Subset feedback vertex sets in chordal graphs
Given a graph G=(V,E) and a set S⊆V, a set U⊆V is a subset feedback vertex set of (G,S) if no cycle in G[V∖U] contains a vertex of S. The Subset Feedback Vertex Set problem takes as input G, S, and an integer k, and the question is whether (G,S) has a subset feedback vertex set of cardinality or wei...
Saved in:
| Published in: | Journal of discrete algorithms (Amsterdam, Netherlands) Vol. 26; pp. 7 - 15 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.05.2014
|
| Subjects: | |
| ISSN: | 1570-8667, 1570-8675 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Given a graph G=(V,E) and a set S⊆V, a set U⊆V is a subset feedback vertex set of (G,S) if no cycle in G[V∖U] contains a vertex of S. The Subset Feedback Vertex Set problem takes as input G, S, and an integer k, and the question is whether (G,S) has a subset feedback vertex set of cardinality or weight at most k. Both the weighted and the unweighted versions of this problem are NP-complete on chordal graphs, even on their subclass split graphs. We give an algorithm with running time O(1.6708n) that enumerates all minimal subset feedback vertex sets on chordal graphs on n vertices. As a consequence, Subset Feedback Vertex Set can be solved in time O(1.6708n) on chordal graphs, both in the weighted and in the unweighted case. As a comparison, on arbitrary graphs the fastest known algorithm for these problems has O(1.8638n) running time. We also obtain that a chordal graph G has at most 1.6708n minimal subset feedback vertex sets, regardless of S. This narrows the gap with respect to the best known lower bound of 1.5848n on this graph class. For arbitrary graphs, the gap is substantially wider, as the best known upper and lower bounds are 1.8638n and 1.5927n, respectively. |
|---|---|
| AbstractList | Given a graph G=(V,E) and a set S⊆V, a set U⊆V is a subset feedback vertex set of (G,S) if no cycle in G[V∖U] contains a vertex of S. The Subset Feedback Vertex Set problem takes as input G, S, and an integer k, and the question is whether (G,S) has a subset feedback vertex set of cardinality or weight at most k. Both the weighted and the unweighted versions of this problem are NP-complete on chordal graphs, even on their subclass split graphs. We give an algorithm with running time O(1.6708n) that enumerates all minimal subset feedback vertex sets on chordal graphs on n vertices. As a consequence, Subset Feedback Vertex Set can be solved in time O(1.6708n) on chordal graphs, both in the weighted and in the unweighted case. As a comparison, on arbitrary graphs the fastest known algorithm for these problems has O(1.8638n) running time. We also obtain that a chordal graph G has at most 1.6708n minimal subset feedback vertex sets, regardless of S. This narrows the gap with respect to the best known lower bound of 1.5848n on this graph class. For arbitrary graphs, the gap is substantially wider, as the best known upper and lower bounds are 1.8638n and 1.5927n, respectively. |
| Author | Saei, Reza Heggernes, Pinar Golovach, Petr A. Kratsch, Dieter |
| Author_xml | – sequence: 1 givenname: Petr A. surname: Golovach fullname: Golovach, Petr A. email: petr.golovach@ii.uib.no organization: Department of Informatics, University of Bergen, Norway – sequence: 2 givenname: Pinar surname: Heggernes fullname: Heggernes, Pinar email: pinar.heggernes@ii.uib.no organization: Department of Informatics, University of Bergen, Norway – sequence: 3 givenname: Dieter surname: Kratsch fullname: Kratsch, Dieter email: kratsch@univ-metz.fr organization: LITA, Université de Lorraine, Metz, France – sequence: 4 givenname: Reza surname: Saei fullname: Saei, Reza email: reza.saeidinvar@ii.uib.no organization: Department of Informatics, University of Bergen, Norway |
| BookMark | eNp9z81KAzEQwPEgFWyrD-BtX2DXSXY36eJJil9Q8GDvYTaZ2Kx1tySx6Nu7peLBQ08zDPwG_jM26YeeGLvmUHDg8qYrOouFAF4W0BQA9Rmb8lpBvpCqnvztUl2wWYwdgKh5JaYsf_1sI6XMEdkWzXu2p5DoKxtvMfN9ZjZDsLjN3gLuNvGSnTvcRrr6nXO2frhfL5_y1cvj8_JulRvRqJRXaElxkK1CYywIbLkwEl27MA5F48qqcQoaBwiVNKoyWJIkdAAtSYflnKnjWxOGGAM5bXzC5Ic-BfRbzUEfonWnx2h9iNbQ6DF6lPyf3AX_geH7pLk9GhqL9p6CjsZTb8j6QCZpO_gT-gchznIz |
| CitedBy_id | crossref_primary_10_1007_s00453_023_01149_5 crossref_primary_10_1007_s00453_022_00936_w crossref_primary_10_1016_j_tcs_2016_03_026 crossref_primary_10_1007_s00453_019_00590_9 crossref_primary_10_1016_j_tcs_2023_114139 crossref_primary_10_1016_j_tcs_2023_114326 crossref_primary_10_1016_j_tcs_2021_12_010 crossref_primary_10_1016_j_jcss_2017_04_003 crossref_primary_10_1016_j_ejc_2017_07_015 crossref_primary_10_1016_j_tcs_2020_01_029 |
| Cites_doi | 10.1016/S0166-218X(00)00339-5 10.1093/oso/9780198509424.001.0001 10.1007/BF02992776 10.1007/s00453-007-9152-0 10.1016/j.dam.2007.10.006 10.1137/S0097539798340047 10.1145/1435375.1435384 10.1016/0166-218X(88)90086-8 10.2140/pjm.1965.15.835 10.1007/978-3-642-16533-7 10.1007/BF02760024 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jda.2013.09.005 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1570-8675 |
| EndPage | 15 |
| ExternalDocumentID | 10_1016_j_jda_2013_09_005 S1570866713000853 |
| GrantInformation_xml | – fundername: European Research Council – fundername: Research Council of Norway – fundername: French National Research Agency |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SSV SSW SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-4ade7106b7accd02ab12c6afb8cfa29f349f709f0a046c74ca3e6eaf00be6fa3 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000213972800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-8667 |
| IngestDate | Sat Nov 29 07:02:11 EST 2025 Tue Nov 18 22:17:37 EST 2025 Fri Feb 23 02:29:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Chordal graph Subset feedback vertex set Maximum number of minimal subset feedback vertex sets Exact exponential-time algorithm |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-4ade7106b7accd02ab12c6afb8cfa29f349f709f0a046c74ca3e6eaf00be6fa3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jda.2013.09.005 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jda_2013_09_005 crossref_primary_10_1016_j_jda_2013_09_005 elsevier_sciencedirect_doi_10_1016_j_jda_2013_09_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of discrete algorithms (Amsterdam, Netherlands) |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gaspers, Mnich (br0160) 2010; vol. 6346 Moon, Moser (br0190) 1965; 3 Couturier, Heggernes, van 't Hof, Villanger (br0020) 2012; vol. 7434 Kratsch, Müller, Todinca (br0180) 2008; 156 Golovach, Heggernes, Kratsch, Saei (br0140) 2012; vol. 7537 Golumbic (br0150) 2004; vol. 57 Even, Naor, Zosin (br0050) 2000; 30 Fomin, Villanger (br0100) 2010 Spinrad (br0220) 2003; vol. 19 Cygan, Pilipczuk, Pilipczuk, Wojtaszczyk (br0030) 2011; vol. 6755 Dirac (br0040) 1961; 25 Kanté, Limouzy, Mary, Nourine (br0170) 2011; vol. 6914 Semple, Steel (br0210) 2003 Corneil, Fonlupt (br0010) 1988/1989; 22 Fomin, Heggernes, Kratsch, Papadopoulos, Villanger (br0080) 2011; vol. 6844 George, Liu (br0120) 1981 Schwikowski, Speckenmeyer (br0200) 2002; 117 Fomin, Gaspers, Pyatkin, Razgon (br0060) 2008; 52 Fomin, Grandoni, Pyatkin, Stepanov (br0070) 2008; 5 Fomin, Kratsch (br0090) 2010 Garey, Johnson (br0130) 1979 Fulkerson, Gross (br0110) 1965; 15 George (10.1016/j.jda.2013.09.005_br0120) 1981 Fulkerson (10.1016/j.jda.2013.09.005_br0110) 1965; 15 Fomin (10.1016/j.jda.2013.09.005_br0070) 2008; 5 Couturier (10.1016/j.jda.2013.09.005_br0020) 2012; vol. 7434 Fomin (10.1016/j.jda.2013.09.005_br0090) 2010 Fomin (10.1016/j.jda.2013.09.005_br0100) 2010 Dirac (10.1016/j.jda.2013.09.005_br0040) 1961; 25 Fomin (10.1016/j.jda.2013.09.005_br0080) 2011; vol. 6844 Garey (10.1016/j.jda.2013.09.005_br0130) 1979 Gaspers (10.1016/j.jda.2013.09.005_br0160) 2010; vol. 6346 Golumbic (10.1016/j.jda.2013.09.005_br0150) 2004; vol. 57 Fomin (10.1016/j.jda.2013.09.005_br0060) 2008; 52 Kanté (10.1016/j.jda.2013.09.005_br0170) 2011; vol. 6914 Kratsch (10.1016/j.jda.2013.09.005_br0180) 2008; 156 Spinrad (10.1016/j.jda.2013.09.005_br0220) 2003; vol. 19 Cygan (10.1016/j.jda.2013.09.005_br0030) 2011; vol. 6755 Golovach (10.1016/j.jda.2013.09.005_br0140) 2012; vol. 7537 Even (10.1016/j.jda.2013.09.005_br0050) 2000; 30 Semple (10.1016/j.jda.2013.09.005_br0210) 2003 Corneil (10.1016/j.jda.2013.09.005_br0010) 1988; 22 Moon (10.1016/j.jda.2013.09.005_br0190) 1965; 3 Schwikowski (10.1016/j.jda.2013.09.005_br0200) 2002; 117 |
| References_xml | – volume: vol. 6755 start-page: 449 year: 2011 end-page: 461 ident: br0030 article-title: Subset feedback vertex set is fixed parameter tractable publication-title: Proceedings of ICALP 2011 – volume: 25 start-page: 71 year: 1961 end-page: 76 ident: br0040 article-title: On rigid circuit graphs publication-title: Abh. Math. Semin. Univ. Hamb. – volume: vol. 19 year: 2003 ident: br0220 article-title: Efficient Graph Representations publication-title: Fields Inst. Monogr. Ser. – volume: 30 start-page: 1231 year: 2000 end-page: 1252 ident: br0050 article-title: An 8-approximation algorithm for the subset feedback vertex set problem publication-title: SIAM J. Comput. – start-page: 383 year: 2010 end-page: 394 ident: br0100 article-title: Finding induced subgraphs via minimal triangulations publication-title: Proceedings of STACS 2010 – volume: 52 start-page: 293 year: 2008 end-page: 307 ident: br0060 article-title: On the minimum feedback vertex set problem: Exact and enumeration algorithms publication-title: Algorithmica – year: 1979 ident: br0130 article-title: Computers and Intractability, A Guide to the Theory of NP-Completeness – volume: vol. 6346 start-page: 267 year: 2010 end-page: 277 ident: br0160 article-title: On feedback vertex sets in tournaments publication-title: Proceedings of ESA 2010 – volume: vol. 7537 start-page: 85 year: 2012 end-page: 96 ident: br0140 article-title: An exact algorithm for subset feedback vertex set on chordal graphs publication-title: Proceedings of IPEC 2012 – volume: 15 start-page: 835 year: 1965 end-page: 855 ident: br0110 article-title: Incidence matrices and interval graphs publication-title: Pac. J. Math. – year: 2003 ident: br0210 article-title: Phylogenetics publication-title: Oxford Lect. Ser. Math. Appl. – year: 2010 ident: br0090 article-title: Exact Exponential Algorithms publication-title: Texts Theor. Comput. Sci. – volume: 3 start-page: 23 year: 1965 end-page: 28 ident: br0190 article-title: On cliques in graphs publication-title: Isr. J. Math. – volume: vol. 6914 start-page: 298 year: 2011 end-page: 309 ident: br0170 article-title: Enumeration of minimal dominating sets and variants publication-title: Proceedings of FCT 2011 – volume: 156 start-page: 1936 year: 2008 end-page: 1947 ident: br0180 article-title: Feedback vertex set on AT-free graphs publication-title: Discrete Appl. Math. – year: 1981 ident: br0120 article-title: Computer Solution of Large Sparse Positive Definite Systems – volume: 22 start-page: 109 year: 1988/1989 end-page: 118 ident: br0010 article-title: The complexity of generalized clique covering publication-title: Discrete Appl. Math. – volume: vol. 57 year: 2004 ident: br0150 article-title: Algorithmic Graph Theory and Perfect Graphs publication-title: Ann. Discrete Math. – volume: vol. 7434 start-page: 133 year: 2012 end-page: 144 ident: br0020 article-title: Maximum number of minimal feedback vertex sets in chordal graphs and cographs publication-title: Proceedings of COCOON 2012 – volume: vol. 6844 start-page: 399 year: 2011 end-page: 410 ident: br0080 article-title: Enumerating minimal subset feedback vertex sets publication-title: Proceedings of WADS – volume: 5 year: 2008 ident: br0070 article-title: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications publication-title: ACM Trans. Algorithms – volume: 117 start-page: 253 year: 2002 end-page: 265 ident: br0200 article-title: On enumerating all minimal solutions of feedback problems publication-title: Discrete Appl. Math. – year: 1979 ident: 10.1016/j.jda.2013.09.005_br0130 – volume: 117 start-page: 253 year: 2002 ident: 10.1016/j.jda.2013.09.005_br0200 article-title: On enumerating all minimal solutions of feedback problems publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(00)00339-5 – year: 2003 ident: 10.1016/j.jda.2013.09.005_br0210 article-title: Phylogenetics doi: 10.1093/oso/9780198509424.001.0001 – volume: vol. 6844 start-page: 399 year: 2011 ident: 10.1016/j.jda.2013.09.005_br0080 article-title: Enumerating minimal subset feedback vertex sets – volume: 25 start-page: 71 year: 1961 ident: 10.1016/j.jda.2013.09.005_br0040 article-title: On rigid circuit graphs publication-title: Abh. Math. Semin. Univ. Hamb. doi: 10.1007/BF02992776 – volume: vol. 19 year: 2003 ident: 10.1016/j.jda.2013.09.005_br0220 article-title: Efficient Graph Representations – volume: 52 start-page: 293 issue: 2 year: 2008 ident: 10.1016/j.jda.2013.09.005_br0060 article-title: On the minimum feedback vertex set problem: Exact and enumeration algorithms publication-title: Algorithmica doi: 10.1007/s00453-007-9152-0 – volume: 156 start-page: 1936 year: 2008 ident: 10.1016/j.jda.2013.09.005_br0180 article-title: Feedback vertex set on AT-free graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2007.10.006 – volume: vol. 6755 start-page: 449 year: 2011 ident: 10.1016/j.jda.2013.09.005_br0030 article-title: Subset feedback vertex set is fixed parameter tractable – volume: 30 start-page: 1231 issue: 4 year: 2000 ident: 10.1016/j.jda.2013.09.005_br0050 article-title: An 8-approximation algorithm for the subset feedback vertex set problem publication-title: SIAM J. Comput. doi: 10.1137/S0097539798340047 – volume: vol. 7537 start-page: 85 year: 2012 ident: 10.1016/j.jda.2013.09.005_br0140 article-title: An exact algorithm for subset feedback vertex set on chordal graphs – start-page: 383 year: 2010 ident: 10.1016/j.jda.2013.09.005_br0100 article-title: Finding induced subgraphs via minimal triangulations – volume: vol. 6914 start-page: 298 year: 2011 ident: 10.1016/j.jda.2013.09.005_br0170 article-title: Enumeration of minimal dominating sets and variants – volume: 5 issue: 1 year: 2008 ident: 10.1016/j.jda.2013.09.005_br0070 article-title: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications publication-title: ACM Trans. Algorithms doi: 10.1145/1435375.1435384 – volume: 22 start-page: 109 year: 1988 ident: 10.1016/j.jda.2013.09.005_br0010 article-title: The complexity of generalized clique covering publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(88)90086-8 – volume: vol. 7434 start-page: 133 year: 2012 ident: 10.1016/j.jda.2013.09.005_br0020 article-title: Maximum number of minimal feedback vertex sets in chordal graphs and cographs – volume: vol. 6346 start-page: 267 year: 2010 ident: 10.1016/j.jda.2013.09.005_br0160 article-title: On feedback vertex sets in tournaments – year: 1981 ident: 10.1016/j.jda.2013.09.005_br0120 – volume: 15 start-page: 835 year: 1965 ident: 10.1016/j.jda.2013.09.005_br0110 article-title: Incidence matrices and interval graphs publication-title: Pac. J. Math. doi: 10.2140/pjm.1965.15.835 – year: 2010 ident: 10.1016/j.jda.2013.09.005_br0090 article-title: Exact Exponential Algorithms doi: 10.1007/978-3-642-16533-7 – volume: vol. 57 year: 2004 ident: 10.1016/j.jda.2013.09.005_br0150 article-title: Algorithmic Graph Theory and Perfect Graphs – volume: 3 start-page: 23 year: 1965 ident: 10.1016/j.jda.2013.09.005_br0190 article-title: On cliques in graphs publication-title: Isr. J. Math. doi: 10.1007/BF02760024 |
| SSID | ssj0025142 |
| Score | 2.129644 |
| Snippet | Given a graph G=(V,E) and a set S⊆V, a set U⊆V is a subset feedback vertex set of (G,S) if no cycle in G[V∖U] contains a vertex of S. The Subset Feedback... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 7 |
| SubjectTerms | Chordal graph Exact exponential-time algorithm Maximum number of minimal subset feedback vertex sets Subset feedback vertex set |
| Title | Subset feedback vertex sets in chordal graphs |
| URI | https://dx.doi.org/10.1016/j.jda.2013.09.005 |
| Volume | 26 |
| WOSCitedRecordID | wos000213972800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1570-8675 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0025142 issn: 1570-8667 databaseCode: AIEXJ dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBG7PJQDJ6JUTuLa8bGC5XVYIW0PvUW2Y5eUbnaVhqraK3-ccRwnEcsiQOISVVbdpJ5P4y_jmfkQeqW15JwIGmVciYjIhEWcFwreWk2iCqGlUrgVm2Cnp9lyyT9PJt99Lcxuw6oq2-_55X81NYyBsW3p7F-Yu_9RGIDPYHS4gtnh-keGt65AN6GBbUkK9TW0gst6H8JYm_oK7q4uwC5tp-rtDdzU1urWQKdDsVld1GXz5bwNzs7PbVuFosPQUCo8Cie8B2e6E05fyqp1hfPpEG5drXTtpQFsHXDv7QGGWzfnbTlOGD4TunQguBLj-ERMhmxAFzS7Vjjj_CzDUUadEsdUj8eckIp3zsnYu7LRNu2KQK9tAC4WsZ6uC9tUKk7bJrZ4Nux2fQ7imb2ffQR7oAfEM72FDhM24-DdD-cfT5af-vd24JTtobl_Zn843qYJ_nSjX9ObEWVZ3Ed3O3sGc4eRB2iiq4fontfxCDq3_ghFDjKBh0zgIBNYyARlFXSQCRxkHqPFu5PFmw9RJ6MRqYSzJiKi0MAjqWRCqQInQsaJosLITBmRcJMSbhjmBgtMqGJEiVRTLQzGUlMj0ifooLqo9FMU6JjExragpED8WKYlzRKjlYzVTNAiJkcI-z-fq67FvFU62eQ-l3Cdw3rldr1yzHNYryP0up9y6fqr_O7LxK9o3hFER_xyMP_N047_bdozdGfA83N00NTf9At0W-2aclu_7EDyAx2OiTE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subset+feedback+vertex+sets+in+chordal+graphs&rft.jtitle=Journal+of+discrete+algorithms+%28Amsterdam%2C+Netherlands%29&rft.au=Golovach%2C+Petr+A.&rft.au=Heggernes%2C+Pinar&rft.au=Kratsch%2C+Dieter&rft.au=Saei%2C+Reza&rft.date=2014-05-01&rft.pub=Elsevier+B.V&rft.issn=1570-8667&rft.eissn=1570-8675&rft.volume=26&rft.spage=7&rft.epage=15&rft_id=info:doi/10.1016%2Fj.jda.2013.09.005&rft.externalDocID=S1570866713000853 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8667&client=summon |