State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries

•New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of energy storage Ročník 47; s. 103611
Hlavní autoři: Ye, Yuanmao, Li, Zhenpeng, Lin, Jingxiong, Wang, Xiaolin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2022
Témata:
ISSN:2352-152X, 2352-1538
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily convergent. Online state-of-charge (SOC) estimation is a critical element for battery management systems and it requires lower computing cost and acceptable range of accuracy. This paper proposes a new model-based SOC estimation method for lithium-ion batteries. By utilizing the state estimation to identify the model parameters and then re-estimate the state by using the identified parameters, the two steps of parameter identification and state estimation are integrated into one closed-loop algorithm and they are implemented by using extended stochastic gradient (ESG) algorithm and adaptive extended Kalman filter (AEKF), respectively. In this method, it is unnecessary to calculate each circuit parameter of the model separately resulting in simper structure and lower computing cost. Experimental results indicate that the proposed SOC estimation algorithm has good performance in terms of estimation accuracy and robustness under different test conditions. It is therefore more suitable for online SOC estimation of lithium-ion batteries.
AbstractList •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters extraction.•Parameters identification process is conducted by an algorithm of Extended Stochastic Gradient.•Robust to different testing profile and easily convergent. Online state-of-charge (SOC) estimation is a critical element for battery management systems and it requires lower computing cost and acceptable range of accuracy. This paper proposes a new model-based SOC estimation method for lithium-ion batteries. By utilizing the state estimation to identify the model parameters and then re-estimate the state by using the identified parameters, the two steps of parameter identification and state estimation are integrated into one closed-loop algorithm and they are implemented by using extended stochastic gradient (ESG) algorithm and adaptive extended Kalman filter (AEKF), respectively. In this method, it is unnecessary to calculate each circuit parameter of the model separately resulting in simper structure and lower computing cost. Experimental results indicate that the proposed SOC estimation algorithm has good performance in terms of estimation accuracy and robustness under different test conditions. It is therefore more suitable for online SOC estimation of lithium-ion batteries.
ArticleNumber 103611
Author Ye, Yuanmao
Li, Zhenpeng
Lin, Jingxiong
Wang, Xiaolin
Author_xml – sequence: 1
  givenname: Yuanmao
  surname: Ye
  fullname: Ye, Yuanmao
  email: eeyeym@gdut.edu.cn
– sequence: 2
  givenname: Zhenpeng
  surname: Li
  fullname: Li, Zhenpeng
– sequence: 3
  givenname: Jingxiong
  surname: Lin
  fullname: Lin, Jingxiong
– sequence: 4
  givenname: Xiaolin
  surname: Wang
  fullname: Wang, Xiaolin
  email: xiaolinwang@gdut.edu.cn
BookMark eNp9kMtKAzEUQINUsNZ-gLv8wNQ8ZiYzuJLiCwsuVHAXMslNmzKPksSqez_c1IqCC1e54XIO3HOMRv3QA0KnlMwooeXZegYhzhhhNP15SekBGjNesIwWvBr9zOz5CE1DWBOSoILSuhyjj4eoImSDzfRK-SXgZHKdim7o8auLK6yM2kS3TYu3CL0Bg-9U26keW9dG8Fj15ncV4pA0yaDx0ivjoI9YtcvBJ1OH7eBxmyb30mU7f6NiMjgIJ-jQqjbA9PudoKery8f5Tba4v76dXywyzWoRs7yqONXU1pXJRV0xEHnJqsaURWMt2IqwRuQ1J7zINRFa1FRVjVCF4IYqbnM-QWLv1X4IwYOV2sWvW6NXrpWUyF1PuZapgtz1lPueiaR_yI1Pmfz7v8z5noF00taBl0GnIhqM86CjNIP7h_4EvM6SYw
CitedBy_id crossref_primary_10_1007_s11581_024_05663_6
crossref_primary_10_3390_en16145558
crossref_primary_10_3390_pr11030800
crossref_primary_10_1016_j_est_2023_107728
crossref_primary_10_1016_j_energy_2025_135685
crossref_primary_10_3390_machines10121133
crossref_primary_10_3390_wevj13040070
crossref_primary_10_1016_j_jpowsour_2024_235493
crossref_primary_10_1007_s00202_024_02523_4
crossref_primary_10_1016_j_eswa_2023_121609
crossref_primary_10_1007_s11581_024_05523_3
crossref_primary_10_1049_cth2_12519
crossref_primary_10_1016_j_energy_2022_125872
crossref_primary_10_1016_j_est_2023_107223
crossref_primary_10_1016_j_ymssp_2025_112469
crossref_primary_10_1002_oca_3191
crossref_primary_10_1016_j_est_2023_106831
crossref_primary_10_1016_j_est_2023_106927
crossref_primary_10_1016_j_electacta_2024_143778
crossref_primary_10_1016_j_est_2024_112627
crossref_primary_10_1007_s11581_022_04603_6
crossref_primary_10_1016_j_energy_2023_129095
crossref_primary_10_1007_s11581_025_06478_9
crossref_primary_10_1016_j_est_2024_112304
crossref_primary_10_1002_er_8498
crossref_primary_10_1016_j_est_2023_107296
crossref_primary_10_1016_j_jfranklin_2024_107295
crossref_primary_10_1016_j_est_2023_107298
crossref_primary_10_1002_er_8216
crossref_primary_10_1016_j_est_2023_109977
crossref_primary_10_1109_ACCESS_2024_3389969
crossref_primary_10_3390_wevj15040152
Cites_doi 10.1016/j.jpowsour.2018.02.058
10.1109/TII.2020.2974907
10.1016/j.rser.2014.01.048
10.1016/j.jpowsour.2016.08.113
10.1016/j.jpowsour.2020.228132
10.1016/j.est.2020.101980
10.1016/j.energy.2016.05.047
10.1016/j.apenergy.2016.10.020
10.1109/TVT.2019.2959720
10.1016/j.jfranklin.2018.12.031
10.1016/j.jpowsour.2015.01.005
10.1016/j.jpowsour.2019.226710
10.1016/j.jpowsour.2018.06.104
10.1049/iet-est.2013.0020
10.1109/TVT.2010.2089647
10.1016/j.rser.2019.06.040
10.1109/TVT.2018.2842820
10.1016/j.jpowsour.2019.01.012
10.1016/j.jpowsour.2013.08.039
10.1016/j.apenergy.2012.08.031
10.1016/j.jpowsour.2020.228375
10.1016/j.jpowsour.2014.07.143
10.1016/j.rser.2020.110015
10.1016/j.jfranklin.2009.05.008
10.1016/j.est.2021.102457
10.1016/j.energy.2017.10.043
10.1016/j.apenergy.2019.113925
10.1109/TCST.2014.2358846
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2021.103611
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID 10_1016_j_est_2021_103611
S2352152X21012895
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c297t-48831c1f98d47982e74628bd65bffef802b74930354c07c791a8b7a573d1a3f43
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000780240100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-152X
IngestDate Tue Nov 18 22:39:57 EST 2025
Thu Nov 13 04:20:09 EST 2025
Fri Feb 23 02:35:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SOC estimation
Parameter identification
Extended stochastic gradient
Kalman filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-48831c1f98d47982e74628bd65bffef802b74930354c07c791a8b7a573d1a3f43
ParticipantIDs crossref_citationtrail_10_1016_j_est_2021_103611
crossref_primary_10_1016_j_est_2021_103611
elsevier_sciencedirect_doi_10_1016_j_est_2021_103611
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Divakar, Wu, Ding, Ho (bib0001) 2011; 60
Mousavi, Nikdel (bib0006) 2014; 32
Bi, Choe (bib0008) 2020; 258
Li, Xiong, Vilathgamuwa, Wei, Xie, Zou (bib0007) 2021; 17
Cui, Ding, Li, Hayat (bib0028) 2018; 356
Dai, Xu, Zhu, Wei, Sun (bib0025) 2016; 184
He, Liu, Zhang, Chen (bib0019) 2013; 101
Chen, Sun, Dong, Wei, Wu (bib0018) 2019; 414
Zheng, Gao, Ouyang, Lu, Zhou, Han (bib0011) 2018; 383
Chen, Shen, Cao, Kapoor (bib0009) 2013; 246
Shrivastava, Soon, Idris, Mekhilef (bib0021) 2019; 113
Shu, Li, Shen, Yan, Chen, Liu (bib0020) 2020; 462
Tian, Xia, Sun, Xu, Zheng (bib0013) 2014; 270
Zhang, Guo, Zhang (bib0012) 2021
Fasahat, Manthouri (bib0005) 2020; 469
Chemali, Kollmeyer, Preindl, Emadi (bib0004) 2018; 400
Wang, Zhang, Chen (bib0016) 2015; 279
Zhang, Guo, Zhang (bib0015) 2020; 32
Wang, Tian, Sun, Wang, Xu, Li, Chen (bib0002) 2020; 131
Shen, Ouyang, Han, Feng, Lu, Li (bib0024) 2018; 67
Zhang, Allafi, Dinh (bib0026) 2017; 142
Xiao, Wang, Ding (bib0029) 2010; 347
Pei, Lu, Zhu (bib0003) 2013; 3
Hu, Wang (bib0027) 2015; 23
Li, Gong (bib0014) 2016; 109
Zhang, Li, Zhang, Huang (bib0022) 2021; 37
Tulsyan, Tsai, Bhushan Gopaluni, Braatz (bib0017) 2016; 331
Mawonou, Eddahech, Dumur, Beauvois, Godoy (bib0010) 2019; 435
Haus, Mercorelli (bib0023) 2020; 69
Wang (10.1016/j.est.2021.103611_bib0002) 2020; 131
Shu (10.1016/j.est.2021.103611_bib0020) 2020; 462
Bi (10.1016/j.est.2021.103611_bib0008) 2020; 258
Cui (10.1016/j.est.2021.103611_bib0028) 2018; 356
Cheng (10.1016/j.est.2021.103611_bib0001) 2011; 60
Chen (10.1016/j.est.2021.103611_bib0018) 2019; 414
Hu (10.1016/j.est.2021.103611_bib0027) 2015; 23
Pei (10.1016/j.est.2021.103611_bib0003) 2013; 3
Chemali (10.1016/j.est.2021.103611_bib0004) 2018; 400
Zhang (10.1016/j.est.2021.103611_bib0015) 2020; 32
Tian (10.1016/j.est.2021.103611_bib0013) 2014; 270
Fasahat (10.1016/j.est.2021.103611_bib0005) 2020; 469
Chen (10.1016/j.est.2021.103611_bib0009) 2013; 246
Zhang (10.1016/j.est.2021.103611_bib0026) 2017; 142
Haus (10.1016/j.est.2021.103611_bib0023) 2020; 69
Zhang (10.1016/j.est.2021.103611_bib0022) 2021; 37
Shen (10.1016/j.est.2021.103611_bib0024) 2018; 67
Shrivastava (10.1016/j.est.2021.103611_bib0021) 2019; 113
Dai (10.1016/j.est.2021.103611_bib0025) 2016; 184
Xiao (10.1016/j.est.2021.103611_bib0029) 2010; 347
Zhang (10.1016/j.est.2021.103611_bib0012) 2021
Tulsyan (10.1016/j.est.2021.103611_bib0017) 2016; 331
Li (10.1016/j.est.2021.103611_bib0007) 2021; 17
Mawonou (10.1016/j.est.2021.103611_bib0010) 2019; 435
Li (10.1016/j.est.2021.103611_bib0014) 2016; 109
Wang (10.1016/j.est.2021.103611_bib0016) 2015; 279
He (10.1016/j.est.2021.103611_bib0019) 2013; 101
Mousavi (10.1016/j.est.2021.103611_bib0006) 2014; 32
Zheng (10.1016/j.est.2021.103611_bib0011) 2018; 383
References_xml – volume: 383
  start-page: 50
  year: 2018
  end-page: 58
  ident: bib0011
  article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter
  publication-title: J. Power Sources
– volume: 279
  start-page: 306
  year: 2015
  end-page: 311
  ident: bib0016
  article-title: A method for state-of-charge estimation of LiFePO
  publication-title: J. Power Sources
– volume: 17
  start-page: 240
  year: 2021
  end-page: 250
  ident: bib0007
  article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informat.
– volume: 142
  start-page: 678
  year: 2017
  end-page: 688
  ident: bib0026
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
– volume: 101
  start-page: 808
  year: 2013
  end-page: 814
  ident: bib0019
  article-title: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl. Energy
– volume: 113
  start-page: 1364
  year: 2019
  ident: bib0021
  article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 60
  start-page: 76
  year: 2011
  end-page: 88
  ident: bib0001
  article-title: Battery-management system (BMS) and SOC development for electrical vehicles
  publication-title: IEEE Trans. Veh. Technol.
– volume: 32
  year: 2020
  ident: bib0015
  article-title: An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery
  publication-title: J. Energy Storage
– volume: 356
  start-page: 5485
  year: 2018
  end-page: 5502
  ident: bib0028
  article-title: Kalman filtering based gradient estimation algorithms for observer canonical state-space systems with moving average noises
  publication-title: J. Frankl. Inst.
– volume: 67
  start-page: 8055
  year: 2018
  end-page: 8064
  ident: bib0024
  article-title: Error analysis of the model-based state-of-charge observer for lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 3
  start-page: 112
  year: 2013
  end-page: 117
  ident: bib0003
  article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries
  publication-title: IET Electr. Syst. Transp.
– volume: 246
  start-page: 667
  year: 2013
  end-page: 678
  ident: bib0009
  article-title: A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles
  publication-title: J. Power Sources
– volume: 184
  start-page: 119
  year: 2016
  end-page: 131
  ident: bib0025
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl. Energy
– year: 2021
  ident: bib0012
  article-title: A novel one-way transmitted co-estimation framework for capacity and state-of-charge of lithium-ion battery based on double adaptive extended Kalman filters
  publication-title: J. Energy Storage
– volume: 331
  start-page: 208
  year: 2016
  end-page: 223
  ident: bib0017
  article-title: State-of-charge estimation in lithium-ion batteries: a particle filter approach
  publication-title: J. Power Sources
– volume: 347
  start-page: 426
  year: 2010
  end-page: 437
  ident: bib0029
  article-title: The residual-based ESG algorithm and its performance analysis
  publication-title: J. Frankl. Inst.
– volume: 462
  year: 2020
  ident: bib0020
  article-title: An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation
  publication-title: J. Power Sources
– volume: 414
  start-page: 158
  year: 2019
  end-page: 166
  ident: bib0018
  article-title: Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 109
  start-page: 933
  year: 2016
  end-page: 946
  ident: bib0014
  article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
– volume: 131
  year: 2020
  ident: bib0002
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 258
  year: 2020
  ident: bib0008
  article-title: An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O
  publication-title: Appl. Energy
– volume: 400
  start-page: 242
  year: 2018
  end-page: 255
  ident: bib0004
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J. Power Sources
– volume: 469
  year: 2020
  ident: bib0005
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks
  publication-title: J. Power Sources
– volume: 69
  start-page: 1452
  year: 2020
  end-page: 1463
  ident: bib0023
  article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 270
  start-page: 619
  year: 2014
  end-page: 626
  ident: bib0013
  article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
  publication-title: J. Power Sources
– volume: 435
  year: 2019
  ident: bib0010
  article-title: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter
  publication-title: J. Power Sources
– volume: 37
  year: 2021
  ident: bib0022
  article-title: State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles
  publication-title: J. Energy Storage
– volume: 32
  start-page: 477
  year: 2014
  end-page: 485
  ident: bib0006
  article-title: Various battery models for various simulation studies and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 23
  start-page: 1180
  year: 2015
  end-page: 1188
  ident: bib0027
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 383
  start-page: 50
  year: 2018
  ident: 10.1016/j.est.2021.103611_bib0011
  article-title: State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.058
– volume: 17
  start-page: 240
  year: 2021
  ident: 10.1016/j.est.2021.103611_bib0007
  article-title: Constrained ensemble Kalman filter for distributed electrochemical state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2020.2974907
– volume: 32
  start-page: 477
  year: 2014
  ident: 10.1016/j.est.2021.103611_bib0006
  article-title: Various battery models for various simulation studies and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.048
– volume: 331
  start-page: 208
  year: 2016
  ident: 10.1016/j.est.2021.103611_bib0017
  article-title: State-of-charge estimation in lithium-ion batteries: a particle filter approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.113
– volume: 462
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0020
  article-title: An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228132
– year: 2021
  ident: 10.1016/j.est.2021.103611_bib0012
  article-title: A novel one-way transmitted co-estimation framework for capacity and state-of-charge of lithium-ion battery based on double adaptive extended Kalman filters
  publication-title: J. Energy Storage
– volume: 32
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0015
  article-title: An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101980
– volume: 109
  start-page: 933
  year: 2016
  ident: 10.1016/j.est.2021.103611_bib0014
  article-title: A combination Kalman filter approach for state of charge estimation of lithium-ion battery considering model uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.047
– volume: 184
  start-page: 119
  year: 2016
  ident: 10.1016/j.est.2021.103611_bib0025
  article-title: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.020
– volume: 69
  start-page: 1452
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0023
  article-title: Polynomial augmented extended Kalman filter to estimate the state of charge of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2959720
– volume: 356
  start-page: 5485
  year: 2018
  ident: 10.1016/j.est.2021.103611_bib0028
  article-title: Kalman filtering based gradient estimation algorithms for observer canonical state-space systems with moving average noises
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.12.031
– volume: 279
  start-page: 306
  year: 2015
  ident: 10.1016/j.est.2021.103611_bib0016
  article-title: A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.005
– volume: 435
  year: 2019
  ident: 10.1016/j.est.2021.103611_bib0010
  article-title: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226710
– volume: 400
  start-page: 242
  year: 2018
  ident: 10.1016/j.est.2021.103611_bib0004
  article-title: State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.104
– volume: 3
  start-page: 112
  year: 2013
  ident: 10.1016/j.est.2021.103611_bib0003
  article-title: Relaxation model of the open-circuit voltage for state-of-charge estimation in lithium-ion batteries
  publication-title: IET Electr. Syst. Transp.
  doi: 10.1049/iet-est.2013.0020
– volume: 60
  start-page: 76
  year: 2011
  ident: 10.1016/j.est.2021.103611_bib0001
  article-title: Battery-management system (BMS) and SOC development for electrical vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2010.2089647
– volume: 113
  start-page: 1364
  year: 2019
  ident: 10.1016/j.est.2021.103611_bib0021
  article-title: Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.06.040
– volume: 67
  start-page: 8055
  year: 2018
  ident: 10.1016/j.est.2021.103611_bib0024
  article-title: Error analysis of the model-based state-of-charge observer for lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2842820
– volume: 414
  start-page: 158
  year: 2019
  ident: 10.1016/j.est.2021.103611_bib0018
  article-title: Particle filter-based state-of-charge estimation and remaining-dischargeable-time prediction method for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.012
– volume: 246
  start-page: 667
  year: 2013
  ident: 10.1016/j.est.2021.103611_bib0009
  article-title: A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.039
– volume: 101
  start-page: 808
  year: 2013
  ident: 10.1016/j.est.2021.103611_bib0019
  article-title: A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.08.031
– volume: 469
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0005
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228375
– volume: 270
  start-page: 619
  year: 2014
  ident: 10.1016/j.est.2021.103611_bib0013
  article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.143
– volume: 131
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0002
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110015
– volume: 347
  start-page: 426
  year: 2010
  ident: 10.1016/j.est.2021.103611_bib0029
  article-title: The residual-based ESG algorithm and its performance analysis
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2009.05.008
– volume: 37
  year: 2021
  ident: 10.1016/j.est.2021.103611_bib0022
  article-title: State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102457
– volume: 142
  start-page: 678
  year: 2017
  ident: 10.1016/j.est.2021.103611_bib0026
  article-title: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.043
– volume: 258
  year: 2020
  ident: 10.1016/j.est.2021.103611_bib0008
  article-title: An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/carbon battery using a reduced-order electrochemical model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113925
– volume: 23
  start-page: 1180
  year: 2015
  ident: 10.1016/j.est.2021.103611_bib0027
  article-title: Two time-scaled battery model identification with application to battery state estimation
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2358846
SSID ssj0001651196
Score 2.4060352
Snippet •New closed-loop algorithm combining parameter identification and State estimation.•Computing cost is reduced by omitting the step of parameters...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103611
SubjectTerms Extended stochastic gradient
Kalman filter
Parameter identification
SOC estimation
Title State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
URI https://dx.doi.org/10.1016/j.est.2021.103611
Volume 47
WOSCitedRecordID wos000780240100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-1538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651196
  issn: 2352-152X
  databaseCode: AIEXJ
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIPnKi8Spy0to8rtIiXVhwW0eUSOYnd7apNq9Ku-gP4GfxYxs-ELovYA5eocpJJlPk6Mx7PfEboVVYJbnjdSELLiuS6YkRwroge5SJTSU2zypK4fmInJ3w8Fp97vZ-hF-ZyxpqGb7di-V9VDWOgbNM6ewN1R6EwAL9B6XAEtcPxnxRvw0ey0MSSIKmBodFw_Ym-ka2WS1svFPLfg49yZjL5empWzu1qQjwFoSGIMVzOg8nKVoeZFPFksQJJc1uiCGH8-XQzJ0Z-ack6Q1ni1ZBXuUZDU5ApJxFRZzaneraRzVwuYoGQrTL4dq6apfLO1Y66VhLwt1t4YBz_6rPe46k0mxB1UxkwC461XM7iUYgGCQQU4655doSc3r6m4HCdcb5i-l0W4uIQvipM-2l62F77O832jvuLRYmh3u2iABGFEVE4EbfQHmUw8eqjvaP3x-MPbQ5vZFZh3f6F_s3DwrktIdx5lT-HPp1w5vQ-uueVgo8cfh6gnmoeorsddspH6McOknCLJGyQhAOScIALdkjCDkkYkNSeapGEA5JwRBIGJOEOknBE0mP05e3x6Zt3xG_aQSoq2JqAQ8jSKtWC1zkTnCpmup_LejQstVaag01gYAaSbJhXCauYSCUvmRyyrE5lpvPsCeo3i0btI1yP6iTThlvE0lgmXFKwOCXPacJonYgDlITvWVSe0d5srDIrrlXlAXodb1k6Ope_XZwHJRU-HnVxZgGYu_62pzd5xjN0p_0nPEf99WqjXqDb1eV6-n310gPuF2Gcr18
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-charge+estimation+with+adaptive+extended+Kalman+filter+and+extended+stochastic+gradient+algorithm+for+lithium-ion+batteries&rft.jtitle=Journal+of+energy+storage&rft.au=Ye%2C+Yuanmao&rft.au=Li%2C+Zhenpeng&rft.au=Lin%2C+Jingxiong&rft.au=Wang%2C+Xiaolin&rft.date=2022-03-01&rft.issn=2352-152X&rft.volume=47&rft.spage=103611&rft_id=info:doi/10.1016%2Fj.est.2021.103611&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2021_103611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon