Predictive multi-period multi-objective portfolio optimization based on higher order moments: Deep learning approach

[Display omitted] •We Proposed predictive multi-period multi-objective portfolio optimization model.•Higher moments of returns such as skewness and kurtosis are considered in the proposed model.•Machine learning method, i.e., Long Short-Term Memory (LSTM), is used to predict the daily stock price ti...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering Vol. 183; p. 109450
Main Authors: Abolmakarem, Shaghayegh, Abdi, Farshid, Khalili-Damghani, Kaveh, Didehkhani, Hosein
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2023
Subjects:
ISSN:0360-8352, 1879-0550
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •We Proposed predictive multi-period multi-objective portfolio optimization model.•Higher moments of returns such as skewness and kurtosis are considered in the proposed model.•Machine learning method, i.e., Long Short-Term Memory (LSTM), is used to predict the daily stock price time-series.•The proposed model can be rebalanced in each period through buying and selling.•A real case study including 5030 records of six stock prices from FTSE 100 is discussed. We propose a Multi-Period Multi-Objective Portfolio Optimization model (MPMOPO). We used deep-learning approach to predict future behavior of stock returns. We consider four objectives, i.e., wealth, variance, skewness, and kurtosis and several constraints such as cardinality, budget, upper and lower limits of purchase, and diversification to address real-world situations. The investor can rebalance the portfolio through daily trade by buying or selling subject to transaction costs. We applied the proposed method in a daily closing price prediction of six stocks from FTSE 100. Goal programming method was used to solve the models. The results of statistical analysis show the applicability and efficacy of the proposed method in comparison with those methods which used historical data to form the portfolio.
AbstractList [Display omitted] •We Proposed predictive multi-period multi-objective portfolio optimization model.•Higher moments of returns such as skewness and kurtosis are considered in the proposed model.•Machine learning method, i.e., Long Short-Term Memory (LSTM), is used to predict the daily stock price time-series.•The proposed model can be rebalanced in each period through buying and selling.•A real case study including 5030 records of six stock prices from FTSE 100 is discussed. We propose a Multi-Period Multi-Objective Portfolio Optimization model (MPMOPO). We used deep-learning approach to predict future behavior of stock returns. We consider four objectives, i.e., wealth, variance, skewness, and kurtosis and several constraints such as cardinality, budget, upper and lower limits of purchase, and diversification to address real-world situations. The investor can rebalance the portfolio through daily trade by buying or selling subject to transaction costs. We applied the proposed method in a daily closing price prediction of six stocks from FTSE 100. Goal programming method was used to solve the models. The results of statistical analysis show the applicability and efficacy of the proposed method in comparison with those methods which used historical data to form the portfolio.
ArticleNumber 109450
Author Khalili-Damghani, Kaveh
Abolmakarem, Shaghayegh
Didehkhani, Hosein
Abdi, Farshid
Author_xml – sequence: 1
  givenname: Shaghayegh
  surname: Abolmakarem
  fullname: Abolmakarem, Shaghayegh
  organization: Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Farshid
  orcidid: 0000-0002-0455-177X
  surname: Abdi
  fullname: Abdi, Farshid
  organization: Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  givenname: Kaveh
  surname: Khalili-Damghani
  fullname: Khalili-Damghani, Kaveh
  email: kaveh.khalili@gmail.com
  organization: Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 4
  givenname: Hosein
  surname: Didehkhani
  fullname: Didehkhani, Hosein
  organization: Department of Industrial Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad, Iran
BookMark eNp9kM1OAyEQgImpiW31AbzxAlth2T_0ZOpv0kQPeiYsDC2b3WXDYhN9eqnbk4dehhmYb8J8CzTrXQ8IXVOyooQWN81KWVilJGWx5llOztCcViVPSJ6TGZoTVpCkYnl6gRbj2BBCspzTOQrvHrRVwe4Bd19tsMkA3jp9LFzdwPQ4OB-Ma63Dbgi2sz8yWNfjWo6gcUx2drsDj53XMXaugz6Mt_gBYMAtSN_bfovlMHgn1e4SnRvZjnB1PJfo8-nxY_2SbN6eX9f3m0SlvAxJJrVSQMEwo-oqL4EVpiC6rrKs4rU0NYdcEq045VqChqqsCHDKDMtASijYEpXTXOXdOHowQtnw9-_gpW0FJeIgTzTxHsRBnpjkRZL-IwdvO-m_TzJ3EwNxpb0FL8bY0qvo10eJQjt7gv4FRMSN8A
CitedBy_id crossref_primary_10_1016_j_asoc_2025_112741
crossref_primary_10_1016_j_knosys_2025_114456
crossref_primary_10_1016_j_engappai_2025_111472
crossref_primary_10_1109_TEM_2024_3437160
crossref_primary_10_1007_s10614_025_11017_9
crossref_primary_10_1007_s13198_023_02218_2
crossref_primary_10_1016_j_cie_2025_111159
crossref_primary_10_1016_j_asoc_2025_113465
crossref_primary_10_1016_j_asoc_2025_113927
crossref_primary_10_1016_j_eswa_2024_125780
crossref_primary_10_1016_j_eswa_2025_129144
crossref_primary_10_1016_j_rineng_2025_106263
Cites_doi 10.1007/s00521-020-04867-x
10.1109/ICACI49185.2020.9177505
10.1016/j.najef.2022.101818
10.1007/s40815-020-00928-4
10.1016/j.oregeorev.2015.01.001
10.1016/j.asoc.2022.109921
10.1016/j.eswa.2020.113973
10.1016/j.asoc.2020.106422
10.1016/j.eswa.2022.117005
10.1016/j.najef.2022.101867
10.1016/j.jbef.2021.100507
10.1016/j.eswa.2018.08.003
10.1016/j.asoc.2017.09.025
10.1007/s10489-021-02249-x
10.1016/j.jksuci.2013.04.001
10.1007/978-3-319-70096-0_21
10.1016/j.engappai.2022.105626
10.1016/j.ifacol.2021.10.501
10.1007/s00530-021-00758-w
10.1016/j.engappai.2023.105843
10.1016/j.eswa.2014.10.031
10.1016/j.eswa.2010.10.027
10.1016/j.eswa.2022.117123
10.1016/j.amc.2022.127237
10.1016/j.eaef.2017.04.003
10.1016/j.asoc.2021.107519
10.1016/j.eswa.2015.05.013
10.1016/j.ejor.2017.11.054
10.1038/s41598-018-37773-3
10.1016/j.neucom.2020.12.022
10.1016/j.jclepro.2020.122886
10.1016/j.procs.2020.03.326
10.1016/j.eswa.2023.119600
10.1016/j.eswa.2020.114135
10.1016/j.ieri.2014.03.004
10.1016/j.asoc.2010.04.001
10.1016/j.knosys.2020.106454
10.1016/j.neucom.2020.04.086
10.1007/978-3-030-05755-8_36
10.1007/s00521-020-05532-z
10.1016/j.jbankfin.2020.105989
10.1016/j.frl.2021.102065
10.1016/j.eswa.2017.10.056
10.1016/j.eswa.2019.113042
10.1016/j.engappai.2017.10.010
10.1016/j.cie.2023.109023
10.1016/j.eswa.2019.02.011
10.1080/10255810390245627
10.1016/j.dib.2016.12.044
10.1016/j.asoc.2019.105781
10.1016/j.procs.2021.01.020
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2023.109450
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2023_109450
S0360835223004746
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-4adcce1ef3fcb857e36f60db84489bafb9e5a0dc919daede8780e913f34eaae63
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001047767700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:21:22 EST 2025
Tue Nov 18 22:04:21 EST 2025
Fri Feb 23 02:37:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-period portfolio optimization
Long short-term memory
Stock prediction
Multi-objective programming
Convolutional neural network
Goal programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-4adcce1ef3fcb857e36f60db84489bafb9e5a0dc919daede8780e913f34eaae63
ORCID 0000-0002-0455-177X
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2023_109450
crossref_primary_10_1016_j_cie_2023_109450
elsevier_sciencedirect_doi_10_1016_j_cie_2023_109450
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bruni (b0040) 2017; 10
Cui, Wang, Li, Zhang (b0060) 2023; 120902
Liu, S., Zhang, C., & Ma, J. (2017). CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, vol 10635. Springer, Cham. 10.1007/978-3-319-70096-0_21.
Gorgulho, Neves, Horta (b0095) 2011; 38
Ma, Wang, Ma (b0175) 2023; 177
Du (b0075) 2022; 201
Patel, Shah, Thakkar, Kotecha (b0205) 2015; 42
Ren, T. (2023). Multi-source data driven cryptocurrency price movement prediction and portfolio optimization
Liu, Zhou, Dong (b0150) 2021; 30
Lu, Li, Wang, Qin (b0155) 2021; 33
Shahriari, Nazarimehr, Rajagopal, Jafari, Perc, Svetec (b0225) 2022; 430
Behera, Pasayat, Behera, Kumar (b0030) 2023; 120
Ismail, Md Noorani, Ismail, Abdul Razak, Alias (b0125) 2020; 93
Yan (b0265) 2023; 64
Zhou, Z.
Thawornwong, Enke, Dagli (b0240) 2003; 5
Fischer, Krauss (b0080) 2018; 270
Zhao, Yang (b0280) 2023; 133
Sigaki, Perc, Ribeiro (b0230) 2019; 9
Huang, Gao, Gan, Ye (b0120) 2021; 425
Gupta, Mehlawat, Khan (b0110) 2021; 167
Amraei, Abdanan Mehdizadeh, Sallary (b0015) 2017; 10
Paiva, Cardoso, Hanaoka, Duarte (b0195) 2019; 115
Liagkouras, Metaxiotis (b0160) 2018; 67
Meghwani, Thakur (b0185) 2018; 67
Ampomah, Qin, Nyame, Botchey (b0010) 2020; 44
Rangel-González, Fraire, Frausto-Solis, Cruz-Reyes, Gomez-Santillan, Rangel-Valdez, Carpio-Valadez (b0215) 2020; 22
Goyal, Chandra, Singh (b0100) 2014; 6
Wilder (b0255) 1978
Zhao, P., Gao, S., & Yang, N. (2020). Solving Multi-Objective Portfolio Optimization Problem Based on MOEA/D, In 12th International Conference on Advanced Computational Intelligence (ICACI), (Dali, China, 2020), (pp. 30-37), doi: 10.1109/ICACI49185.2020.9177505.
Article 11960.
Ghoseiri, Ghannadpour (b0090) 2010; 10
Gupta, Mehlawat, Yadav, Kumar (b0115) 2019; 85
Zhao, Chen, Zhan, Kwong, Zhang (b0270) 2021; 430
Kara, Acar Boyacioglu, Baykan (b0140) 2011; 38
Kalayci, Ertenlice, Akbay (b0130) 2019; 125
Paskaramoorthy, Woolway (b0200) 2022; 44
Xiao, H.
Guliashki, Stoyanova (b0105) 2021; 54
Ballings, Van Den Poel, Hespeels, Gryp (b0025) 2015; 42
Aksarayli, Pala (b0005) 2018; 94
Fister, Perc, Jagrič (b0085) 2021; 51
Cai, S., Feng, X., Deng, Z., Ming, Z., & Shan, Z. (2018). Financial News Quantization and Stock Market Forecast Research Based on CNN and LSTM. In: Qiu, M. (Eds.) Smart Computing and Communication. SmartCom 2018. Lecture Notes in Computer Science, vol 11344. Springer, Cham. 10.1007/978-3-030-05755-8_36.
Mansini, Ogryczak, Speranza (b0180) 2015
Rachmawati, Sari, Yohanes (b0210) 2021; 179
Bakhtavar, Prabatha, Karunathilake, Sadiq, Hewage (b0020) 2020; 272
Livieris, Pintelas, Pintelas (b0165) 2020; 32
Vijh, Chandola, Tikkiwal, Kumar (b0245) 2020; 167
Muthukrishnan, Rohini (b0190) 2016
Wu, Li, Herencsar, Vo, Lin (b0260) 2023; 29
Bhattacharyya, Hossain, Kar (b0035) 2014; 26
Chen, Zhang, Jia (b0055) 2022; 63
Kanwal, Lau, Ng, Sim, Chandrasekaran (b0135) 2022; 202
Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (b0220) 2015; 71
Tolun Tayalı (b0235) 2020; 209
Çela, Hafner, Mestel, Pferschy (b0050) 2021; 122
Dai, Qin (b0065) 2021; 109
Dezhkam, Manzuri (b0070) 2023; 118
Wang, Li, Zhang, Liu (b0250) 2020; 143
Song, Z.
Ma, Han, Wang (b0170) 2021; 165
10.1016/j.cie.2023.109450_b0045
Livieris (10.1016/j.cie.2023.109450_b0165) 2020; 32
Liagkouras (10.1016/j.cie.2023.109450_b0160) 2018; 67
Liu (10.1016/j.cie.2023.109450_b0150) 2021; 30
Meghwani (10.1016/j.cie.2023.109450_b0185) 2018; 67
Ampomah (10.1016/j.cie.2023.109450_b0010) 2020; 44
Kalayci (10.1016/j.cie.2023.109450_b0130) 2019; 125
Bruni (10.1016/j.cie.2023.109450_b0040) 2017; 10
10.1016/j.cie.2023.109450_b0285
Amraei (10.1016/j.cie.2023.109450_b0015) 2017; 10
Paskaramoorthy (10.1016/j.cie.2023.109450_b0200) 2022; 44
Paiva (10.1016/j.cie.2023.109450_b0195) 2019; 115
Vijh (10.1016/j.cie.2023.109450_b0245) 2020; 167
Wu (10.1016/j.cie.2023.109450_b0260) 2023; 29
Ghoseiri (10.1016/j.cie.2023.109450_b0090) 2010; 10
Goyal (10.1016/j.cie.2023.109450_b0100) 2014; 6
Dai (10.1016/j.cie.2023.109450_b0065) 2021; 109
Wang (10.1016/j.cie.2023.109450_b0250) 2020; 143
10.1016/j.cie.2023.109450_b0275
Aksarayli (10.1016/j.cie.2023.109450_b0005) 2018; 94
Kara (10.1016/j.cie.2023.109450_b0140) 2011; 38
Mansini (10.1016/j.cie.2023.109450_b0180) 2015
Gorgulho (10.1016/j.cie.2023.109450_b0095) 2011; 38
Huang (10.1016/j.cie.2023.109450_b0120) 2021; 425
Shahriari (10.1016/j.cie.2023.109450_b0225) 2022; 430
Cui (10.1016/j.cie.2023.109450_b0060) 2023; 120902
Rangel-González (10.1016/j.cie.2023.109450_b0215) 2020; 22
Wilder (10.1016/j.cie.2023.109450_b0255) 1978
Rodriguez-Galiano (10.1016/j.cie.2023.109450_b0220) 2015; 71
10.1016/j.cie.2023.109450_b0145
Lu (10.1016/j.cie.2023.109450_b0155) 2021; 33
Dezhkam (10.1016/j.cie.2023.109450_b0070) 2023; 118
Ballings (10.1016/j.cie.2023.109450_b0025) 2015; 42
Patel (10.1016/j.cie.2023.109450_b0205) 2015; 42
Zhao (10.1016/j.cie.2023.109450_b0280) 2023; 133
Gupta (10.1016/j.cie.2023.109450_b0110) 2021; 167
Muthukrishnan (10.1016/j.cie.2023.109450_b0190) 2016
Thawornwong (10.1016/j.cie.2023.109450_b0240) 2003; 5
Gupta (10.1016/j.cie.2023.109450_b0115) 2019; 85
Bakhtavar (10.1016/j.cie.2023.109450_b0020) 2020; 272
Tolun Tayalı (10.1016/j.cie.2023.109450_b0235) 2020; 209
Ismail (10.1016/j.cie.2023.109450_b0125) 2020; 93
Sigaki (10.1016/j.cie.2023.109450_b0230) 2019; 9
Fischer (10.1016/j.cie.2023.109450_b0080) 2018; 270
Zhao (10.1016/j.cie.2023.109450_b0270) 2021; 430
Fister (10.1016/j.cie.2023.109450_b0085) 2021; 51
Ma (10.1016/j.cie.2023.109450_b0175) 2023; 177
Chen (10.1016/j.cie.2023.109450_b0055) 2022; 63
Çela (10.1016/j.cie.2023.109450_b0050) 2021; 122
Yan (10.1016/j.cie.2023.109450_b0265) 2023; 64
Guliashki (10.1016/j.cie.2023.109450_b0105) 2021; 54
Du (10.1016/j.cie.2023.109450_b0075) 2022; 201
Ma (10.1016/j.cie.2023.109450_b0170) 2021; 165
Bhattacharyya (10.1016/j.cie.2023.109450_b0035) 2014; 26
Kanwal (10.1016/j.cie.2023.109450_b0135) 2022; 202
Behera (10.1016/j.cie.2023.109450_b0030) 2023; 120
Rachmawati (10.1016/j.cie.2023.109450_b0210) 2021; 179
References_xml – volume: 118
  year: 2023
  ident: b0070
  article-title: Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert–Huang​ transform
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 167
  start-page: 599
  year: 2020
  end-page: 606
  ident: b0245
  article-title: Stock Closing Price Prediction using Machine Learning Techniques
  publication-title: Procedia Computer Science
– volume: 6
  start-page: 15
  year: 2014
  end-page: 21
  ident: b0100
  article-title: Suitability of KNN Regression in the Development of Interaction Based Software Fault Prediction Models
  publication-title: IERI Procedia
– volume: 165
  year: 2021
  ident: b0170
  article-title: Portfolio optimization with return prediction using deep learning and machine learning
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 79
  year: 2014
  end-page: 87
  ident: b0035
  article-title: Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 51
  start-page: 7177
  year: 2021
  end-page: 7195
  ident: b0085
  article-title: Two robust long short-term memory frameworks for trading stocks
  publication-title: Applied Intelligence
– volume: 272
  year: 2020
  ident: b0020
  article-title: Assessment of renewable energy-based strategies for net-zero energy communities: A planning model using multi-objective goal programming
  publication-title: Journal of Cleaner Production
– volume: 109
  year: 2021
  ident: b0065
  article-title: Multi-period uncertain portfolio optimization model with minimum transaction lots and dynamic risk preference
  publication-title: Applied Soft Computing
– volume: 209
  year: 2020
  ident: b0235
  article-title: A novel backtesting methodology for clustering in mean–variance portfolio optimization
  publication-title: Knowledge-Based Systems
– start-page: 63
  year: 2015
  end-page: 72
  ident: b0180
  article-title: Linear and mixed integer programming for portfolio optimization. EURO advanced tutorials on operational research, chapter Portfolio optimization with other real features
– volume: 10
  start-page: 1096
  year: 2010
  end-page: 1107
  ident: b0090
  article-title: Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm
  publication-title: Applied Soft Computing
– volume: 10
  start-page: 569
  year: 2017
  end-page: 575
  ident: b0040
  article-title: Stock Market Index Data and indicators for Day Trading as a Binary Classification problem
  publication-title: Data in Brief
– volume: 22
  start-page: 2760
  year: 2020
  end-page: 2768
  ident: b0215
  article-title: Fuzzy multi-objective particle swarm optimization solving the three-objective portfolio optimization problem
  publication-title: International Journal of Fuzzy Systems
– volume: 201
  year: 2022
  ident: b0075
  article-title: Mean–variance portfolio optimization with deep learning based-forecasts for cointegrated stocks
  publication-title: Expert Systems with Applications
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: b0220
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
– volume: 133
  year: 2023
  ident: b0280
  article-title: Deep Learning-based Integrated Framework for stock price movement prediction
  publication-title: Applied Soft Computing
– volume: 63
  year: 2022
  ident: b0055
  article-title: A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning
  publication-title: North American Journal of Economics and Finance
– volume: 38
  start-page: 14072
  year: 2011
  end-page: 14085
  ident: b0095
  article-title: Applying a GA kernel on optimizing technical analysis rules for stock picking and portfolio composition
  publication-title: Expert Systems with Applications
– volume: 122
  year: 2021
  ident: b0050
  article-title: Mean-variance portfolio optimization based on ordinal information
  publication-title: Journal of Banking & Finance
– volume: 32
  start-page: 17351
  year: 2020
  end-page: 17360
  ident: b0165
  article-title: A CNN–LSTM model for gold price time-series forecasting
  publication-title: Neural Computing & Applications
– reference: Cai, S., Feng, X., Deng, Z., Ming, Z., & Shan, Z. (2018). Financial News Quantization and Stock Market Forecast Research Based on CNN and LSTM. In: Qiu, M. (Eds.) Smart Computing and Communication. SmartCom 2018. Lecture Notes in Computer Science, vol 11344. Springer, Cham. 10.1007/978-3-030-05755-8_36.
– volume: 9
  start-page: 1440
  year: 2019
  ident: b0230
  article-title: Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market
  publication-title: Scientific Reports
– volume: 30
  year: 2021
  ident: b0150
  article-title: Improving stock price prediction using the long short-term memory model combined with online social networks
  publication-title: Journal of Behavioral and Experimental Finance
– volume: 120902
  year: 2023
  ident: b0060
  article-title: McVCsB: A new hybrid deep learning network for stock index prediction
  publication-title: Expert Systems with Application
– volume: 125
  start-page: 345
  year: 2019
  end-page: 368
  ident: b0130
  article-title: A comprehensive review of deterministic models and applications for mean-variance portfolio optimization
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 4741
  year: 2021
  end-page: 4753
  ident: b0155
  article-title: A CNN-BiLSTM-AM method for stock price prediction
  publication-title: Neural Computing & Applications
– volume: 115
  start-page: 635
  year: 2019
  end-page: 655
  ident: b0195
  article-title: Decision-making for financial trading: A fusion approach of machine learning and portfolio selection
  publication-title: Expert Systems with Application
– volume: 10
  start-page: 266
  year: 2017
  end-page: 271
  ident: b0015
  article-title: Application of computer vision and support vector regression for weight prediction of live broiler chicken
  publication-title: Engineering in Agriculture, Environment and Food
– volume: 202
  year: 2022
  ident: b0135
  article-title: BiCuDNNLSTM-1dCNN — A hybrid deep learning-based predictive model for stock price prediction
  publication-title: Expert Systems with Application
– volume: 67
  start-page: 260
  year: 2018
  end-page: 269
  ident: b0160
  article-title: Multi-period mean–variance fuzzy portfolio optimization model with transaction costs
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 44
  start-page: 477
  year: 2020
  end-page: 489
  ident: b0010
  article-title: Stock Market Decision Support Modeling with Tree-Based Adaboost Ensemble Machine Learning Models
  publication-title: Informatica
– volume: 425
  start-page: 207
  year: 2021
  end-page: 218
  ident: b0120
  article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network
  publication-title: Neurocomputing
– reference: Liu, S., Zhang, C., & Ma, J. (2017). CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, vol 10635. Springer, Cham. 10.1007/978-3-319-70096-0_21.
– volume: 143
  year: 2020
  ident: b0250
  article-title: Portfolio formation with preselection using deep learning from long-term financial data
  publication-title: Expert Systems with Applications
– volume: 177
  year: 2023
  ident: b0175
  article-title: A novel prediction based portfolio optimization model using deep learning
  publication-title: Computers and Industrial Engineering
– volume: 120
  year: 2023
  ident: b0030
  article-title: Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 430
  year: 2022
  ident: b0225
  article-title: Cryptocurrency price analysis with ordinal partition networks
  publication-title: Applied Mathematics and Computation
– volume: 54
  start-page: 517
  year: 2021
  end-page: 522
  ident: b0105
  article-title: Effective solving portfolio optimization problems by means of a multi-period diversification model
  publication-title: IFAC-PapersOnLine
– volume: 430
  start-page: 58
  year: 2021
  end-page: 70
  ident: b0270
  article-title: Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
  publication-title: Neurocomputing
– volume: 85
  year: 2019
  ident: b0115
  article-title: A polynomial goal programming approach for intuitionistic fuzzy portfolio optimization using entropy and higher moments
  publication-title: Applied Soft Computing Journal
– volume: 64
  year: 2023
  ident: b0265
  article-title: Stock index futures price prediction using feature selection and deep learning
  publication-title: North American Journal of Economics and Finance
– volume: 42
  start-page: 2162
  year: 2015
  end-page: 2172
  ident: b0205
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
– volume: 42
  start-page: 7046
  year: 2015
  end-page: 7056
  ident: b0025
  article-title: Evaluating multiple classifiers for stock price direction prediction
  publication-title: Expert Systems with Applications
– reference: Xiao, H.,
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: b0080
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European Journal of Operational Research
– reference: Song, Z.,
– reference: Zhou, Z.,
– volume: 94
  start-page: 85
  year: 2018
  end-page: 192
  ident: b0005
  article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments
  publication-title: Expert Systems with Application
– volume: 93
  year: 2020
  ident: b0125
  article-title: Predicting next day direction of stock price movement using machine learning methods with persistent homology: Evidence from Kuala Lumpur Stock Exchange
  publication-title: Applied Soft Computing
– volume: 29
  start-page: 1751
  year: 2023
  end-page: 1770
  ident: b0260
  article-title: A graph-based CNN-LSTM stock price prediction algorithm with leading indicators
  publication-title: Multimedia Systems
– volume: 44
  year: 2022
  ident: b0200
  article-title: An Empirical Evaluation of Sensitivity Bounds for Mean-Variance Portfolio Optimization
  publication-title: Finance Research Letters
– volume: 67
  start-page: 865
  year: 2018
  end-page: 894
  ident: b0185
  article-title: Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost
  publication-title: Applied Soft Computing
– start-page: 18
  year: 2016
  end-page: 20
  ident: b0190
  article-title: LASSO: A feature selection technique in predictive modeling for machine learning
  publication-title: 2016 IEEE International Conference on Advances in Computer Applications (ICACA)
– volume: 5
  start-page: 313
  year: 2003
  end-page: 325
  ident: b0240
  article-title: Neural Networks as a Decision Maker for Stock Trading: A Technical Analysis Approach
  publication-title: International Journal of Smart Engineering System Design
– reference: , Article 11960.
– reference: Zhao, P., Gao, S., & Yang, N. (2020). Solving Multi-Objective Portfolio Optimization Problem Based on MOEA/D, In 12th International Conference on Advanced Computational Intelligence (ICACI), (Dali, China, 2020), (pp. 30-37), doi: 10.1109/ICACI49185.2020.9177505.
– volume: 38
  start-page: 5311
  year: 2011
  end-page: 5319
  ident: b0140
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange
  publication-title: Expert Systems with Applications
– year: 1978
  ident: b0255
  article-title: New concepts in technical trading systems. Trend
  publication-title: Research.
– volume: 167
  year: 2021
  ident: b0110
  article-title: Multi-period portfolio optimization using coherent fuzzy numbers in a credibilistic environment
  publication-title: Expert Systems with Applications
– volume: 179
  start-page: 383
  year: 2021
  end-page: 390
  ident: b0210
  article-title: Lasso Regression for Daily Rainfall Modeling at Citeko Station
  publication-title: Bogor, Indonesia,
– reference: & Ren, T. (2023). Multi-source data driven cryptocurrency price movement prediction and portfolio optimization,
– volume: 32
  start-page: 17351
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0165
  article-title: A CNN–LSTM model for gold price time-series forecasting
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-04867-x
– ident: 10.1016/j.cie.2023.109450_b0275
  doi: 10.1109/ICACI49185.2020.9177505
– volume: 63
  year: 2022
  ident: 10.1016/j.cie.2023.109450_b0055
  article-title: A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning
  publication-title: North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2022.101818
– volume: 22
  start-page: 2760
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0215
  article-title: Fuzzy multi-objective particle swarm optimization solving the three-objective portfolio optimization problem
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-020-00928-4
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.cie.2023.109450_b0220
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 133
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0280
  article-title: Deep Learning-based Integrated Framework for stock price movement prediction
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109921
– volume: 165
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0170
  article-title: Portfolio optimization with return prediction using deep learning and machine learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113973
– volume: 93
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0125
  article-title: Predicting next day direction of stock price movement using machine learning methods with persistent homology: Evidence from Kuala Lumpur Stock Exchange
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106422
– volume: 201
  year: 2022
  ident: 10.1016/j.cie.2023.109450_b0075
  article-title: Mean–variance portfolio optimization with deep learning based-forecasts for cointegrated stocks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117005
– volume: 64
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0265
  article-title: Stock index futures price prediction using feature selection and deep learning
  publication-title: North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2022.101867
– volume: 30
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0150
  article-title: Improving stock price prediction using the long short-term memory model combined with online social networks
  publication-title: Journal of Behavioral and Experimental Finance
  doi: 10.1016/j.jbef.2021.100507
– volume: 115
  start-page: 635
  year: 2019
  ident: 10.1016/j.cie.2023.109450_b0195
  article-title: Decision-making for financial trading: A fusion approach of machine learning and portfolio selection
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2018.08.003
– volume: 67
  start-page: 865
  year: 2018
  ident: 10.1016/j.cie.2023.109450_b0185
  article-title: Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with transaction cost
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.09.025
– volume: 120902
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0060
  article-title: McVCsB: A new hybrid deep learning network for stock index prediction
  publication-title: Expert Systems with Application
– volume: 51
  start-page: 7177
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0085
  article-title: Two robust long short-term memory frameworks for trading stocks
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02249-x
– start-page: 18
  year: 2016
  ident: 10.1016/j.cie.2023.109450_b0190
  article-title: LASSO: A feature selection technique in predictive modeling for machine learning
– volume: 26
  start-page: 79
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2023.109450_b0035
  article-title: Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2013.04.001
– ident: 10.1016/j.cie.2023.109450_b0145
  doi: 10.1007/978-3-319-70096-0_21
– volume: 118
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0070
  article-title: Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert–Huang​ transform
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105626
– volume: 38
  start-page: 14072
  issue: 11
  year: 2011
  ident: 10.1016/j.cie.2023.109450_b0095
  article-title: Applying a GA kernel on optimizing technical analysis rules for stock picking and portfolio composition
  publication-title: Expert Systems with Applications
– volume: 54
  start-page: 517
  issue: 13
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0105
  article-title: Effective solving portfolio optimization problems by means of a multi-period diversification model
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.10.501
– volume: 29
  start-page: 1751
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0260
  article-title: A graph-based CNN-LSTM stock price prediction algorithm with leading indicators
  publication-title: Multimedia Systems
  doi: 10.1007/s00530-021-00758-w
– volume: 120
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0030
  article-title: Prediction based mean-value-at-risk portfolio optimization using machine learning regression algorithms for multi-national stock markets
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2023.105843
– volume: 44
  start-page: 477
  issue: 4
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0010
  article-title: Stock Market Decision Support Modeling with Tree-Based Adaboost Ensemble Machine Learning Models
  publication-title: Informatica
– volume: 42
  start-page: 2162
  issue: 4
  year: 2015
  ident: 10.1016/j.cie.2023.109450_b0205
  article-title: Predicting stock market index using fusion of machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.031
– volume: 38
  start-page: 5311
  issue: 5
  year: 2011
  ident: 10.1016/j.cie.2023.109450_b0140
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.027
– volume: 202
  year: 2022
  ident: 10.1016/j.cie.2023.109450_b0135
  article-title: BiCuDNNLSTM-1dCNN — A hybrid deep learning-based predictive model for stock price prediction
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2022.117123
– volume: 430
  year: 2022
  ident: 10.1016/j.cie.2023.109450_b0225
  article-title: Cryptocurrency price analysis with ordinal partition networks
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2022.127237
– volume: 10
  start-page: 266
  issue: 4
  year: 2017
  ident: 10.1016/j.cie.2023.109450_b0015
  article-title: Application of computer vision and support vector regression for weight prediction of live broiler chicken
  publication-title: Engineering in Agriculture, Environment and Food
  doi: 10.1016/j.eaef.2017.04.003
– volume: 109
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0065
  article-title: Multi-period uncertain portfolio optimization model with minimum transaction lots and dynamic risk preference
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107519
– volume: 42
  start-page: 7046
  issue: 20
  year: 2015
  ident: 10.1016/j.cie.2023.109450_b0025
  article-title: Evaluating multiple classifiers for stock price direction prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.05.013
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10.1016/j.cie.2023.109450_b0080
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.11.054
– start-page: 63
  year: 2015
  ident: 10.1016/j.cie.2023.109450_b0180
– volume: 9
  start-page: 1440
  year: 2019
  ident: 10.1016/j.cie.2023.109450_b0230
  article-title: Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-37773-3
– volume: 430
  start-page: 58
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0270
  article-title: Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.022
– volume: 272
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0020
  article-title: Assessment of renewable energy-based strategies for net-zero energy communities: A planning model using multi-objective goal programming
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.122886
– volume: 167
  start-page: 599
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0245
  article-title: Stock Closing Price Prediction using Machine Learning Techniques
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.326
– ident: 10.1016/j.cie.2023.109450_b0285
  doi: 10.1016/j.eswa.2023.119600
– volume: 167
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0110
  article-title: Multi-period portfolio optimization using coherent fuzzy numbers in a credibilistic environment
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114135
– volume: 6
  start-page: 15
  year: 2014
  ident: 10.1016/j.cie.2023.109450_b0100
  article-title: Suitability of KNN Regression in the Development of Interaction Based Software Fault Prediction Models
  publication-title: IERI Procedia
  doi: 10.1016/j.ieri.2014.03.004
– volume: 10
  start-page: 1096
  issue: 4
  year: 2010
  ident: 10.1016/j.cie.2023.109450_b0090
  article-title: Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.04.001
– volume: 209
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0235
  article-title: A novel backtesting methodology for clustering in mean–variance portfolio optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106454
– volume: 425
  start-page: 207
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0120
  article-title: A new financial data forecasting model using genetic algorithm and long short-term memory network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.086
– ident: 10.1016/j.cie.2023.109450_b0045
  doi: 10.1007/978-3-030-05755-8_36
– volume: 33
  start-page: 4741
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0155
  article-title: A CNN-BiLSTM-AM method for stock price prediction
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-05532-z
– volume: 122
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0050
  article-title: Mean-variance portfolio optimization based on ordinal information
  publication-title: Journal of Banking & Finance
  doi: 10.1016/j.jbankfin.2020.105989
– volume: 44
  year: 2022
  ident: 10.1016/j.cie.2023.109450_b0200
  article-title: An Empirical Evaluation of Sensitivity Bounds for Mean-Variance Portfolio Optimization
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2021.102065
– volume: 94
  start-page: 85
  year: 2018
  ident: 10.1016/j.cie.2023.109450_b0005
  article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2017.10.056
– volume: 143
  year: 2020
  ident: 10.1016/j.cie.2023.109450_b0250
  article-title: Portfolio formation with preselection using deep learning from long-term financial data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113042
– volume: 67
  start-page: 260
  year: 2018
  ident: 10.1016/j.cie.2023.109450_b0160
  article-title: Multi-period mean–variance fuzzy portfolio optimization model with transaction costs
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2017.10.010
– year: 1978
  ident: 10.1016/j.cie.2023.109450_b0255
  article-title: New concepts in technical trading systems. Trend
  publication-title: Research.
– volume: 177
  year: 2023
  ident: 10.1016/j.cie.2023.109450_b0175
  article-title: A novel prediction based portfolio optimization model using deep learning
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2023.109023
– volume: 125
  start-page: 345
  year: 2019
  ident: 10.1016/j.cie.2023.109450_b0130
  article-title: A comprehensive review of deterministic models and applications for mean-variance portfolio optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.02.011
– volume: 5
  start-page: 313
  issue: 4
  year: 2003
  ident: 10.1016/j.cie.2023.109450_b0240
  article-title: Neural Networks as a Decision Maker for Stock Trading: A Technical Analysis Approach
  publication-title: International Journal of Smart Engineering System Design
  doi: 10.1080/10255810390245627
– volume: 10
  start-page: 569
  year: 2017
  ident: 10.1016/j.cie.2023.109450_b0040
  article-title: Stock Market Index Data and indicators for Day Trading as a Binary Classification problem
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2016.12.044
– volume: 85
  year: 2019
  ident: 10.1016/j.cie.2023.109450_b0115
  article-title: A polynomial goal programming approach for intuitionistic fuzzy portfolio optimization using entropy and higher moments
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2019.105781
– volume: 179
  start-page: 383
  year: 2021
  ident: 10.1016/j.cie.2023.109450_b0210
  article-title: Lasso Regression for Daily Rainfall Modeling at Citeko Station
  publication-title: Bogor, Indonesia, Procedia Computer Science
  doi: 10.1016/j.procs.2021.01.020
SSID ssj0004591
Score 2.4626126
Snippet [Display omitted] •We Proposed predictive multi-period multi-objective portfolio optimization model.•Higher moments of returns such as skewness and kurtosis...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109450
SubjectTerms Convolutional neural network
Goal programming
Long short-term memory
Multi-objective programming
Multi-period portfolio optimization
Stock prediction
Title Predictive multi-period multi-objective portfolio optimization based on higher order moments: Deep learning approach
URI https://dx.doi.org/10.1016/j.cie.2023.109450
Volume 183
WOSCitedRecordID wos001047767700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKxgM8cBkgxk1-4IkqVVKnic3bRDcNhKZJDNS3yIlPmnRtUrWlGj-M_4evSVYYYg-8RGliO1HO1-Nj-_N3EHob-LnIckE9X6jZKpJGXhrlI49GNOYSYSzVYtXfPsdnZ3QyYee93k-3F2Y7j6uKXl2x5X81tbwmja22zt7C3E2j8oI8l0aXR2l2efwnw5-v1NqLZgRptqCntIxrYX_U6cy4uL4KvPN6Xtb9WrqNhd2P2VfdmlBLCIVhgGhtzv6i1lvh1PzBGGDpkk1MG03ybpDrMkWsNa7KNjkItOKHnWWn-YJf8hVoYH4p-LTgP2BatAWEJhyccEW4Fk0HUcgBxLz0xnwhK1SGk8C30NQblwKKS3frtF6D1Ri3UxxD0nC42q1dvqdCxetum3QcbyCHqUbB9rc-wUxPzAbSVw5U64O27HX97Z1-sWErOiLcLJFNJKqJxDRxB-0P4xGTznT_6OPx5FNHpt6kanTv7ZbTNbFw5z3-HBB1gpyLR-iBHZ3gI4Oqx6gH1QF6aEcq2PYD6wN0vyNj-QRtWsjhLuTwDuRwAznchRzWkMPyxEAOa8hhC7n3WAEOO8BhB7in6OvJ8cWHU89m8_CyIYs3XshFlkEAOcmzlI5iIFEe-SKlYUhZyvOUwYj7ImMBExwE0Jj6wAKSkxA4h4g8Q3tVXcFzhDnJBBX-SIQhhJEgaRyBn_EMZPwrCGGHyHefVJrMUFpUxpV5cqMpD9G7psrS6Lz8rXDo7JTYQNUEoInE3M3VXtzmGS_Rvfav8ArtbVbf4TW6m2035Xr1xgLuFz-Jusk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+multi-period+multi-objective+portfolio+optimization+based+on+higher+order+moments%3A+Deep+learning+approach&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Abolmakarem%2C+Shaghayegh&rft.au=Abdi%2C+Farshid&rft.au=Khalili-Damghani%2C+Kaveh&rft.au=Didehkhani%2C+Hosein&rft.date=2023-09-01&rft.issn=0360-8352&rft.volume=183&rft.spage=109450&rft_id=info:doi/10.1016%2Fj.cie.2023.109450&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2023_109450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon