State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
•New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily...
Uloženo v:
| Vydáno v: | Journal of energy storage Ročník 47; s. 103611 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2022
|
| Témata: | |
| ISSN: | 2352-152X, 2352-1538 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily convergent.
Online state-of-charge (SOC) estimation is a critical element for battery management systems and it requires lower computing cost and acceptable range of accuracy. This paper proposes a new model-based SOC estimation method for lithium-ion batteries. By utilizing the state estimation to identify the model parameters and then re-estimate the state by using the identified parameters, the two steps of parameter identification and state estimation are integrated into one closed-loop algorithm and they are implemented by using extended stochastic gradient (ESG) algorithm and adaptive extended Kalman filter (AEKF), respectively. In this method, it is unnecessary to calculate each circuit parameter of the model separately resulting in simper structure and lower computing cost. Experimental results indicate that the proposed SOC estimation algorithm has good performance in terms of estimation accuracy and robustness under different test conditions. It is therefore more suitable for online SOC estimation of lithium-ion batteries. |
|---|---|
| AbstractList | •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily convergent.
Online state-of-charge (SOC) estimation is a critical element for battery management systems and it requires lower computing cost and acceptable range of accuracy. This paper proposes a new model-based SOC estimation method for lithium-ion batteries. By utilizing the state estimation to identify the model parameters and then re-estimate the state by using the identified parameters, the two steps of parameter identification and state estimation are integrated into one closed-loop algorithm and they are implemented by using extended stochastic gradient (ESG) algorithm and adaptive extended Kalman filter (AEKF), respectively. In this method, it is unnecessary to calculate each circuit parameter of the model separately resulting in simper structure and lower computing cost. Experimental results indicate that the proposed SOC estimation algorithm has good performance in terms of estimation accuracy and robustness under different test conditions. It is therefore more suitable for online SOC estimation of lithium-ion batteries. |
| ArticleNumber | 103611 |
| Author | Ye, Yuanmao Li, Zhenpeng Lin, Jingxiong Wang, Xiaolin |
| Author_xml | – sequence: 1 givenname: Yuanmao surname: Ye fullname: Ye, Yuanmao email: eeyeym@gdut.edu.cn – sequence: 2 givenname: Zhenpeng surname: Li fullname: Li, Zhenpeng – sequence: 3 givenname: Jingxiong surname: Lin fullname: Lin, Jingxiong – sequence: 4 givenname: Xiaolin surname: Wang fullname: Wang, Xiaolin email: xiaolinwang@gdut.edu.cn |
| BookMark | eNp9kMtKAzEUQINUsNZ-gLv8wNQ8ZiYzuJLiCwsuVHAXMslNmzKPksSqez_c1IqCC1e54XIO3HOMRv3QA0KnlMwooeXZegYhzhhhNP15SekBGjNesIwWvBr9zOz5CE1DWBOSoILSuhyjj4eoImSDzfRK-SXgZHKdim7o8auLK6yM2kS3TYu3CL0Bg-9U26keW9dG8Fj15ncV4pA0yaDx0ivjoI9YtcvBJ1OH7eBxmyb30mU7f6NiMjgIJ-jQqjbA9PudoKery8f5Tba4v76dXywyzWoRs7yqONXU1pXJRV0xEHnJqsaURWMt2IqwRuQ1J7zINRFa1FRVjVCF4IYqbnM-QWLv1X4IwYOV2sWvW6NXrpWUyF1PuZapgtz1lPueiaR_yI1Pmfz7v8z5noF00taBl0GnIhqM86CjNIP7h_4EvM6SYw |
| CitedBy_id | crossref_primary_10_1007_s11581_024_05663_6 crossref_primary_10_3390_en16145558 crossref_primary_10_3390_pr11030800 crossref_primary_10_1016_j_est_2023_107728 crossref_primary_10_1016_j_energy_2025_135685 crossref_primary_10_3390_machines10121133 crossref_primary_10_3390_wevj13040070 crossref_primary_10_1016_j_jpowsour_2024_235493 crossref_primary_10_1007_s00202_024_02523_4 crossref_primary_10_1016_j_eswa_2023_121609 crossref_primary_10_1007_s11581_024_05523_3 crossref_primary_10_1049_cth2_12519 crossref_primary_10_1016_j_energy_2022_125872 crossref_primary_10_1016_j_est_2023_107223 crossref_primary_10_1016_j_ymssp_2025_112469 crossref_primary_10_1002_oca_3191 crossref_primary_10_1016_j_est_2023_106831 crossref_primary_10_1016_j_est_2023_106927 crossref_primary_10_1016_j_electacta_2024_143778 crossref_primary_10_1016_j_est_2024_112627 crossref_primary_10_1007_s11581_022_04603_6 crossref_primary_10_1016_j_energy_2023_129095 crossref_primary_10_1007_s11581_025_06478_9 crossref_primary_10_1016_j_est_2024_112304 crossref_primary_10_1002_er_8498 crossref_primary_10_1016_j_est_2023_107296 crossref_primary_10_1016_j_jfranklin_2024_107295 crossref_primary_10_1016_j_est_2023_107298 crossref_primary_10_1002_er_8216 crossref_primary_10_1016_j_est_2023_109977 crossref_primary_10_1109_ACCESS_2024_3389969 crossref_primary_10_3390_wevj15040152 |
| Cites_doi | 10.1016/j.jpowsour.2018.02.058 10.1109/TII.2020.2974907 10.1016/j.rser.2014.01.048 10.1016/j.jpowsour.2016.08.113 10.1016/j.jpowsour.2020.228132 10.1016/j.est.2020.101980 10.1016/j.energy.2016.05.047 10.1016/j.apenergy.2016.10.020 10.1109/TVT.2019.2959720 10.1016/j.jfranklin.2018.12.031 10.1016/j.jpowsour.2015.01.005 10.1016/j.jpowsour.2019.226710 10.1016/j.jpowsour.2018.06.104 10.1049/iet-est.2013.0020 10.1109/TVT.2010.2089647 10.1016/j.rser.2019.06.040 10.1109/TVT.2018.2842820 10.1016/j.jpowsour.2019.01.012 10.1016/j.jpowsour.2013.08.039 10.1016/j.apenergy.2012.08.031 10.1016/j.jpowsour.2020.228375 10.1016/j.jpowsour.2014.07.143 10.1016/j.rser.2020.110015 10.1016/j.jfranklin.2009.05.008 10.1016/j.est.2021.102457 10.1016/j.energy.2017.10.043 10.1016/j.apenergy.2019.113925 10.1109/TCST.2014.2358846 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.est.2021.103611 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2352-1538 |
| ExternalDocumentID | 10_1016_j_est_2021_103611 S2352152X21012895 |
| GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c297t-48831c1f98d47982e74628bd65bffef802b74930354c07c791a8b7a573d1a3f43 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780240100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-152X |
| IngestDate | Tue Nov 18 22:39:57 EST 2025 Thu Nov 13 04:20:09 EST 2025 Fri Feb 23 02:35:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | SOC estimation Parameter identification Extended stochastic gradient Kalman filter |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-48831c1f98d47982e74628bd65bffef802b74930354c07c791a8b7a573d1a3f43 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_est_2021_103611 crossref_primary_10_1016_j_est_2021_103611 elsevier_sciencedirect_doi_10_1016_j_est_2021_103611 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of energy storage |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cheng, Divakar, Wu, Ding, Ho (bib0001) 2011; 60 Mousavi, Nikdel (bib0006) 2014; 32 Bi, Choe (bib0008) 2020; 258 Li, Xiong, Vilathgamuwa, Wei, Xie, Zou (bib0007) 2021; 17 Cui, Ding, Li, Hayat (bib0028) 2018; 356 Dai, Xu, Zhu, Wei, Sun (bib0025) 2016; 184 He, Liu, Zhang, Chen (bib0019) 2013; 101 Chen, Sun, Dong, Wei, Wu (bib0018) 2019; 414 Zheng, Gao, Ouyang, Lu, Zhou, Han (bib0011) 2018; 383 Chen, Shen, Cao, Kapoor (bib0009) 2013; 246 Shrivastava, Soon, Idris, Mekhilef (bib0021) 2019; 113 Shu, Li, Shen, Yan, Chen, Liu (bib0020) 2020; 462 Tian, Xia, Sun, Xu, Zheng (bib0013) 2014; 270 Zhang, Guo, Zhang (bib0012) 2021 Fasahat, Manthouri (bib0005) 2020; 469 Chemali, Kollmeyer, Preindl, Emadi (bib0004) 2018; 400 Wang, Zhang, Chen (bib0016) 2015; 279 Zhang, Guo, Zhang (bib0015) 2020; 32 Wang, Tian, Sun, Wang, Xu, Li, Chen (bib0002) 2020; 131 Shen, Ouyang, Han, Feng, Lu, Li (bib0024) 2018; 67 Zhang, Allafi, Dinh (bib0026) 2017; 142 Xiao, Wang, Ding (bib0029) 2010; 347 Pei, Lu, Zhu (bib0003) 2013; 3 Hu, Wang (bib0027) 2015; 23 Li, Gong (bib0014) 2016; 109 Zhang, Li, Zhang, Huang (bib0022) 2021; 37 Tulsyan, Tsai, Bhushan Gopaluni, Braatz (bib0017) 2016; 331 Mawonou, Eddahech, Dumur, Beauvois, Godoy (bib0010) 2019; 435 Haus, Mercorelli (bib0023) 2020; 69 Wang (10.1016/j.est.2021.103611_bib0002) 2020; 131 Shu (10.1016/j.est.2021.103611_bib0020) 2020; 462 Bi (10.1016/j.est.2021.103611_bib0008) 2020; 258 Cui (10.1016/j.est.2021.103611_bib0028) 2018; 356 Cheng (10.1016/j.est.2021.103611_bib0001) 2011; 60 Chen (10.1016/j.est.2021.103611_bib0018) 2019; 414 Hu (10.1016/j.est.2021.103611_bib0027) 2015; 23 Pei (10.1016/j.est.2021.103611_bib0003) 2013; 3 Chemali (10.1016/j.est.2021.103611_bib0004) 2018; 400 Zhang (10.1016/j.est.2021.103611_bib0015) 2020; 32 Tian (10.1016/j.est.2021.103611_bib0013) 2014; 270 Fasahat (10.1016/j.est.2021.103611_bib0005) 2020; 469 Chen (10.1016/j.est.2021.103611_bib0009) 2013; 246 Zhang (10.1016/j.est.2021.103611_bib0026) 2017; 142 Haus (10.1016/j.est.2021.103611_bib0023) 2020; 69 Zhang (10.1016/j.est.2021.103611_bib0022) 2021; 37 Shen (10.1016/j.est.2021.103611_bib0024) 2018; 67 Shrivastava (10.1016/j.est.2021.103611_bib0021) 2019; 113 Dai (10.1016/j.est.2021.103611_bib0025) 2016; 184 Xiao (10.1016/j.est.2021.103611_bib0029) 2010; 347 Zhang (10.1016/j.est.2021.103611_bib0012) 2021 Tulsyan (10.1016/j.est.2021.103611_bib0017) 2016; 331 Li (10.1016/j.est.2021.103611_bib0007) 2021; 17 Mawonou (10.1016/j.est.2021.103611_bib0010) 2019; 435 Li (10.1016/j.est.2021.103611_bib0014) 2016; 109 Wang (10.1016/j.est.2021.103611_bib0016) 2015; 279 He (10.1016/j.est.2021.103611_bib0019) 2013; 101 Mousavi (10.1016/j.est.2021.103611_bib0006) 2014; 32 Zheng (10.1016/j.est.2021.103611_bib0011) 2018; 383 |
| References_xml | – volume: 383 start-page: 50 year: 2018 end-page: 58 ident: bib0011 article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter publication-title: J. Power Sources – volume: 279 start-page: 306 year: 2015 end-page: 311 ident: bib0016 article-title: A method for state-of-charge estimation of LiFePO publication-title: J. Power Sources – volume: 17 start-page: 240 year: 2021 end-page: 250 ident: bib0007 article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informat. – volume: 142 start-page: 678 year: 2017 end-page: 688 ident: bib0026 article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique publication-title: Energy – volume: 101 start-page: 808 year: 2013 end-page: 814 ident: bib0019 article-title: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl. Energy – volume: 113 start-page: 1364 year: 2019 ident: bib0021 article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. – volume: 60 start-page: 76 year: 2011 end-page: 88 ident: bib0001 article-title: Battery-management system (BMS) and SOC development for electrical vehicles publication-title: IEEE Trans. Veh. Technol. – volume: 32 year: 2020 ident: bib0015 article-title: An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery publication-title: J. Energy Storage – volume: 356 start-page: 5485 year: 2018 end-page: 5502 ident: bib0028 article-title: Kalman filtering based gradient estimation algorithms for observer canonical state-space systems with moving average noises publication-title: J. Frankl. Inst. – volume: 67 start-page: 8055 year: 2018 end-page: 8064 ident: bib0024 article-title: Error analysis of the model-based state-of-charge observer for lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 3 start-page: 112 year: 2013 end-page: 117 ident: bib0003 article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries publication-title: IET Electr. Syst. Transp. – volume: 246 start-page: 667 year: 2013 end-page: 678 ident: bib0009 article-title: A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles publication-title: J. Power Sources – volume: 184 start-page: 119 year: 2016 end-page: 131 ident: bib0025 article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales publication-title: Appl. Energy – year: 2021 ident: bib0012 article-title: A novel one-way transmitted co-estimation framework for capacity and state-of-charge of lithium-ion battery based on double adaptive extended Kalman filters publication-title: J. Energy Storage – volume: 331 start-page: 208 year: 2016 end-page: 223 ident: bib0017 article-title: State-of-charge estimation in lithium-ion batteries: a particle filter approach publication-title: J. Power Sources – volume: 347 start-page: 426 year: 2010 end-page: 437 ident: bib0029 article-title: The residual-based ESG algorithm and its performance analysis publication-title: J. Frankl. Inst. – volume: 462 year: 2020 ident: bib0020 article-title: An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation publication-title: J. Power Sources – volume: 414 start-page: 158 year: 2019 end-page: 166 ident: bib0018 article-title: Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries publication-title: J. Power Sources – volume: 109 start-page: 933 year: 2016 end-page: 946 ident: bib0014 article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy – volume: 131 year: 2020 ident: bib0002 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. – volume: 258 year: 2020 ident: bib0008 article-title: An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O publication-title: Appl. Energy – volume: 400 start-page: 242 year: 2018 end-page: 255 ident: bib0004 article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach publication-title: J. Power Sources – volume: 469 year: 2020 ident: bib0005 article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks publication-title: J. Power Sources – volume: 69 start-page: 1452 year: 2020 end-page: 1463 ident: bib0023 article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 270 start-page: 619 year: 2014 end-page: 626 ident: bib0013 article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter publication-title: J. Power Sources – volume: 435 year: 2019 ident: bib0010 article-title: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter publication-title: J. Power Sources – volume: 37 year: 2021 ident: bib0022 article-title: State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles publication-title: J. Energy Storage – volume: 32 start-page: 477 year: 2014 end-page: 485 ident: bib0006 article-title: Various battery models for various simulation studies and applications publication-title: Renew. Sustain. Energy Rev. – volume: 23 start-page: 1180 year: 2015 end-page: 1188 ident: bib0027 article-title: Two time-scaled battery model identification with application to battery state estimation publication-title: IEEE Trans. Control Syst. Technol. – volume: 383 start-page: 50 year: 2018 ident: 10.1016/j.est.2021.103611_bib0011 article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.058 – volume: 17 start-page: 240 year: 2021 ident: 10.1016/j.est.2021.103611_bib0007 article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2020.2974907 – volume: 32 start-page: 477 year: 2014 ident: 10.1016/j.est.2021.103611_bib0006 article-title: Various battery models for various simulation studies and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.01.048 – volume: 331 start-page: 208 year: 2016 ident: 10.1016/j.est.2021.103611_bib0017 article-title: State-of-charge estimation in lithium-ion batteries: a particle filter approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.113 – volume: 462 year: 2020 ident: 10.1016/j.est.2021.103611_bib0020 article-title: An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228132 – year: 2021 ident: 10.1016/j.est.2021.103611_bib0012 article-title: A novel one-way transmitted co-estimation framework for capacity and state-of-charge of lithium-ion battery based on double adaptive extended Kalman filters publication-title: J. Energy Storage – volume: 32 year: 2020 ident: 10.1016/j.est.2021.103611_bib0015 article-title: An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery publication-title: J. Energy Storage doi: 10.1016/j.est.2020.101980 – volume: 109 start-page: 933 year: 2016 ident: 10.1016/j.est.2021.103611_bib0014 article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty publication-title: Energy doi: 10.1016/j.energy.2016.05.047 – volume: 184 start-page: 119 year: 2016 ident: 10.1016/j.est.2021.103611_bib0025 article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.020 – volume: 69 start-page: 1452 year: 2020 ident: 10.1016/j.est.2021.103611_bib0023 article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2959720 – volume: 356 start-page: 5485 year: 2018 ident: 10.1016/j.est.2021.103611_bib0028 article-title: Kalman filtering based gradient estimation algorithms for observer canonical state-space systems with moving average noises publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.12.031 – volume: 279 start-page: 306 year: 2015 ident: 10.1016/j.est.2021.103611_bib0016 article-title: A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.005 – volume: 435 year: 2019 ident: 10.1016/j.est.2021.103611_bib0010 article-title: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226710 – volume: 400 start-page: 242 year: 2018 ident: 10.1016/j.est.2021.103611_bib0004 article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.104 – volume: 3 start-page: 112 year: 2013 ident: 10.1016/j.est.2021.103611_bib0003 article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries publication-title: IET Electr. Syst. Transp. doi: 10.1049/iet-est.2013.0020 – volume: 60 start-page: 76 year: 2011 ident: 10.1016/j.est.2021.103611_bib0001 article-title: Battery-management system (BMS) and SOC development for electrical vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2010.2089647 – volume: 113 start-page: 1364 year: 2019 ident: 10.1016/j.est.2021.103611_bib0021 article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.06.040 – volume: 67 start-page: 8055 year: 2018 ident: 10.1016/j.est.2021.103611_bib0024 article-title: Error analysis of the model-based state-of-charge observer for lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2842820 – volume: 414 start-page: 158 year: 2019 ident: 10.1016/j.est.2021.103611_bib0018 article-title: Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.012 – volume: 246 start-page: 667 year: 2013 ident: 10.1016/j.est.2021.103611_bib0009 article-title: A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.08.039 – volume: 101 start-page: 808 year: 2013 ident: 10.1016/j.est.2021.103611_bib0019 article-title: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.031 – volume: 469 year: 2020 ident: 10.1016/j.est.2021.103611_bib0005 article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228375 – volume: 270 start-page: 619 year: 2014 ident: 10.1016/j.est.2021.103611_bib0013 article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.143 – volume: 131 year: 2020 ident: 10.1016/j.est.2021.103611_bib0002 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110015 – volume: 347 start-page: 426 year: 2010 ident: 10.1016/j.est.2021.103611_bib0029 article-title: The residual-based ESG algorithm and its performance analysis publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2009.05.008 – volume: 37 year: 2021 ident: 10.1016/j.est.2021.103611_bib0022 article-title: State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102457 – volume: 142 start-page: 678 year: 2017 ident: 10.1016/j.est.2021.103611_bib0026 article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique publication-title: Energy doi: 10.1016/j.energy.2017.10.043 – volume: 258 year: 2020 ident: 10.1016/j.est.2021.103611_bib0008 article-title: An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/carbon battery using a reduced-order electrochemical model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113925 – volume: 23 start-page: 1180 year: 2015 ident: 10.1016/j.est.2021.103611_bib0027 article-title: Two time-scaled battery model identification with application to battery state estimation publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2358846 |
| SSID | ssj0001651196 |
| Score | 2.4060352 |
| Snippet | •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103611 |
| SubjectTerms | Extended stochastic gradient Kalman filter Parameter identification SOC estimation |
| Title | State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries |
| URI | https://dx.doi.org/10.1016/j.est.2021.103611 |
| Volume | 47 |
| WOSCitedRecordID | wos000780240100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-1538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651196 issn: 2352-152X databaseCode: AIEXJ dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIPnKi8Spy0to8rtIiXVhwW0eUSOYnd7apNq9Ku-gP4GfxYxs-ELovYA5eocpJJlPk6Mx7PfEboVVYJbnjdSELLiuS6YkRwroge5SJTSU2zypK4fmInJ3w8Fp97vZ-hF-ZyxpqGb7di-V9VDWOgbNM6ewN1R6EwAL9B6XAEtcPxnxRvw0ey0MSSIKmBodFw_Ym-ka2WS1svFPLfg49yZjL5empWzu1qQjwFoSGIMVzOg8nKVoeZFPFksQJJc1uiCGH8-XQzJ0Z-ack6Q1ni1ZBXuUZDU5ApJxFRZzaneraRzVwuYoGQrTL4dq6apfLO1Y66VhLwt1t4YBz_6rPe46k0mxB1UxkwC461XM7iUYgGCQQU4655doSc3r6m4HCdcb5i-l0W4uIQvipM-2l62F77O832jvuLRYmh3u2iABGFEVE4EbfQHmUw8eqjvaP3x-MPbQ5vZFZh3f6F_s3DwrktIdx5lT-HPp1w5vQ-uueVgo8cfh6gnmoeorsddspH6McOknCLJGyQhAOScIALdkjCDkkYkNSeapGEA5JwRBIGJOEOknBE0mP05e3x6Zt3xG_aQSoq2JqAQ8jSKtWC1zkTnCpmup_LejQstVaag01gYAaSbJhXCauYSCUvmRyyrE5lpvPsCeo3i0btI1yP6iTThlvE0lgmXFKwOCXPacJonYgDlITvWVSe0d5srDIrrlXlAXodb1k6Ope_XZwHJRU-HnVxZgGYu_62pzd5xjN0p_0nPEf99WqjXqDb1eV6-n310gPuF2Gcr18 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-charge+estimation+with+adaptive+extended+Kalman+filter+and+extended+stochastic+gradient+algorithm+for+lithium-ion+batteries&rft.jtitle=Journal+of+energy+storage&rft.au=Ye%2C+Yuanmao&rft.au=Li%2C+Zhenpeng&rft.au=Lin%2C+Jingxiong&rft.au=Wang%2C+Xiaolin&rft.date=2022-03-01&rft.issn=2352-152X&rft.volume=47&rft.spage=103611&rft_id=info:doi/10.1016%2Fj.est.2021.103611&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2021_103611 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |