Application of optimized sparse encoding algorithm in data compression
Data transmission is crucial in the process of equipment monitoring. The compression algorithms are adopted to reduce the amount of data transmission. When sparse encoding algorithms are used for this purpose, despite extensive attempts to improve their performance, some problems still remain. The m...
Gespeichert in:
| Veröffentlicht in: | Digital signal processing Jg. 151; S. 104549 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.08.2024
|
| Schlagworte: | |
| ISSN: | 1051-2004, 1095-4333 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data transmission is crucial in the process of equipment monitoring. The compression algorithms are adopted to reduce the amount of data transmission. When sparse encoding algorithms are used for this purpose, despite extensive attempts to improve their performance, some problems still remain. The main issues pertain to: (1) Dictionary construction − As practical dictionary better matches the input signal, such a dictionary must be efficiently established; 2) The setting of sparsity value − It is difficult to determine the size of sparsity values when prior knowledge is insufficient (when the parameter settings are too large, the cost of data transmission increases considerably, while excessively small values can result in poor reconstruction accuracy); and (3) How to implement engineering applications of data compression based on sparse encoding. To address these issues, in this work, an optimized sparse encoding algorithm is proposed by combining the non-negative Online Dictionary Learning (ODL) with the optimized Orthogonal Matching Pursuit (OMP) algorithm. First, a non-negative ODL algorithm is adopted for dictionary learning based on the training dataset to obtain an effective dictionary. Next, the optimized OMP algorithm is used to obtain the sparsity and the sparse coefficient matrix. Further analyses confirm that the reconstructed signal has a small reconstruction error. Finally, A lossy compression framework is proposed for the compressing equipment condition monitoring data using sparse encoding algorithms. Compared with the compression algorithms based on compressive sensing and DCT, the average compression ratio can reach 42.7 when the reconstruction accuracy is similar. In terms of comprehensive compression performance, the quality score is also higher compared to other algorithms. |
|---|---|
| AbstractList | Data transmission is crucial in the process of equipment monitoring. The compression algorithms are adopted to reduce the amount of data transmission. When sparse encoding algorithms are used for this purpose, despite extensive attempts to improve their performance, some problems still remain. The main issues pertain to: (1) Dictionary construction − As practical dictionary better matches the input signal, such a dictionary must be efficiently established; 2) The setting of sparsity value − It is difficult to determine the size of sparsity values when prior knowledge is insufficient (when the parameter settings are too large, the cost of data transmission increases considerably, while excessively small values can result in poor reconstruction accuracy); and (3) How to implement engineering applications of data compression based on sparse encoding. To address these issues, in this work, an optimized sparse encoding algorithm is proposed by combining the non-negative Online Dictionary Learning (ODL) with the optimized Orthogonal Matching Pursuit (OMP) algorithm. First, a non-negative ODL algorithm is adopted for dictionary learning based on the training dataset to obtain an effective dictionary. Next, the optimized OMP algorithm is used to obtain the sparsity and the sparse coefficient matrix. Further analyses confirm that the reconstructed signal has a small reconstruction error. Finally, A lossy compression framework is proposed for the compressing equipment condition monitoring data using sparse encoding algorithms. Compared with the compression algorithms based on compressive sensing and DCT, the average compression ratio can reach 42.7 when the reconstruction accuracy is similar. In terms of comprehensive compression performance, the quality score is also higher compared to other algorithms. |
| ArticleNumber | 104549 |
| Author | Shi, Zhiyong Ma, Weining Song, Liqiang Liu, Zhongxin |
| Author_xml | – sequence: 1 givenname: Liqiang orcidid: 0000-0002-1645-5013 surname: Song fullname: Song, Liqiang – sequence: 2 givenname: Weining orcidid: 0009-0006-2995-6139 surname: Ma fullname: Ma, Weining email: maweining201306@163.com – sequence: 3 givenname: Zhongxin surname: Liu fullname: Liu, Zhongxin – sequence: 4 givenname: Zhiyong surname: Shi fullname: Shi, Zhiyong |
| BookMark | eNp9kMFOAyEQhompiW31AbzxAluHhV1KPDWNtSZNvOiZUGArze5CgJjo00utJw89zT-H78_MN0OT0Y8WoXsCCwKkfTguTAqLGmpWdtYwcYWmBERTMUrp5JQbUtUA7AbNUjoCAGd1O0WbVQi90yo7P2LfYR-yG9y3NTgFFZPFdtTeuPGAVX_w0eWPAbsRG5UV1n4I0aZU0Ft03ak-2bu_OUfvm6e39bbavT6_rFe7SteC54otlx2h0HDCBFc118IYbYjWulVL03XAm71twBCjqIC9UKZkS6FrCRWMUzpH_Nyro08p2k5ql3-Pz1G5XhKQJx3yKIsOedIhzzoKSf6RIbpBxa-LzOOZseWlT2ejTNoVIda4aHWWxrsL9A_xunsU |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2025_105608 |
| Cites_doi | 10.1007/s00170-018-2902-0 10.1016/j.sigpro.2023.109044 10.1016/j.isatra.2020.12.046 10.1109/TSP.2006.881199 10.1109/ACCESS.2022.3161523 10.1177/1687814015593442 10.1109/TIP.2017.2681436 10.1177/0020294019898725 10.1016/j.ultras.2021.106439 10.1016/j.patrec.2023.06.009 10.4028/www.scientific.net/AMM.157-158.796 10.1109/ACCESS.2020.2991734 10.1109/TSP.2009.2036477 10.1109/TIT.2003.811926 10.1016/j.asoc.2020.106659 10.3390/s22103884 10.1137/S003614450037906X 10.1061/(ASCE)CP.1943-5487.0000855 10.1109/TSP.2013.2241055 10.1007/s11771-016-3255-1 10.1016/j.acha.2008.07.002 10.1007/s10208-008-9031-3 10.1109/TIT.2011.2173241 10.1016/j.ymssp.2014.10.016 10.1109/TSP.2012.2187642 10.1109/JSEN.2023.3243390 10.1109/78.258082 10.1061/(ASCE)ST.1943-541X.0000946 10.1109/TIA.2018.2873576 10.1016/j.measurement.2017.12.010 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2024.104549 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1095-4333 |
| ExternalDocumentID | 10_1016_j_dsp_2024_104549 S105120042400174X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-488f130571497a27c9ddcd1ccc6a8dff075be50d1da390b9ad0d1e30f61394733 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265695000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Sat Nov 29 05:58:09 EST 2025 Tue Nov 18 21:22:28 EST 2025 Tue Jun 18 08:51:45 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lossy compression Quantization encoding Sparse encoding Sparse transform Online dictionary learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-488f130571497a27c9ddcd1ccc6a8dff075be50d1da390b9ad0d1e30f61394733 |
| ORCID | 0009-0006-2995-6139 0000-0002-1645-5013 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_dsp_2024_104549 crossref_primary_10_1016_j_dsp_2024_104549 elsevier_sciencedirect_doi_10_1016_j_dsp_2024_104549 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Engan, Aase, Husoy (bib0013) 1999; 5 Chen, Donoho, Saunders (bib0024) 2001; 43 Ding (bib0012) 2018; 117 Lu, Xie, Liang (bib0049) 2019; 101 Zhang, Hu, Hu, Chen, Cheng (bib0001) 2015; 7 Fan, Cai, Zhu, Shen, Huang, Shang (bib0007) 2015; 56 Chen (bib0040) 2023 Almasri, Sadhu, Chaudhuri (bib0051) 2020; 34 Qian, Zha, Guo (bib0035) 2022 Cao, Liu, Meng, Sun (bib0030) 2020; 8 Mallat, Zhang (bib0010) 1993; 41 Zhang, Li (bib0015) 2010 Liu, Payani, Fekri (bib0042) 2017 Guo, Yang, Shi, Duan (bib0045) 2016; 23 Thiruppathirajan, Sreelal, Manoj (bib0039) 2022; 10 Huang (bib0034) 2021; 114 Needell, Tropp (bib0029) 2009; 26 "Case Western Reserve University bearing data center website Abdi, Payani, Fekri (bib0041) 2017 Mazhar, Gader (bib0016) 2008 Yin, Liu, Zuo, Zhou, Zhang (bib0002) 2023; 72 Ni, Wu, Yang (bib0044) 2024 Feuer, Nemirovski (bib0011) 2003; 49 Zelnik-Manor, Rosenblum, Eldar (bib0022) 2012; 60 Pati, Rezaiifar, Krishnaprasad (bib0025) 1993 Aharon, Elad, Bruckstein (bib0014) 2006; 54 Morales-Perez, Rangel-Magdaleno, Peregrina-Barreto, Cerezo-Sanchez, Leon-Bonilla (bib0006) 2022; 6 Zhang, Rao (bib0020) 2013; 61 Donoho, Tsaig, Drori, Starck (bib0028) 2012; 58 Mairal, Bach, Ponce, Sapiro (bib0023) 2009 Wu, Yang, Sheng (bib0047) 2020; 96 ". Chaoang, Hesheng, Yan (bib0043) 2020; 53 Seghouane, Iqbal, Rekavandi (bib0021) 2023 Lal, Gravina, Spagnolo, Corsonello (bib0033) 2023 Wang, Li (bib0038) 2021 Rubinstein, Zibulevsky, Elad (bib0009) 2010; 58 Do, Gan, Nguyen, Tran (bib0036) 2008 Jayasankar, Thirumal, Ponnurangam (bib0004) 2021; 33 Wang, Qiao, Qu (bib0005) 2019; 55 Bai, Wen, Ma, Jia (bib0019) 2022; 22 Sawant, Banerjee, Tallur (bib0026) 2021; 115 Liu (bib0032) 2020 Neethu, Jabbar (bib0018) 2015 Gao, Xiong, Shang, Zhao, Zhang (bib0031) 2012; 157 Dave, Vakharia, Singh (bib0008) 2020 Xu, Chen, Wan, Chen, Wan (bib0037) 2019 Song, Wu, Peng (bib0046) 2023; 209 Serra, Testa, Molina, Katsaggelos (bib0017) 2017; 26 Kavitha (bib0003) 2016; 7 Yang, Nagarajaiah (bib0050) 2014; 140 Needell, Vershynin (bib0027) 2009; 9 Mazhar (10.1016/j.dsp.2024.104549_bib0016) 2008 Zhang (10.1016/j.dsp.2024.104549_bib0020) 2013; 61 Needell (10.1016/j.dsp.2024.104549_bib0029) 2009; 26 Fan (10.1016/j.dsp.2024.104549_bib0007) 2015; 56 Seghouane (10.1016/j.dsp.2024.104549_bib0021) 2023 Chaoang (10.1016/j.dsp.2024.104549_bib0043) 2020; 53 Cao (10.1016/j.dsp.2024.104549_bib0030) 2020; 8 Zhang (10.1016/j.dsp.2024.104549_bib0015) 2010 Bai (10.1016/j.dsp.2024.104549_bib0019) 2022; 22 Morales-Perez (10.1016/j.dsp.2024.104549_bib0006) 2022; 6 Gao (10.1016/j.dsp.2024.104549_bib0031) 2012; 157 Rubinstein (10.1016/j.dsp.2024.104549_bib0009) 2010; 58 Yang (10.1016/j.dsp.2024.104549_bib0050) 2014; 140 Aharon (10.1016/j.dsp.2024.104549_bib0014) 2006; 54 Mallat (10.1016/j.dsp.2024.104549_bib0010) 1993; 41 Do (10.1016/j.dsp.2024.104549_bib0036) 2008 Ding (10.1016/j.dsp.2024.104549_bib0012) 2018; 117 Chen (10.1016/j.dsp.2024.104549_bib0024) 2001; 43 Liu (10.1016/j.dsp.2024.104549_bib0042) 2017 Wu (10.1016/j.dsp.2024.104549_bib0047) 2020; 96 Huang (10.1016/j.dsp.2024.104549_bib0034) 2021; 114 Xu (10.1016/j.dsp.2024.104549_bib0037) 2019 Song (10.1016/j.dsp.2024.104549_bib0046) 2023; 209 Pati (10.1016/j.dsp.2024.104549_bib0025) 1993 Zelnik-Manor (10.1016/j.dsp.2024.104549_bib0022) 2012; 60 Zhang (10.1016/j.dsp.2024.104549_bib0001) 2015; 7 Kavitha (10.1016/j.dsp.2024.104549_bib0003) 2016; 7 Almasri (10.1016/j.dsp.2024.104549_bib0051) 2020; 34 Jayasankar (10.1016/j.dsp.2024.104549_bib0004) 2021; 33 10.1016/j.dsp.2024.104549_bib0048 Yin (10.1016/j.dsp.2024.104549_bib0002) 2023; 72 Needell (10.1016/j.dsp.2024.104549_bib0027) 2009; 9 Dave (10.1016/j.dsp.2024.104549_bib0008) 2020 Engan (10.1016/j.dsp.2024.104549_bib0013) 1999; 5 Donoho (10.1016/j.dsp.2024.104549_bib0028) 2012; 58 Sawant (10.1016/j.dsp.2024.104549_bib0026) 2021; 115 Ni (10.1016/j.dsp.2024.104549_bib0044) 2024 Feuer (10.1016/j.dsp.2024.104549_bib0011) 2003; 49 Thiruppathirajan (10.1016/j.dsp.2024.104549_bib0039) 2022; 10 Liu (10.1016/j.dsp.2024.104549_bib0032) 2020 Wang (10.1016/j.dsp.2024.104549_bib0005) 2019; 55 Qian (10.1016/j.dsp.2024.104549_bib0035) 2022 Guo (10.1016/j.dsp.2024.104549_bib0045) 2016; 23 Wang (10.1016/j.dsp.2024.104549_bib0038) 2021 Neethu (10.1016/j.dsp.2024.104549_bib0018) 2015 Serra (10.1016/j.dsp.2024.104549_bib0017) 2017; 26 Abdi (10.1016/j.dsp.2024.104549_bib0041) 2017 Lal (10.1016/j.dsp.2024.104549_bib0033) 2023 Lu (10.1016/j.dsp.2024.104549_bib0049) 2019; 101 Mairal (10.1016/j.dsp.2024.104549_bib0023) 2009 Chen (10.1016/j.dsp.2024.104549_bib0040) 2023 |
| References_xml | – volume: 7 start-page: 110 year: 2016 end-page: 114 ident: bib0003 article-title: A survey on lossless and lossy data compression methods publication-title: Int. J. Comput. Sci. Eng. Technol. – reference: "Case Western Reserve University bearing data center website, – volume: 5 start-page: 2443 year: 1999 end-page: 2446 ident: bib0013 article-title: Method of optimal directions for frame design publication-title: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258) – volume: 157 start-page: 796 year: 2012 end-page: 799 ident: bib0031 article-title: Study on over-complete dictionaries for sparse representations of signals publication-title: Appl. Mech. Mater. – volume: 58 start-page: 1094 year: 2012 end-page: 1121 ident: bib0028 article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory – volume: 6 start-page: 1 year: 2022 end-page: 6 ident: bib0006 article-title: Selective signal extraction based on OMP algorithm and DCT and DST dictionaries publication-title: 2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) – year: 2023 ident: bib0021 article-title: RBDL: robust block-structured dictionary learning for block sparse representation publication-title: Pattern. Recognit. Lett. – volume: 22 start-page: 3884 year: 2022 ident: bib0019 article-title: Compression reconstruction and fault diagnosis of diesel engine vibration signal based on optimizing block sparse Bayesian learning publication-title: Sensors – start-page: 1 year: 2008 end-page: 4 ident: bib0016 article-title: EK-SVD: optimized dictionary design for sparse representations publication-title: 2008 19th International Conference on Pattern Recognition – volume: 96 year: 2020 ident: bib0047 article-title: Optimized compression and recovery of electrocardiographic signal for IoT platform publication-title: Appl. Soft. Comput. – reference: ". – start-page: 2691 year: 2010 end-page: 2698 ident: bib0015 article-title: Discriminative K-SVD for dictionary learning in face recognition publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 607 year: 2020 end-page: 616 ident: bib0008 article-title: Ball bearing fault diagnosis using mutual information and Walsh–Hadamard transform publication-title: Reliability, Safety and Hazard Assessment for Risk-Based Technologies: Proceedings of ICRESH 2019 – volume: 26 start-page: 3344 year: 2017 end-page: 3359 ident: bib0017 article-title: Bayesian K-SVD using fast variational inference publication-title: IEEE Trans. Image Process. – start-page: 581 year: 2008 end-page: 587 ident: bib0036 article-title: Sparsity adaptive matching pursuit algorithm for practical compressed sensing publication-title: 2008 42nd Asilomar Conference on Signals, Systems and Computers – volume: 58 start-page: 1553 year: 2010 end-page: 1564 ident: bib0009 article-title: Double sparsity: learning sparse dictionaries for sparse signal approximation publication-title: IEEE Trans. Sig. Process. – volume: 43 start-page: 129 year: 2001 end-page: 159 ident: bib0024 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. – volume: 7 year: 2015 ident: bib0001 article-title: A bearing fault diagnosis method based on the low-dimensional compressed vibration signal publication-title: Adv. Mech. Eng. – volume: 114 start-page: 399 year: 2021 end-page: 412 ident: bib0034 article-title: Adaptive process monitoring via online dictionary learning and its industrial application publication-title: ISA Trans. – start-page: 30 year: 2021 end-page: 33 ident: bib0038 article-title: Sparsity adaptive channel estimation algorithm based on compressed sensing publication-title: 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC) – volume: 56 start-page: 230 year: 2015 end-page: 245 ident: bib0007 article-title: Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction publication-title: Mech. Syst. Signal. Process. – start-page: 40 year: 1993 end-page: 44 ident: bib0025 article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition publication-title: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers – start-page: 689 year: 2009 end-page: 696 ident: bib0023 article-title: Online dictionary learning for sparse coding publication-title: Proceedings of the 26th Annual International Conference on Machine Learning – volume: 140 year: 2014 ident: bib0050 article-title: Data compression of structural seismic responses via principled independent component analysis publication-title: J. Struct. Eng. – volume: 33 start-page: 119 year: 2021 end-page: 140 ident: bib0004 article-title: A survey on data compression techniques: from the perspective of data quality, coding schemes, data type and applications publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 41 start-page: 3397 year: 1993 end-page: 3415 ident: bib0010 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Sig. Process. – volume: 23 start-page: 1981 year: 2016 end-page: 1989 ident: bib0045 article-title: An underwater acoustic data compression method based on compressed sensing publication-title: J. Cent. South. Univ. – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: bib0014 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Sig. Process. – volume: 10 start-page: 33370 year: 2022 end-page: 33392 ident: bib0039 article-title: Sparsity order estimation for compressed sensing system using sparse binary sensing matrix publication-title: IEEE Access – start-page: 1305 year: 2022 end-page: 1308 ident: bib0035 article-title: Implementation and analysis of compressed sensing technology for wireless sensor publication-title: 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) – volume: 53 start-page: 649 year: 2020 end-page: 661 ident: bib0043 article-title: Compressed sensing reconstruction for axial piston pump bearing vibration signals based on adaptive sparse dictionary model publication-title: Meas. Control – volume: 34 year: 2020 ident: bib0051 article-title: Toward compressed sensing of structural monitoring data using discrete cosine transform publication-title: J. Comput. Civil Eng. – start-page: 1 year: 2015 end-page: 6 ident: bib0018 article-title: Improved quality of JPEG compressed image using approximate K-SVD algorithm publication-title: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) – volume: 209 year: 2023 ident: bib0046 article-title: A neighborhood-based multiple orthogonal least square method for sparse signal recovery publication-title: Signal. Process. – start-page: 3689 year: 2017 end-page: 3693 ident: bib0041 article-title: Learning dictionary for efficient signal compression publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 55 start-page: 1844 year: 2019 end-page: 1852 ident: bib0005 article-title: Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals publication-title: IEEE Trans. Ind. Appl. – volume: 115 year: 2021 ident: bib0026 article-title: Performance evaluation of compressive sensing based lost data recovery using OMP for damage index estimation in ultrasonic SHM publication-title: Ultrasonics – volume: 8 start-page: 85714 year: 2020 end-page: 85728 ident: bib0030 article-title: An overview on edge computing research publication-title: IEEE Access – volume: 61 start-page: 2009 year: 2013 end-page: 2015 ident: bib0020 article-title: Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation publication-title: IEEE Trans. Sig. Process. – volume: 9 start-page: 317 year: 2009 end-page: 334 ident: bib0027 article-title: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit publication-title: Found. Comput. Math. – start-page: 833 year: 2019 end-page: 836 ident: bib0037 article-title: Sparsity estimation method in compressed data gathering of wireless sensor networks publication-title: 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) – year: 2023 ident: bib0033 article-title: Compressed sensing approach for physiological signals: a review publication-title: IEEE Sens. J. – year: 2023 ident: bib0040 article-title: Real-time data sensing for microseismic monitoring via adaptive compressed sampling publication-title: IEEE Sens. J. – start-page: 449 year: 2017 ident: bib0042 article-title: Seismic data compression using online double-sparse dictionary learning schemes publication-title: 2017 Data Compression Conference (DCC) – volume: 72 start-page: 1 year: 2023 end-page: 10 ident: bib0002 article-title: A three-dimensional vibration data compression method for rolling bearing condition monitoring publication-title: IEEE Trans. Instrum. Meas. – start-page: 2930 year: 2020 end-page: 2934 ident: bib0032 article-title: Research on power quality signals reconstruction method based on K-SVD dictionary learning publication-title: 2020 39th Chinese Control Conference (CCC) – start-page: 1 year: 2024 end-page: 21 ident: bib0044 article-title: An automatic threshold OMP algorithm based on QR decomposition for magnetic resonance image reconstruction publication-title: Circuits, Systems, and Signal Processing – volume: 101 start-page: 195 year: 2019 end-page: 202 ident: bib0049 article-title: Adaptive online dictionary learning for bearing fault diagnosis publication-title: Int. J. Adv. Manuf. Technol. – volume: 49 start-page: 1579 year: 2003 end-page: 1581 ident: bib0011 article-title: On sparse representation in pairs of bases publication-title: IEEe Trans. Inf. Theory. – volume: 60 start-page: 2386 year: 2012 end-page: 2395 ident: bib0022 article-title: Dictionary optimization for block-sparse representations publication-title: IEEE Trans. Sig. Process. – volume: 117 start-page: 108 year: 2018 end-page: 124 ident: bib0012 article-title: Fault detection of a wheelset bearing in a high-speed train using the shock-response convolutional sparse-coding technique publication-title: Measurement – volume: 26 start-page: 301 year: 2009 end-page: 321 ident: bib0029 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. – start-page: 1 year: 2008 ident: 10.1016/j.dsp.2024.104549_bib0016 article-title: EK-SVD: optimized dictionary design for sparse representations – volume: 5 start-page: 2443 year: 1999 ident: 10.1016/j.dsp.2024.104549_bib0013 article-title: Method of optimal directions for frame design – volume: 101 start-page: 195 year: 2019 ident: 10.1016/j.dsp.2024.104549_bib0049 article-title: Adaptive online dictionary learning for bearing fault diagnosis publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2902-0 – volume: 209 year: 2023 ident: 10.1016/j.dsp.2024.104549_bib0046 article-title: A neighborhood-based multiple orthogonal least square method for sparse signal recovery publication-title: Signal. Process. doi: 10.1016/j.sigpro.2023.109044 – volume: 114 start-page: 399 year: 2021 ident: 10.1016/j.dsp.2024.104549_bib0034 article-title: Adaptive process monitoring via online dictionary learning and its industrial application publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.046 – start-page: 3689 year: 2017 ident: 10.1016/j.dsp.2024.104549_bib0041 article-title: Learning dictionary for efficient signal compression – start-page: 1 year: 2015 ident: 10.1016/j.dsp.2024.104549_bib0018 article-title: Improved quality of JPEG compressed image using approximate K-SVD algorithm – start-page: 30 year: 2021 ident: 10.1016/j.dsp.2024.104549_bib0038 article-title: Sparsity adaptive channel estimation algorithm based on compressed sensing – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 10.1016/j.dsp.2024.104549_bib0014 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2006.881199 – start-page: 449 year: 2017 ident: 10.1016/j.dsp.2024.104549_bib0042 article-title: Seismic data compression using online double-sparse dictionary learning schemes – volume: 33 start-page: 119 issue: 2 year: 2021 ident: 10.1016/j.dsp.2024.104549_bib0004 article-title: A survey on data compression techniques: from the perspective of data quality, coding schemes, data type and applications publication-title: J. King Saud Univ. Comput. Inf. Sci. – start-page: 2691 year: 2010 ident: 10.1016/j.dsp.2024.104549_bib0015 article-title: Discriminative K-SVD for dictionary learning in face recognition – volume: 10 start-page: 33370 year: 2022 ident: 10.1016/j.dsp.2024.104549_bib0039 article-title: Sparsity order estimation for compressed sensing system using sparse binary sensing matrix publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3161523 – start-page: 40 year: 1993 ident: 10.1016/j.dsp.2024.104549_bib0025 article-title: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition – volume: 7 issue: 7 year: 2015 ident: 10.1016/j.dsp.2024.104549_bib0001 article-title: A bearing fault diagnosis method based on the low-dimensional compressed vibration signal publication-title: Adv. Mech. Eng. doi: 10.1177/1687814015593442 – year: 2023 ident: 10.1016/j.dsp.2024.104549_bib0040 article-title: Real-time data sensing for microseismic monitoring via adaptive compressed sampling publication-title: IEEE Sens. J. – volume: 26 start-page: 3344 issue: 7 year: 2017 ident: 10.1016/j.dsp.2024.104549_bib0017 article-title: Bayesian K-SVD using fast variational inference publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2681436 – start-page: 2930 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0032 article-title: Research on power quality signals reconstruction method based on K-SVD dictionary learning – volume: 53 start-page: 649 issue: 3–4 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0043 article-title: Compressed sensing reconstruction for axial piston pump bearing vibration signals based on adaptive sparse dictionary model publication-title: Meas. Control doi: 10.1177/0020294019898725 – volume: 115 year: 2021 ident: 10.1016/j.dsp.2024.104549_bib0026 article-title: Performance evaluation of compressive sensing based lost data recovery using OMP for damage index estimation in ultrasonic SHM publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106439 – start-page: 1305 year: 2022 ident: 10.1016/j.dsp.2024.104549_bib0035 article-title: Implementation and analysis of compressed sensing technology for wireless sensor – year: 2023 ident: 10.1016/j.dsp.2024.104549_bib0021 article-title: RBDL: robust block-structured dictionary learning for block sparse representation publication-title: Pattern. Recognit. Lett. doi: 10.1016/j.patrec.2023.06.009 – volume: 157 start-page: 796 year: 2012 ident: 10.1016/j.dsp.2024.104549_bib0031 article-title: Study on over-complete dictionaries for sparse representations of signals publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.157-158.796 – volume: 8 start-page: 85714 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0030 article-title: An overview on edge computing research publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991734 – volume: 58 start-page: 1553 issue: 3 year: 2010 ident: 10.1016/j.dsp.2024.104549_bib0009 article-title: Double sparsity: learning sparse dictionaries for sparse signal approximation publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2009.2036477 – volume: 49 start-page: 1579 issue: 6 year: 2003 ident: 10.1016/j.dsp.2024.104549_bib0011 article-title: On sparse representation in pairs of bases publication-title: IEEe Trans. Inf. Theory. doi: 10.1109/TIT.2003.811926 – volume: 96 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0047 article-title: Optimized compression and recovery of electrocardiographic signal for IoT platform publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2020.106659 – volume: 22 start-page: 3884 issue: 10 year: 2022 ident: 10.1016/j.dsp.2024.104549_bib0019 article-title: Compression reconstruction and fault diagnosis of diesel engine vibration signal based on optimizing block sparse Bayesian learning publication-title: Sensors doi: 10.3390/s22103884 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.dsp.2024.104549_bib0024 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – ident: 10.1016/j.dsp.2024.104549_bib0048 – start-page: 689 year: 2009 ident: 10.1016/j.dsp.2024.104549_bib0023 article-title: Online dictionary learning for sparse coding – volume: 34 issue: 1 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0051 article-title: Toward compressed sensing of structural monitoring data using discrete cosine transform publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000855 – volume: 61 start-page: 2009 issue: 8 year: 2013 ident: 10.1016/j.dsp.2024.104549_bib0020 article-title: Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2013.2241055 – volume: 23 start-page: 1981 issue: 8 year: 2016 ident: 10.1016/j.dsp.2024.104549_bib0045 article-title: An underwater acoustic data compression method based on compressed sensing publication-title: J. Cent. South. Univ. doi: 10.1007/s11771-016-3255-1 – volume: 26 start-page: 301 issue: 3 year: 2009 ident: 10.1016/j.dsp.2024.104549_bib0029 article-title: CoSaMP: iterative signal recovery from incomplete and inaccurate samples publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – volume: 9 start-page: 317 year: 2009 ident: 10.1016/j.dsp.2024.104549_bib0027 article-title: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit publication-title: Found. Comput. Math. doi: 10.1007/s10208-008-9031-3 – volume: 6 start-page: 1 year: 2022 ident: 10.1016/j.dsp.2024.104549_bib0006 article-title: Selective signal extraction based on OMP algorithm and DCT and DST dictionaries – volume: 58 start-page: 1094 issue: 2 year: 2012 ident: 10.1016/j.dsp.2024.104549_bib0028 article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2173241 – start-page: 1 year: 2024 ident: 10.1016/j.dsp.2024.104549_bib0044 article-title: An automatic threshold OMP algorithm based on QR decomposition for magnetic resonance image reconstruction – start-page: 833 year: 2019 ident: 10.1016/j.dsp.2024.104549_bib0037 article-title: Sparsity estimation method in compressed data gathering of wireless sensor networks – volume: 56 start-page: 230 year: 2015 ident: 10.1016/j.dsp.2024.104549_bib0007 article-title: Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2014.10.016 – volume: 60 start-page: 2386 issue: 5 year: 2012 ident: 10.1016/j.dsp.2024.104549_bib0022 article-title: Dictionary optimization for block-sparse representations publication-title: IEEE Trans. Sig. Process. doi: 10.1109/TSP.2012.2187642 – start-page: 607 year: 2020 ident: 10.1016/j.dsp.2024.104549_bib0008 article-title: Ball bearing fault diagnosis using mutual information and Walsh–Hadamard transform – year: 2023 ident: 10.1016/j.dsp.2024.104549_bib0033 article-title: Compressed sensing approach for physiological signals: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3243390 – volume: 41 start-page: 3397 issue: 12 year: 1993 ident: 10.1016/j.dsp.2024.104549_bib0010 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Sig. Process. doi: 10.1109/78.258082 – start-page: 581 year: 2008 ident: 10.1016/j.dsp.2024.104549_bib0036 article-title: Sparsity adaptive matching pursuit algorithm for practical compressed sensing – volume: 7 start-page: 110 issue: 03 year: 2016 ident: 10.1016/j.dsp.2024.104549_bib0003 article-title: A survey on lossless and lossy data compression methods publication-title: Int. J. Comput. Sci. Eng. Technol. – volume: 140 issue: 7 year: 2014 ident: 10.1016/j.dsp.2024.104549_bib0050 article-title: Data compression of structural seismic responses via principled independent component analysis publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000946 – volume: 55 start-page: 1844 issue: 2 year: 2019 ident: 10.1016/j.dsp.2024.104549_bib0005 article-title: Wind turbine bearing fault diagnosis based on sparse representation of condition monitoring signals publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2018.2873576 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.dsp.2024.104549_bib0002 article-title: A three-dimensional vibration data compression method for rolling bearing condition monitoring publication-title: IEEE Trans. Instrum. Meas. – volume: 117 start-page: 108 year: 2018 ident: 10.1016/j.dsp.2024.104549_bib0012 article-title: Fault detection of a wheelset bearing in a high-speed train using the shock-response convolutional sparse-coding technique publication-title: Measurement doi: 10.1016/j.measurement.2017.12.010 |
| SSID | ssj0007426 |
| Score | 2.3825016 |
| Snippet | Data transmission is crucial in the process of equipment monitoring. The compression algorithms are adopted to reduce the amount of data transmission. When... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104549 |
| SubjectTerms | Lossy compression Online dictionary learning Quantization encoding Sparse encoding Sparse transform |
| Title | Application of optimized sparse encoding algorithm in data compression |
| URI | https://dx.doi.org/10.1016/j.dsp.2024.104549 |
| Volume | 151 |
| WOSCitedRecordID | wos001265695000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-4333 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007426 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKdoC8gHTlRBWcdZx8dVaQWoVEgtsLfIsZ3WVZu0u2m19NczfsRNy0OAxCWKrDiJPJ88n-1vZhB6xa3bz2SRSFHRhKoiT6qMVslEkYooAR7aiWi-7LDd3WI2459CeoKFKyfAmqZYLvnpfzU1tIGxbejsX5g7vhQa4B6MDlcwO1z_yPDTqyNpywRbmBNOzCXwSpg75gu9YTNXukgWcXzQzk13eOIUsaITTl_udbHNkLS-NQe2tMiG1XrYwC0fW9D7PLs9E3S9O-YM0BabPzpi-lW7GhRR-WPO3YHIIfRZmgjNPVdcGJrNtzY8HPYiCI1KuLBB1gfJXNNwAoMbews5lxPaeG6DtbJrE7FPPfvDpO73F47eqIVNMEqoPZfOfaLTG7my9-y3iDvOte6Xzm6jFcJyXozQyvT91uxDdNKMukp88d_6A28n_bvxoZ9TlgEN2X-A7of1A556uz9Et3TzCN0bZJV8jLYHCMBtjSMCsEcA7hGAIwKwabBFAB4g4An6vL21v_kuCeUyEkk46xKYimtgJDmDRS8ThEmulFRjKeVEFKqugRxWOk_VWImMpxUXCu51ltbA6DhlWfYUjZq20c8QlkKnWT0pcpvHnBDNpQKaTGCJM9ZpUYlVlPYjUsqQS96WNDkue9HgUQmDWNpBLP0grqLXscupT6Tyu4dpP8xlYIKe4ZWAiV93W_u3buvo7hWYn6NRNz_XL9AdedGZxfxlQM53hwGCMw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+optimized+sparse+encoding+algorithm+in+data+compression&rft.jtitle=Digital+signal+processing&rft.au=Song%2C+Liqiang&rft.au=Ma%2C+Weining&rft.au=Liu%2C+Zhongxin&rft.au=Shi%2C+Zhiyong&rft.date=2024-08-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.eissn=1095-4333&rft.volume=151&rft_id=info:doi/10.1016%2Fj.dsp.2024.104549&rft.externalDocID=S105120042400174X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |