Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations
Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differ...
Gespeichert in:
| Veröffentlicht in: | Applied mathematics and computation Jg. 371; S. 124972 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.04.2020
|
| Schlagworte: | |
| ISSN: | 0096-3003 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders. |
|---|---|
| AbstractList | Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders. |
| ArticleNumber | 124972 |
| Author | Kudryashov, Nikolay A. |
| Author_xml | – sequence: 1 givenname: Nikolay A. surname: Kudryashov fullname: Kudryashov, Nikolay A. email: nakudryashov@mephi.ru organization: National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, Moscow 115409, Russian Federation |
| BookMark | eNp9kE1OwzAQhb0oEm3hAOx8gQQ7DnEsVqgCilSJBSCWln_Gras0KXZa1ItxAS6GS1ix6GpmpPfNvHkTNGq7FhC6oiSnhFbX61xtTF4QKnJalIIXIzQmRFQZI4Sdo0mMa0IIr2g5Ru9zv1w1B2x93EKIfg84do3vVTjgTzVMu953bcSdw0nS74IGi9PJxregAn4xq_D9ZX27hIDhY6d-1RfozKkmwuVfnaK3h_vX2TxbPD8-ze4WmSkE77Oy5rZStaaC3lBRGuVqQRhoyjgvhGaurBlJjQXHOBOKK0dK7XTpQHNNLJsiPuw1oYsxgJMmmT9a6IPyjaREHjORa5kykcdM5JBJIuk_chv8Jv19krkdGEgv7T0EGY2H1oD1AUwvbedP0D8nZYDr |
| CitedBy_id | crossref_primary_10_1140_epjp_s13360_024_05252_6 crossref_primary_10_1007_s11082_021_02787_1 crossref_primary_10_1007_s12596_020_00668_6 crossref_primary_10_1016_j_physleta_2021_127541 crossref_primary_10_1371_journal_pone_0297898 crossref_primary_10_1007_s11082_021_03276_1 crossref_primary_10_1007_s11082_023_04828_3 crossref_primary_10_1016_j_cjph_2020_11_026 crossref_primary_10_1016_j_chaos_2023_114165 crossref_primary_10_1134_S1064226921050120 crossref_primary_10_1515_phys_2020_0224 crossref_primary_10_1016_j_matcom_2021_08_007 crossref_primary_10_1134_S1560354722060065 crossref_primary_10_1140_epjp_s13360_022_02481_5 crossref_primary_10_1002_mma_10374 crossref_primary_10_1088_1742_6596_1686_1_012034 crossref_primary_10_1016_j_chaos_2020_110325 crossref_primary_10_1088_1402_4896_acf0fe crossref_primary_10_1142_S0218348X25401012 crossref_primary_10_1007_s12596_021_00693_z crossref_primary_10_1088_1402_4896_acde1b crossref_primary_10_1007_s11082_021_03389_7 crossref_primary_10_1134_S0965542521310018 crossref_primary_10_1088_1402_4896_ad75c1 crossref_primary_10_1007_s11082_021_03030_7 crossref_primary_10_1007_s11082_022_03884_5 crossref_primary_10_1007_s11082_023_04774_0 crossref_primary_10_1016_j_ijleo_2020_164750 crossref_primary_10_1007_s11082_024_06598_y crossref_primary_10_1088_1751_8121_ac8586 crossref_primary_10_3390_sym15040886 crossref_primary_10_1016_j_ijleo_2020_164335 crossref_primary_10_1007_s11082_022_03657_0 crossref_primary_10_1142_S0217984925501702 crossref_primary_10_1007_s11082_021_03055_y crossref_primary_10_1007_s11082_020_02679_w crossref_primary_10_3390_universe9010051 crossref_primary_10_1140_epjp_s13360_021_01160_1 crossref_primary_10_1002_mma_8506 crossref_primary_10_1002_mma_9837 crossref_primary_10_1140_epjp_s13360_021_01637_z crossref_primary_10_1088_1402_4896_ad2f01 crossref_primary_10_1134_S1560354721010068 crossref_primary_10_1088_1674_1056_ab90ea |
| Cites_doi | 10.1007/s11082-018-1595-9 10.1016/j.ijleo.2019.05.065 10.1007/s11071-018-4568-4 10.1016/j.ijleo.2019.163349 10.1016/j.cnsns.2011.10.016 10.1016/j.ijleo.2019.02.127 10.1016/j.ijleo.2019.162964 10.1016/0375-9601(90)90449-X 10.1016/j.ijleo.2019.163322 10.1016/j.apm.2015.01.048 10.1088/0031-8949/54/6/003 10.1002/sapm1974534249 10.1016/S0375-9601(01)00644-2 10.1016/j.ijleo.2019.02.050 10.1016/j.ijleo.2018.12.164 10.1016/j.ijleo.2019.163060 10.1016/j.chaos.2004.09.109 10.1016/j.ijleo.2019.04.082 10.1016/S0375-9601(00)00725-8 10.1016/j.ijleo.2019.163226 10.1016/0375-9601(91)90481-M 10.1016/0010-4655(96)00104-X 10.1016/j.ijleo.2018.03.032 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2019.124972 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2019_124972 S0096300319309646 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c297t-487d6a8b1915194caf8903eb137729b3f483029bdef3739a7af04bfb4feb7b0d3 |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504843100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Tue Nov 18 22:37:49 EST 2025 Sat Nov 29 07:24:11 EST 2025 Sun Apr 06 06:54:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Highly dispersive soliton Nonlinear differential equation Nonlinear Schrödiner equation Optical soliton Exact solution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-487d6a8b1915194caf8903eb137729b3f483029bdef3739a7af04bfb4feb7b0d3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_amc_2019_124972 crossref_primary_10_1016_j_amc_2019_124972 elsevier_sciencedirect_doi_10_1016_j_amc_2019_124972 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-15 |
| PublicationDateYYYYMMDD | 2020-04-15 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kudryashov (bib0017) 2019; 350 Gaber, Aljohani, Ebaid, Machado (bib0024) 2019; 95 Rehman, Ullah, Imran (bib0007) 2019; 199 Kudryashov (bib0021) 2015; 39 Biswas, Ekici, Sonmezoglu, Belic (bib0003) 2019; 189 Fu, Liu, Liu (bib0014) 2001; 290 Kudryashov (bib0016) 2019; 344 Polyanin, Zaitsev (bib0018) 2003 Fu, Liu, Liu (bib0015) 2001; 289 Kohl, Biswas, Ekici, Zhou, Khan, Alshomrani, Belic (bib0002) 2019; 199 Biswas, Ekici, Sonmezoglu, Belic (bib0030) 2019; 183 Zakharov, Shabat (bib0025) 1972; 34 Kohl, Biswas, Ekici, Khan, Alshomrani, Belic (bib0001) 2019; 199 Kudryashov (bib0004) 2019; 192 Biswas, Ekici, Sonmezoglu, Belic (bib0006) 2019; 18 Parkes, Duffy (bib0011) 1996; 98 Ablowitz, Clarkson (bib0027) 1991 Kudryashov (bib0008) 1990; 147 Kudryashov (bib0010) 2005; 24 Ablowitz, Kaup, Newell, Segur (bib0026) 1974; 53 Kudryashov (bib0005) 2019; 194 Biswas, Ekici, Sonmezoglu, Belic (bib0028) 2019; 181 Kudryashov (bib0019) 2012; 17 Kudryashov (bib0009) 1991; 155 Biswas, Sonmezoglu, Ekici, Mirzazadeh, Zhou, Moshokoa, Belic (bib0022) 2018; 164 Kumar, Kaplan (bib0023) 2018; 50 Fan (bib0013) 2000; 227 Biswas, Ekici, Sonmezoglu, Belic (bib0029) 2019; 183 Malfliet, Hereman (bib0012) 1996; 54 Kudryashov (bib0020) 2013; 219 Kudryashov (10.1016/j.amc.2019.124972_bib0009) 1991; 155 Rehman (10.1016/j.amc.2019.124972_bib0007) 2019; 199 Kudryashov (10.1016/j.amc.2019.124972_bib0010) 2005; 24 Fu (10.1016/j.amc.2019.124972_bib0014) 2001; 290 Parkes (10.1016/j.amc.2019.124972_bib0011) 1996; 98 Biswas (10.1016/j.amc.2019.124972_bib0029) 2019; 183 Biswas (10.1016/j.amc.2019.124972_bib0003) 2019; 189 Ablowitz (10.1016/j.amc.2019.124972_bib0026) 1974; 53 Kudryashov (10.1016/j.amc.2019.124972_bib0019) 2012; 17 Kudryashov (10.1016/j.amc.2019.124972_bib0020) 2013; 219 Polyanin (10.1016/j.amc.2019.124972_bib0018) 2003 Kudryashov (10.1016/j.amc.2019.124972_bib0005) 2019; 194 Fan (10.1016/j.amc.2019.124972_bib0013) 2000; 227 Fu (10.1016/j.amc.2019.124972_bib0015) 2001; 289 Biswas (10.1016/j.amc.2019.124972_bib0006) 2019; 18 Biswas (10.1016/j.amc.2019.124972_bib0028) 2019; 181 Kohl (10.1016/j.amc.2019.124972_bib0002) 2019; 199 Gaber (10.1016/j.amc.2019.124972_bib0024) 2019; 95 Kohl (10.1016/j.amc.2019.124972_bib0001) 2019; 199 Kudryashov (10.1016/j.amc.2019.124972_bib0016) 2019; 344 Kudryashov (10.1016/j.amc.2019.124972_bib0004) 2019; 192 Biswas (10.1016/j.amc.2019.124972_bib0030) 2019; 183 Biswas (10.1016/j.amc.2019.124972_bib0022) 2018; 164 Kumar (10.1016/j.amc.2019.124972_bib0023) 2018; 50 Kudryashov (10.1016/j.amc.2019.124972_bib0017) 2019; 350 Zakharov (10.1016/j.amc.2019.124972_bib0025) 1972; 34 Ablowitz (10.1016/j.amc.2019.124972_bib0027) 1991 Kudryashov (10.1016/j.amc.2019.124972_bib0021) 2015; 39 Malfliet (10.1016/j.amc.2019.124972_bib0012) 1996; 54 Kudryashov (10.1016/j.amc.2019.124972_bib0008) 1990; 147 |
| References_xml | – volume: 199 start-page: 163322 year: 2019 ident: bib0002 article-title: Highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle publication-title: Optik – volume: 95 start-page: 361 year: 2019 end-page: 368 ident: bib0024 article-title: The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of burgers type publication-title: Nonlinear Dyn. – volume: 39 start-page: 5733 year: 2015 end-page: 5742 ident: bib0021 article-title: Logistic function as solution of many nonlinear differential equations publication-title: Appl. Math. Model. – volume: 289 start-page: 69 year: 2001 end-page: 74 ident: bib0015 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 181 start-page: 1028 year: 2019 end-page: 1038 ident: bib0028 article-title: Highly dispersive optical solitons with kerr law nonlinearity by f-expansion publication-title: Optik – volume: 155 start-page: 269 year: 1991 end-page: 275 ident: bib0009 article-title: On types of nonlinear nonintegrable equations with exact solutions publication-title: Phys.Lett. A – year: 2003 ident: bib0018 publication-title: Handbook of Exact Solutions for Ordinary Differential Equations – volume: 50 start-page: 329 year: 2018 ident: bib0023 article-title: Application of the modified Kudryashov method to the generalized Schrödinger—Boussinesq equations publication-title: Opt. Quant. Electron. – volume: 164 start-page: 303 year: 2018 end-page: 310 ident: bib0022 article-title: Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov’s method publication-title: Optik – volume: 53 start-page: 249 year: 1974 end-page: 315 ident: bib0026 article-title: The inverse scattering transform – fourier analysis for nonlinear problems publication-title: Stud. Appl. Math. – volume: 290 start-page: 72 year: 2001 end-page: 76 ident: bib0014 article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 199 start-page: 163349 year: 2019 ident: bib0007 article-title: Highly dispersive optical solitons using Kudryashov’s method publication-title: Optik – volume: 227 start-page: 212 year: 2000 end-page: 218 ident: bib0013 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys. Lett. A – volume: 24 start-page: 1217 year: 2005 end-page: 1231 ident: bib0010 article-title: Simplest equation method to look for exact solutions of nonlinear differential equations publication-title: Chaos Soliton Fractals – volume: 98 start-page: 288 year: 1996 end-page: 300 ident: bib0011 article-title: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations publication-title: Comput. Phys. Commun. – volume: 194 start-page: 163060 year: 2019 ident: bib0005 article-title: Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber publication-title: Optik – volume: 350 start-page: 323 year: 2019 end-page: 330 ident: bib0017 article-title: Lax pair and first integrals of the traveling wave reduction for the KDV hierarchy publication-title: Appl. Math. Comput. – volume: 183 start-page: 571 year: 2019 end-page: 578 ident: bib0030 article-title: Highly dispersive optical solitons with kerr law nonlinearity by exp-function publication-title: Optik – volume: 18 start-page: 288 year: 2019 end-page: 292 ident: bib0006 article-title: Highly dispersive optical solitons with non-local nonlinearity by exp-function publication-title: Optik – volume: 199 start-page: 163226 year: 2019 ident: bib0001 article-title: Highly dispersive optical soliton perturbation with kerr law by semi-inverse variational principle publication-title: Optik – volume: 189 start-page: 109 year: 2019 end-page: 120 ident: bib0003 article-title: Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion publication-title: Optik – volume: 192 start-page: 162964 year: 2019 ident: bib0004 article-title: Construction of nonlinear differential equations for description of propagation pulses in optical fiber publication-title: Optik – volume: 344 start-page: 97 year: 2019 end-page: 106 ident: bib0016 article-title: Exact solutions of the equation for surface waves in a convecting fluid publication-title: Appl. Math. Comput. – volume: 54 start-page: 563 year: 1996 end-page: 568 ident: bib0012 article-title: The tanh method: I exact solutions of nonlinear evolution and wave equations publication-title: Phys. Scr. – volume: 219 start-page: 9245 year: 2013 end-page: 9253 ident: bib0020 article-title: Polynomals in logistics function and solitary waves of nonlinear differential equations publication-title: Appl. Math. Comput. – year: 1991 ident: bib0027 publication-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering – volume: 34 start-page: 62 year: 1972 end-page: 69 ident: bib0025 article-title: Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media publication-title: Sov. Phys. JETP – volume: 17 start-page: 2248 year: 2012 end-page: 2253 ident: bib0019 article-title: One method for finding exact solutions of nonlinear differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 147 start-page: 287 year: 1990 end-page: 291 ident: bib0008 article-title: Exact solutions of the generalized Kuramoto–Sivashinsky equation publication-title: Phys. Lett. A. – volume: 183 start-page: 395 year: 2019 end-page: 400 ident: bib0029 article-title: Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi’s elliptic function expansion publication-title: Optik – volume: 50 start-page: 329 issue: 9 year: 2018 ident: 10.1016/j.amc.2019.124972_bib0023 article-title: Application of the modified Kudryashov method to the generalized Schrödinger—Boussinesq equations publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-018-1595-9 – volume: 350 start-page: 323 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0017 article-title: Lax pair and first integrals of the traveling wave reduction for the KDV hierarchy publication-title: Appl. Math. Comput. – volume: 219 start-page: 9245 year: 2013 ident: 10.1016/j.amc.2019.124972_bib0020 article-title: Polynomals in logistics function and solitary waves of nonlinear differential equations publication-title: Appl. Math. Comput. – volume: 189 start-page: 109 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0003 article-title: Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion publication-title: Optik doi: 10.1016/j.ijleo.2019.05.065 – volume: 95 start-page: 361 issue: 1 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0024 article-title: The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of burgers type publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4568-4 – volume: 199 start-page: 163349 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0007 article-title: Highly dispersive optical solitons using Kudryashov’s method publication-title: Optik doi: 10.1016/j.ijleo.2019.163349 – volume: 17 start-page: 2248 year: 2012 ident: 10.1016/j.amc.2019.124972_bib0019 article-title: One method for finding exact solutions of nonlinear differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.10.016 – volume: 183 start-page: 571 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0030 article-title: Highly dispersive optical solitons with kerr law nonlinearity by exp-function publication-title: Optik doi: 10.1016/j.ijleo.2019.02.127 – volume: 192 start-page: 162964 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0004 article-title: Construction of nonlinear differential equations for description of propagation pulses in optical fiber publication-title: Optik doi: 10.1016/j.ijleo.2019.162964 – volume: 147 start-page: 287 year: 1990 ident: 10.1016/j.amc.2019.124972_bib0008 article-title: Exact solutions of the generalized Kuramoto–Sivashinsky equation publication-title: Phys. Lett. A. doi: 10.1016/0375-9601(90)90449-X – volume: 199 start-page: 163322 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0002 article-title: Highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle publication-title: Optik doi: 10.1016/j.ijleo.2019.163322 – year: 1991 ident: 10.1016/j.amc.2019.124972_bib0027 – volume: 39 start-page: 5733 issue: 18 year: 2015 ident: 10.1016/j.amc.2019.124972_bib0021 article-title: Logistic function as solution of many nonlinear differential equations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.01.048 – volume: 54 start-page: 563 year: 1996 ident: 10.1016/j.amc.2019.124972_bib0012 article-title: The tanh method: I exact solutions of nonlinear evolution and wave equations publication-title: Phys. Scr. doi: 10.1088/0031-8949/54/6/003 – volume: 53 start-page: 249 year: 1974 ident: 10.1016/j.amc.2019.124972_bib0026 article-title: The inverse scattering transform – fourier analysis for nonlinear problems publication-title: Stud. Appl. Math. doi: 10.1002/sapm1974534249 – year: 2003 ident: 10.1016/j.amc.2019.124972_bib0018 – volume: 290 start-page: 72 issue: 1–2 year: 2001 ident: 10.1016/j.amc.2019.124972_bib0014 article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00644-2 – volume: 183 start-page: 395 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0029 article-title: Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi’s elliptic function expansion publication-title: Optik doi: 10.1016/j.ijleo.2019.02.050 – volume: 181 start-page: 1028 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0028 article-title: Highly dispersive optical solitons with kerr law nonlinearity by f-expansion publication-title: Optik doi: 10.1016/j.ijleo.2018.12.164 – volume: 344 start-page: 97 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0016 article-title: Exact solutions of the equation for surface waves in a convecting fluid publication-title: Appl. Math. Comput. – volume: 194 start-page: 163060 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0005 article-title: Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber publication-title: Optik doi: 10.1016/j.ijleo.2019.163060 – volume: 24 start-page: 1217 year: 2005 ident: 10.1016/j.amc.2019.124972_bib0010 article-title: Simplest equation method to look for exact solutions of nonlinear differential equations publication-title: Chaos Soliton Fractals doi: 10.1016/j.chaos.2004.09.109 – volume: 18 start-page: 288 issue: 6 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0006 article-title: Highly dispersive optical solitons with non-local nonlinearity by exp-function publication-title: Optik doi: 10.1016/j.ijleo.2019.04.082 – volume: 34 start-page: 62 year: 1972 ident: 10.1016/j.amc.2019.124972_bib0025 article-title: Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media publication-title: Sov. Phys. JETP – volume: 227 start-page: 212 issue: 4–5 year: 2000 ident: 10.1016/j.amc.2019.124972_bib0013 article-title: Extended tanh-function method and its applications to nonlinear equations publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00725-8 – volume: 199 start-page: 163226 year: 2019 ident: 10.1016/j.amc.2019.124972_bib0001 article-title: Highly dispersive optical soliton perturbation with kerr law by semi-inverse variational principle publication-title: Optik doi: 10.1016/j.ijleo.2019.163226 – volume: 289 start-page: 69 issue: 1–2 year: 2001 ident: 10.1016/j.amc.2019.124972_bib0015 article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations publication-title: Phys. Lett. A – volume: 155 start-page: 269 year: 1991 ident: 10.1016/j.amc.2019.124972_bib0009 article-title: On types of nonlinear nonintegrable equations with exact solutions publication-title: Phys.Lett. A doi: 10.1016/0375-9601(91)90481-M – volume: 98 start-page: 288 year: 1996 ident: 10.1016/j.amc.2019.124972_bib0011 article-title: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(96)00104-X – volume: 164 start-page: 303 year: 2018 ident: 10.1016/j.amc.2019.124972_bib0022 article-title: Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov’s method publication-title: Optik doi: 10.1016/j.ijleo.2018.03.032 |
| SSID | ssj0007614 |
| Score | 2.6566648 |
| Snippet | Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124972 |
| SubjectTerms | Exact solution Highly dispersive soliton Nonlinear differential equation Nonlinear Schrödiner equation Optical soliton |
| Title | Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations |
| URI | https://dx.doi.org/10.1016/j.amc.2019.124972 |
| Volume | 371 |
| WOSCitedRecordID | wos000504843100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEeEFexcZEfeGJylcRebD8WNARITEgM0bfITmzB2LrSNN36x_gD_DHOqWO3lIsAiZcoiWI7Op9ln5u_Q8jjvOGwNtqcOWklAw1cMaULz3KlnOPSClWEYhPy8FCNRvpNX5a9XZYTkOOxurjQk_8KNbwDsPHo7F_AnTqFF3APoMMVYIfrHwGPmRsnC4y8TNAXNnd7Lea4YXbcuQlPXUp_g09gz7GYAxA4M8wUiTmX8fOnZRNYCt3nbs2vFylre_X1NPG-tvGM3KTbiO93zXRh2g9n8zD3PoE5vdgbDtY9DgWmf7Jw5jK4weJRmO8yNdEWYjzL-PrSykN5lR-W6eAxOB6YU2SRzPUAS2CHEj4b7NdvsV_sFhRNuBPlZbJdyH0NC9j28OXB6FXadmUZiNzjf8QQ9jKZb2Ognysha4rF0Q1yvbcI6DAgeZNccuNb5NrrlVhvk_cBU7rClEZMKWJKE6b0zNOEKU2YUsT065eAJ0143iHvnh8cPXvB-ooYrC60nDGwLpvSKAtGNmjeojZe6YzDdsvRSLLcC6Rz07ZxnkuujTQ-E9Zb4Z2VNmv4XbIFQ7t7hNZKGC280Ll1SCFkXAmm-L5RGa8xtrtDsiiiqu7p4rFqyUkV8wKPK5BqhVKtglR3yJPUZBK4Un73sYhyr3plLyhxFUySXzfb_bdm98nV1Ux-QLZm0849JFfq-exjO33UT6VvtmB7Sw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+dispersive+solitary+wave+solutions+of+perturbed+nonlinear+Schr%C3%B6dinger+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Kudryashov%2C+Nikolay+A.&rft.date=2020-04-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=371&rft_id=info:doi/10.1016%2Fj.amc.2019.124972&rft.externalDocID=S0096300319309646 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |