolutionary multiobjective optimization
  publication-title: Conference on Genetic and Evolutionary Computation
– start-page: 286
  year: 2006
  end-page: 291
  ident: bib0037
  article-title: A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm
  publication-title: International Conference on Computational Intelligence and Security
– start-page: 209
  year: 2016
  end-page: 216
  ident: bib0035
  article-title: Many-objective genetic programming for job-shop scheduling
  publication-title: Evolutionary Computation
– start-page: 721
  year: 2011
  end-page: 728
  ident: bib0024
  article-title: Interactive moea/d for multi-objective decision making
  publication-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
– start-page: 1
  year: 2003
  end-page: 15
  ident: bib0002
  article-title: The maximin fitness function; multi-objective city and regional planning
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0025
  article-title: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms
  publication-title: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on
– volume: 42
  start-page: 7466
  year: 2015
  end-page: 7482
  ident: bib0038
  article-title: A combined interactive procedure using preference-based evolutionary multiobjective optimization. application to the efficiency improvement of the auxiliary services of power plants
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 52
  year: 2015
  end-page: 62
  ident: bib0048
  article-title: Personalized recommendation based on evolutionary multi-objective optimization [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
– reference: (2011).
– start-page: 554
  year: 2009
  end-page: 568
  ident: bib0007
  article-title: Interactive evolutionary multiobjective optimization using robust ordinal regression
  publication-title: Evolutionary Multi-criterion Optimization
– year: 1958
  ident: bib0034
  article-title: Games and Decisions: Introduction and Critical Survey: a Study of the Behavioral Models Project...
– start-page: 683
  year: 2002
  ident: bib0026
  article-title: Incorporation of fuzzy preferences into evolutionary multiobjective optimization.
  publication-title: GECCO
– start-page: 212
  year: 2011
  end-page: 225
  ident: bib0040
  article-title: A preference based interactive evolutionary algorithm for multi-objective optimization: Pie
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 17
  start-page: 474
  year: 2013
  end-page: 494
  ident: bib0043
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: K. Li, K. Deb, X. Yao, Integration of preferences in decomposition multi-objective optimization (2017).
– volume: 7
  start-page: 205
  year: 1999
  end-page: 230
  ident: bib0017
  article-title: Multi-objective genetic algorithms: problem difficulties and construction of test problems
  publication-title: Evol. Comput.
– year: 2001
  ident: bib0027
  article-title: Spea2 : improving the strength pareto evolutionary algorithm
  publication-title: Technical Report Gloriastrasse
– year: 2005
  ident: bib0006
  article-title: Integrating User Preferences into Evolutionary Multi-Objective Optimization
– volume: 14
  start-page: 723
  year: 2010
  end-page: 739
  ident: bib0021
  article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 909
  year: 2014
  end-page: 923
  ident: bib0032
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0045
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 114
  year: 2014
  end-page: 130
  ident: bib0031
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 62
  start-page: 101
  year: 2015
  end-page: 129
  ident: bib0039
  article-title: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm
  publication-title: J. Global Optim.
– volume: 47
  start-page: 2824
  year: 2017
  end-page: 2837
  ident: bib0010
  article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 862
  year: 2007
  end-page: 876
  ident: bib0046
  article-title: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration
  publication-title: Evolutionary multi-criterion optimization
– year: 2013
  ident: bib0042
  article-title: Preference Articulation by Means of the R 2 Indicator
– volume: 10
  start-page: 52
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2018.09.069_bib0048
  article-title: Personalized recommendation based on evolutionary multi-objective optimization [research frontier]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2014.2369894
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2018.09.069_bib0019
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– year: 1958
  ident: 10.1016/j.ins.2018.09.069_bib0034
– start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2018.09.069_bib0025
  article-title: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms
– volume: 4
  start-page: 7331
  year: 2016
  ident: 10.1016/j.ins.2018.09.069_bib0033
  article-title: Interactive reference region based multi-objective evolutionary algorithm through decomposition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2605759
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2018.09.069_bib0030
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– start-page: 277
  year: 2015
  ident: 10.1016/j.ins.2018.09.069_bib0012
  article-title: An interactive simple indicator-based evolutionary algorithm (i-sibea) for multiobjective optimization problems.
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2018.09.069_bib0011
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 32
  start-page: 499
  issue: 6
  year: 2001
  ident: 10.1016/j.ins.2018.09.069_bib0008
  article-title: Guidance in evolutionary multi-objective optimization
  publication-title: Adv. Eng. Software
  doi: 10.1016/S0965-9978(00)00110-1
– volume: 6
  start-page: 42
  issue: 1
  year: 2002
  ident: 10.1016/j.ins.2018.09.069_bib0015
  article-title: Preferences and their application in evolutionary multiobjective optimization
  publication-title: Evol. Comput. IEEE Trans.
  doi: 10.1109/4235.985691
– start-page: 286
  year: 2006
  ident: 10.1016/j.ins.2018.09.069_bib0037
  article-title: A new multi-objective evolutionary optimisation algorithm: the two-archive algorithm
– start-page: 524
  year: 2014
  ident: 10.1016/j.ins.2018.09.069_bib0028
  article-title: An improved two archive algorithm for many-objective optimization
– volume: 18
  start-page: 114
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2018.09.069_bib0031
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2239648
– start-page: 683
  year: 2002
  ident: 10.1016/j.ins.2018.09.069_bib0026
  article-title: Incorporation of fuzzy preferences into evolutionary multiobjective optimization.
– start-page: 209
  year: 2016
  ident: 10.1016/j.ins.2018.09.069_bib0035
  article-title: Many-objective genetic programming for job-shop scheduling
– year: 1988
  ident: 10.1016/j.ins.2018.09.069_bib0036
– start-page: 721
  year: 2011
  ident: 10.1016/j.ins.2018.09.069_bib0024
  article-title: Interactive moea/d for multi-objective decision making
– year: 2003
  ident: 10.1016/j.ins.2018.09.069_bib0018
– start-page: 212
  year: 2011
  ident: 10.1016/j.ins.2018.09.069_bib0040
  article-title: A preference based interactive evolutionary algorithm for multi-objective optimization: Pie
– start-page: 283
  year: 2001
  ident: 10.1016/j.ins.2018.09.069_bib0014
  article-title: Pesa-ii: region-based selection in evolutionary multiobjective optimization
– start-page: 554
  year: 2009
  ident: 10.1016/j.ins.2018.09.069_bib0007
  article-title: Interactive evolutionary multiobjective optimization using robust ordinal regression
– volume: 42
  start-page: 7466
  issue: 21
  year: 2015
  ident: 10.1016/j.ins.2018.09.069_bib0038
  article-title: A combined interactive procedure using preference-based evolutionary multiobjective optimization. application to the efficiency improvement of the auxiliary services of power plants
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.05.036
– volume: 142
  start-page: 192
  issue: 6
  year: 2003
  ident: 10.1016/j.ins.2018.09.069_bib0005
  article-title: Multiple criteria decision analysis: an integrated approach
  publication-title: International
– volume: 47
  start-page: 2824
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2018.09.069_bib0010
  article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2586191
– volume: 14
  start-page: 723
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2018.09.069_bib0021
  article-title: An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2064323
– year: 2013
  ident: 10.1016/j.ins.2018.09.069_bib0042
– start-page: 862
  year: 2007
  ident: 10.1016/j.ins.2018.09.069_bib0046
  article-title: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.ins.2018.09.069_bib0047
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– year: 2005
  ident: 10.1016/j.ins.2018.09.069_bib0006
– ident: 10.1016/j.ins.2018.09.069_bib0001
– start-page: 337
  year: 2013
  ident: 10.1016/j.ins.2018.09.069_bib0044
  article-title: “Whatever works best for you”-a new method for a priori and progressive multi-objective optimisation
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2018.09.069_bib0045
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 291
  issue: 5–6
  year: 2013
  ident: 10.1016/j.ins.2018.09.069_bib0009
  article-title: Directed multiobjective optimization based on the weighted hypervolume indicator
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1502
– start-page: 635
  year: 2006
  ident: 10.1016/j.ins.2018.09.069_bib0022
  article-title: Reference point based multi-objective optimization using evolutionary algorithms
– volume: 18
  start-page: 909
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2018.09.069_bib0032
  article-title: Stable matching-based selection in evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2293776
– volume: 7
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.ins.2018.09.069_bib0017
  article-title: Multi-objective genetic algorithms: problem difficulties and construction of test problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1999.7.3.205
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2018.09.069_bib0020
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.ins.2018.09.069_bib0029
– start-page: 1
  year: 2003
  ident: 10.1016/j.ins.2018.09.069_bib0002
  article-title: The maximin fitness function; multi-objective city and regional planning
– volume: 3
  start-page: 189
  issue: 2
  year: 2000
  ident: 10.1016/j.ins.2018.09.069_bib0003
  article-title: Pareto sets in decision-based design
  publication-title: J. Eng. Val. Cost Anal.
– volume: 14
  start-page: 671
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2018.09.069_bib0004
  article-title: Brain–computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2058118
– volume: 17
  start-page: 474
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2018.09.069_bib0043
  article-title: Preference-inspired coevolutionary algorithms for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2204264
– year: 1999
  ident: 10.1016/j.ins.2018.09.069_bib0013
  article-title: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations
– year: 2001
  ident: 10.1016/j.ins.2018.09.069_bib0027
  article-title: Spea2 : improving the strength pareto evolutionary algorithm
  publication-title: Technical Report Gloriastrasse
– volume: 62
  start-page: 101
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2018.09.069_bib0039
  article-title: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-014-0214-y
– start-page: 416
  year: 1993
  ident: 10.1016/j.ins.2018.09.069_bib0023
  article-title: Genetic algorithms for multiobjective optimization: Formulationdiscussion and generalization
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2018.09.069_bib0016
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 17
  start-page: 411
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2018.09.069_bib0041
  article-title: A preference-based evolutionary algorithm for multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.3.411
SSID ssj0004766
Score 2.369479
Snippet •A new multi-layer interaction preference based multi-objective optimization algorithm through decomposition (MLIP-MOEA/D) is proposed.•A fast way to get...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 420
SubjectTerms Decomposition
Many-objective optimization
Multi-layer interaction
Multi-objective optimization
Preference information
Title Multi-layer interaction preference based multi-objective evolutionary algorithm through decomposition
URI https://dx.doi.org/10.1016/j.ins.2018.09.069
Volume 509
WOSCitedRecordID wos000494883700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcEBQQBYp8QByogryOE9vHChVBVVWoKtKKS-TYTpvVkl0tu6v-A_4249jJuuFDgMQliqw4ifJexmN75g1CLzNlSZUZkxDGVeLUURIFjoArIpBxVRldeqRP-dmZmEzkx9HoW5cLs5nxphHX13LxX6GGNgDbpc7-Bdz9TaEBzgF0OALscPwj4NuU2mSmwJduxSCWoRr4oq8ocuiGLuNjCZN5OfU279Buwnu5QDo1u5wv69XVl76Sj7Eu_DzEeMU-bchoah8SBtTeUT-t1y2Ia1eYq-fh56t5aG625Dz3BvB8XQ86nwCDL00dr09QMlif6BNnbsR1kvZC6hV631hvewWnSU598a7OOGdERuaVURKN1MxLp_wwCPj1iCnMXJwe-1i0Qra-IMxAW9ttVbezKjBs4CuJ_BbapTyTYOF3jz4cT062Kbbcb3t3791tkLehgoMH_dzFidyWi_voXphv4CPPkwdoZJs9dDdSodxDByF3Bb_CEZQ4WP2HyEaMwhGj8JZRuGUUHjAKx4zCPaNwYBS-wahH6NO744u375NQnSPRVPJVwsqx1lrYnIgqtZLbrKJjA6NlXrEx5Ro84zTPNE-VFKrMFTWCWWFsmZlScGXTx2inmTf2CcJUaJpVlmlVKsZkKtJcasFENSaqIorsI9J90EIH6XpXQWVWdDGK0wIwKBwGBZEFYLCPXvddFl635XcXsw6lIvwn3qEsgFK_7vb037o9Q3e2_8lztLNaru0Buq03q_rr8kUg3nekK61z
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-layer+interaction+preference+based+multi-objective+evolutionary+algorithm+through+decomposition&rft.jtitle=Information+sciences&rft.au=Liu%2C+Ruochen&rft.au=Zhou%2C+Runan&rft.au=Ren%2C+Rui&rft.au=Liu%2C+Jiangdi&rft.date=2020-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=509&rft.spage=420&rft.epage=436&rft_id=info:doi/10.1016%2Fj.ins.2018.09.069&rft.externalDocID=S0020025518307886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon