Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations

Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 371; S. 124972
1. Verfasser: Kudryashov, Nikolay A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.04.2020
Schlagworte:
ISSN:0096-3003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders.
AbstractList Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders.
ArticleNumber 124972
Author Kudryashov, Nikolay A.
Author_xml – sequence: 1
  givenname: Nikolay A.
  surname: Kudryashov
  fullname: Kudryashov, Nikolay A.
  email: nakudryashov@mephi.ru
  organization: National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, Moscow 115409, Russian Federation
BookMark eNp9kE1OwzAQhb0oEm3hAOx8gQQ7DnEsVqgCilSJBSCWln_Gras0KXZa1ItxAS6GS1ix6GpmpPfNvHkTNGq7FhC6oiSnhFbX61xtTF4QKnJalIIXIzQmRFQZI4Sdo0mMa0IIr2g5Ru9zv1w1B2x93EKIfg84do3vVTjgTzVMu953bcSdw0nS74IGi9PJxregAn4xq_D9ZX27hIDhY6d-1RfozKkmwuVfnaK3h_vX2TxbPD8-ze4WmSkE77Oy5rZStaaC3lBRGuVqQRhoyjgvhGaurBlJjQXHOBOKK0dK7XTpQHNNLJsiPuw1oYsxgJMmmT9a6IPyjaREHjORa5kykcdM5JBJIuk_chv8Jv19krkdGEgv7T0EGY2H1oD1AUwvbedP0D8nZYDr
CitedBy_id crossref_primary_10_1140_epjp_s13360_024_05252_6
crossref_primary_10_1007_s11082_021_02787_1
crossref_primary_10_1007_s12596_020_00668_6
crossref_primary_10_1016_j_physleta_2021_127541
crossref_primary_10_1371_journal_pone_0297898
crossref_primary_10_1007_s11082_021_03276_1
crossref_primary_10_1007_s11082_023_04828_3
crossref_primary_10_1016_j_cjph_2020_11_026
crossref_primary_10_1016_j_chaos_2023_114165
crossref_primary_10_1134_S1064226921050120
crossref_primary_10_1515_phys_2020_0224
crossref_primary_10_1016_j_matcom_2021_08_007
crossref_primary_10_1134_S1560354722060065
crossref_primary_10_1140_epjp_s13360_022_02481_5
crossref_primary_10_1002_mma_10374
crossref_primary_10_1088_1742_6596_1686_1_012034
crossref_primary_10_1016_j_chaos_2020_110325
crossref_primary_10_1088_1402_4896_acf0fe
crossref_primary_10_1142_S0218348X25401012
crossref_primary_10_1007_s12596_021_00693_z
crossref_primary_10_1088_1402_4896_acde1b
crossref_primary_10_1007_s11082_021_03389_7
crossref_primary_10_1134_S0965542521310018
crossref_primary_10_1088_1402_4896_ad75c1
crossref_primary_10_1007_s11082_021_03030_7
crossref_primary_10_1007_s11082_022_03884_5
crossref_primary_10_1007_s11082_023_04774_0
crossref_primary_10_1016_j_ijleo_2020_164750
crossref_primary_10_1007_s11082_024_06598_y
crossref_primary_10_1088_1751_8121_ac8586
crossref_primary_10_3390_sym15040886
crossref_primary_10_1016_j_ijleo_2020_164335
crossref_primary_10_1007_s11082_022_03657_0
crossref_primary_10_1142_S0217984925501702
crossref_primary_10_1007_s11082_021_03055_y
crossref_primary_10_1007_s11082_020_02679_w
crossref_primary_10_3390_universe9010051
crossref_primary_10_1140_epjp_s13360_021_01160_1
crossref_primary_10_1002_mma_8506
crossref_primary_10_1002_mma_9837
crossref_primary_10_1140_epjp_s13360_021_01637_z
crossref_primary_10_1088_1402_4896_ad2f01
crossref_primary_10_1134_S1560354721010068
crossref_primary_10_1088_1674_1056_ab90ea
Cites_doi 10.1007/s11082-018-1595-9
10.1016/j.ijleo.2019.05.065
10.1007/s11071-018-4568-4
10.1016/j.ijleo.2019.163349
10.1016/j.cnsns.2011.10.016
10.1016/j.ijleo.2019.02.127
10.1016/j.ijleo.2019.162964
10.1016/0375-9601(90)90449-X
10.1016/j.ijleo.2019.163322
10.1016/j.apm.2015.01.048
10.1088/0031-8949/54/6/003
10.1002/sapm1974534249
10.1016/S0375-9601(01)00644-2
10.1016/j.ijleo.2019.02.050
10.1016/j.ijleo.2018.12.164
10.1016/j.ijleo.2019.163060
10.1016/j.chaos.2004.09.109
10.1016/j.ijleo.2019.04.082
10.1016/S0375-9601(00)00725-8
10.1016/j.ijleo.2019.163226
10.1016/0375-9601(91)90481-M
10.1016/0010-4655(96)00104-X
10.1016/j.ijleo.2018.03.032
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2019.124972
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_amc_2019_124972
S0096300319309646
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-487d6a8b1915194caf8903eb137729b3f483029bdef3739a7af04bfb4feb7b0d3
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000504843100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Tue Nov 18 22:37:49 EST 2025
Sat Nov 29 07:24:11 EST 2025
Sun Apr 06 06:54:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Highly dispersive soliton
Nonlinear differential equation
Nonlinear Schrödiner equation
Optical soliton
Exact solution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-487d6a8b1915194caf8903eb137729b3f483029bdef3739a7af04bfb4feb7b0d3
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2019_124972
crossref_primary_10_1016_j_amc_2019_124972
elsevier_sciencedirect_doi_10_1016_j_amc_2019_124972
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kudryashov (bib0017) 2019; 350
Gaber, Aljohani, Ebaid, Machado (bib0024) 2019; 95
Rehman, Ullah, Imran (bib0007) 2019; 199
Kudryashov (bib0021) 2015; 39
Biswas, Ekici, Sonmezoglu, Belic (bib0003) 2019; 189
Fu, Liu, Liu (bib0014) 2001; 290
Kudryashov (bib0016) 2019; 344
Polyanin, Zaitsev (bib0018) 2003
Fu, Liu, Liu (bib0015) 2001; 289
Kohl, Biswas, Ekici, Zhou, Khan, Alshomrani, Belic (bib0002) 2019; 199
Biswas, Ekici, Sonmezoglu, Belic (bib0030) 2019; 183
Zakharov, Shabat (bib0025) 1972; 34
Kohl, Biswas, Ekici, Khan, Alshomrani, Belic (bib0001) 2019; 199
Kudryashov (bib0004) 2019; 192
Biswas, Ekici, Sonmezoglu, Belic (bib0006) 2019; 18
Parkes, Duffy (bib0011) 1996; 98
Ablowitz, Clarkson (bib0027) 1991
Kudryashov (bib0008) 1990; 147
Kudryashov (bib0010) 2005; 24
Ablowitz, Kaup, Newell, Segur (bib0026) 1974; 53
Kudryashov (bib0005) 2019; 194
Biswas, Ekici, Sonmezoglu, Belic (bib0028) 2019; 181
Kudryashov (bib0019) 2012; 17
Kudryashov (bib0009) 1991; 155
Biswas, Sonmezoglu, Ekici, Mirzazadeh, Zhou, Moshokoa, Belic (bib0022) 2018; 164
Kumar, Kaplan (bib0023) 2018; 50
Fan (bib0013) 2000; 227
Biswas, Ekici, Sonmezoglu, Belic (bib0029) 2019; 183
Malfliet, Hereman (bib0012) 1996; 54
Kudryashov (bib0020) 2013; 219
Kudryashov (10.1016/j.amc.2019.124972_bib0009) 1991; 155
Rehman (10.1016/j.amc.2019.124972_bib0007) 2019; 199
Kudryashov (10.1016/j.amc.2019.124972_bib0010) 2005; 24
Fu (10.1016/j.amc.2019.124972_bib0014) 2001; 290
Parkes (10.1016/j.amc.2019.124972_bib0011) 1996; 98
Biswas (10.1016/j.amc.2019.124972_bib0029) 2019; 183
Biswas (10.1016/j.amc.2019.124972_bib0003) 2019; 189
Ablowitz (10.1016/j.amc.2019.124972_bib0026) 1974; 53
Kudryashov (10.1016/j.amc.2019.124972_bib0019) 2012; 17
Kudryashov (10.1016/j.amc.2019.124972_bib0020) 2013; 219
Polyanin (10.1016/j.amc.2019.124972_bib0018) 2003
Kudryashov (10.1016/j.amc.2019.124972_bib0005) 2019; 194
Fan (10.1016/j.amc.2019.124972_bib0013) 2000; 227
Fu (10.1016/j.amc.2019.124972_bib0015) 2001; 289
Biswas (10.1016/j.amc.2019.124972_bib0006) 2019; 18
Biswas (10.1016/j.amc.2019.124972_bib0028) 2019; 181
Kohl (10.1016/j.amc.2019.124972_bib0002) 2019; 199
Gaber (10.1016/j.amc.2019.124972_bib0024) 2019; 95
Kohl (10.1016/j.amc.2019.124972_bib0001) 2019; 199
Kudryashov (10.1016/j.amc.2019.124972_bib0016) 2019; 344
Kudryashov (10.1016/j.amc.2019.124972_bib0004) 2019; 192
Biswas (10.1016/j.amc.2019.124972_bib0030) 2019; 183
Biswas (10.1016/j.amc.2019.124972_bib0022) 2018; 164
Kumar (10.1016/j.amc.2019.124972_bib0023) 2018; 50
Kudryashov (10.1016/j.amc.2019.124972_bib0017) 2019; 350
Zakharov (10.1016/j.amc.2019.124972_bib0025) 1972; 34
Ablowitz (10.1016/j.amc.2019.124972_bib0027) 1991
Kudryashov (10.1016/j.amc.2019.124972_bib0021) 2015; 39
Malfliet (10.1016/j.amc.2019.124972_bib0012) 1996; 54
Kudryashov (10.1016/j.amc.2019.124972_bib0008) 1990; 147
References_xml – volume: 199
  start-page: 163322
  year: 2019
  ident: bib0002
  article-title: Highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle
  publication-title: Optik
– volume: 95
  start-page: 361
  year: 2019
  end-page: 368
  ident: bib0024
  article-title: The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of burgers type
  publication-title: Nonlinear Dyn.
– volume: 39
  start-page: 5733
  year: 2015
  end-page: 5742
  ident: bib0021
  article-title: Logistic function as solution of many nonlinear differential equations
  publication-title: Appl. Math. Model.
– volume: 289
  start-page: 69
  year: 2001
  end-page: 74
  ident: bib0015
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 181
  start-page: 1028
  year: 2019
  end-page: 1038
  ident: bib0028
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by f-expansion
  publication-title: Optik
– volume: 155
  start-page: 269
  year: 1991
  end-page: 275
  ident: bib0009
  article-title: On types of nonlinear nonintegrable equations with exact solutions
  publication-title: Phys.Lett. A
– year: 2003
  ident: bib0018
  publication-title: Handbook of Exact Solutions for Ordinary Differential Equations
– volume: 50
  start-page: 329
  year: 2018
  ident: bib0023
  article-title: Application of the modified Kudryashov method to the generalized Schrödinger—Boussinesq equations
  publication-title: Opt. Quant. Electron.
– volume: 164
  start-page: 303
  year: 2018
  end-page: 310
  ident: bib0022
  article-title: Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov’s method
  publication-title: Optik
– volume: 53
  start-page: 249
  year: 1974
  end-page: 315
  ident: bib0026
  article-title: The inverse scattering transform – fourier analysis for nonlinear problems
  publication-title: Stud. Appl. Math.
– volume: 290
  start-page: 72
  year: 2001
  end-page: 76
  ident: bib0014
  article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 199
  start-page: 163349
  year: 2019
  ident: bib0007
  article-title: Highly dispersive optical solitons using Kudryashov’s method
  publication-title: Optik
– volume: 227
  start-page: 212
  year: 2000
  end-page: 218
  ident: bib0013
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys. Lett. A
– volume: 24
  start-page: 1217
  year: 2005
  end-page: 1231
  ident: bib0010
  article-title: Simplest equation method to look for exact solutions of nonlinear differential equations
  publication-title: Chaos Soliton Fractals
– volume: 98
  start-page: 288
  year: 1996
  end-page: 300
  ident: bib0011
  article-title: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations
  publication-title: Comput. Phys. Commun.
– volume: 194
  start-page: 163060
  year: 2019
  ident: bib0005
  article-title: Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber
  publication-title: Optik
– volume: 350
  start-page: 323
  year: 2019
  end-page: 330
  ident: bib0017
  article-title: Lax pair and first integrals of the traveling wave reduction for the KDV hierarchy
  publication-title: Appl. Math. Comput.
– volume: 183
  start-page: 571
  year: 2019
  end-page: 578
  ident: bib0030
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by exp-function
  publication-title: Optik
– volume: 18
  start-page: 288
  year: 2019
  end-page: 292
  ident: bib0006
  article-title: Highly dispersive optical solitons with non-local nonlinearity by exp-function
  publication-title: Optik
– volume: 199
  start-page: 163226
  year: 2019
  ident: bib0001
  article-title: Highly dispersive optical soliton perturbation with kerr law by semi-inverse variational principle
  publication-title: Optik
– volume: 189
  start-page: 109
  year: 2019
  end-page: 120
  ident: bib0003
  article-title: Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion
  publication-title: Optik
– volume: 192
  start-page: 162964
  year: 2019
  ident: bib0004
  article-title: Construction of nonlinear differential equations for description of propagation pulses in optical fiber
  publication-title: Optik
– volume: 344
  start-page: 97
  year: 2019
  end-page: 106
  ident: bib0016
  article-title: Exact solutions of the equation for surface waves in a convecting fluid
  publication-title: Appl. Math. Comput.
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: bib0012
  article-title: The tanh method: I exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Scr.
– volume: 219
  start-page: 9245
  year: 2013
  end-page: 9253
  ident: bib0020
  article-title: Polynomals in logistics function and solitary waves of nonlinear differential equations
  publication-title: Appl. Math. Comput.
– year: 1991
  ident: bib0027
  publication-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering
– volume: 34
  start-page: 62
  year: 1972
  end-page: 69
  ident: bib0025
  article-title: Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media
  publication-title: Sov. Phys. JETP
– volume: 17
  start-page: 2248
  year: 2012
  end-page: 2253
  ident: bib0019
  article-title: One method for finding exact solutions of nonlinear differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 147
  start-page: 287
  year: 1990
  end-page: 291
  ident: bib0008
  article-title: Exact solutions of the generalized Kuramoto–Sivashinsky equation
  publication-title: Phys. Lett. A.
– volume: 183
  start-page: 395
  year: 2019
  end-page: 400
  ident: bib0029
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi’s elliptic function expansion
  publication-title: Optik
– volume: 50
  start-page: 329
  issue: 9
  year: 2018
  ident: 10.1016/j.amc.2019.124972_bib0023
  article-title: Application of the modified Kudryashov method to the generalized Schrödinger—Boussinesq equations
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-018-1595-9
– volume: 350
  start-page: 323
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0017
  article-title: Lax pair and first integrals of the traveling wave reduction for the KDV hierarchy
  publication-title: Appl. Math. Comput.
– volume: 219
  start-page: 9245
  year: 2013
  ident: 10.1016/j.amc.2019.124972_bib0020
  article-title: Polynomals in logistics function and solitary waves of nonlinear differential equations
  publication-title: Appl. Math. Comput.
– volume: 189
  start-page: 109
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0003
  article-title: Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.05.065
– volume: 95
  start-page: 361
  issue: 1
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0024
  article-title: The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of burgers type
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4568-4
– volume: 199
  start-page: 163349
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0007
  article-title: Highly dispersive optical solitons using Kudryashov’s method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163349
– volume: 17
  start-page: 2248
  year: 2012
  ident: 10.1016/j.amc.2019.124972_bib0019
  article-title: One method for finding exact solutions of nonlinear differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.10.016
– volume: 183
  start-page: 571
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0030
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by exp-function
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.02.127
– volume: 192
  start-page: 162964
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0004
  article-title: Construction of nonlinear differential equations for description of propagation pulses in optical fiber
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.162964
– volume: 147
  start-page: 287
  year: 1990
  ident: 10.1016/j.amc.2019.124972_bib0008
  article-title: Exact solutions of the generalized Kuramoto–Sivashinsky equation
  publication-title: Phys. Lett. A.
  doi: 10.1016/0375-9601(90)90449-X
– volume: 199
  start-page: 163322
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0002
  article-title: Highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163322
– year: 1991
  ident: 10.1016/j.amc.2019.124972_bib0027
– volume: 39
  start-page: 5733
  issue: 18
  year: 2015
  ident: 10.1016/j.amc.2019.124972_bib0021
  article-title: Logistic function as solution of many nonlinear differential equations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.01.048
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.amc.2019.124972_bib0012
  article-title: The tanh method: I exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/54/6/003
– volume: 53
  start-page: 249
  year: 1974
  ident: 10.1016/j.amc.2019.124972_bib0026
  article-title: The inverse scattering transform – fourier analysis for nonlinear problems
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1974534249
– year: 2003
  ident: 10.1016/j.amc.2019.124972_bib0018
– volume: 290
  start-page: 72
  issue: 1–2
  year: 2001
  ident: 10.1016/j.amc.2019.124972_bib0014
  article-title: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00644-2
– volume: 183
  start-page: 395
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0029
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi’s elliptic function expansion
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.02.050
– volume: 181
  start-page: 1028
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0028
  article-title: Highly dispersive optical solitons with kerr law nonlinearity by f-expansion
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.12.164
– volume: 344
  start-page: 97
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0016
  article-title: Exact solutions of the equation for surface waves in a convecting fluid
  publication-title: Appl. Math. Comput.
– volume: 194
  start-page: 163060
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0005
  article-title: Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163060
– volume: 24
  start-page: 1217
  year: 2005
  ident: 10.1016/j.amc.2019.124972_bib0010
  article-title: Simplest equation method to look for exact solutions of nonlinear differential equations
  publication-title: Chaos Soliton Fractals
  doi: 10.1016/j.chaos.2004.09.109
– volume: 18
  start-page: 288
  issue: 6
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0006
  article-title: Highly dispersive optical solitons with non-local nonlinearity by exp-function
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.04.082
– volume: 34
  start-page: 62
  year: 1972
  ident: 10.1016/j.amc.2019.124972_bib0025
  article-title: Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media
  publication-title: Sov. Phys. JETP
– volume: 227
  start-page: 212
  issue: 4–5
  year: 2000
  ident: 10.1016/j.amc.2019.124972_bib0013
  article-title: Extended tanh-function method and its applications to nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 199
  start-page: 163226
  year: 2019
  ident: 10.1016/j.amc.2019.124972_bib0001
  article-title: Highly dispersive optical soliton perturbation with kerr law by semi-inverse variational principle
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163226
– volume: 289
  start-page: 69
  issue: 1–2
  year: 2001
  ident: 10.1016/j.amc.2019.124972_bib0015
  article-title: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 155
  start-page: 269
  year: 1991
  ident: 10.1016/j.amc.2019.124972_bib0009
  article-title: On types of nonlinear nonintegrable equations with exact solutions
  publication-title: Phys.Lett. A
  doi: 10.1016/0375-9601(91)90481-M
– volume: 98
  start-page: 288
  year: 1996
  ident: 10.1016/j.amc.2019.124972_bib0011
  article-title: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(96)00104-X
– volume: 164
  start-page: 303
  year: 2018
  ident: 10.1016/j.amc.2019.124972_bib0022
  article-title: Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov’s method
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.032
SSID ssj0007614
Score 2.6566648
Snippet Hierarchy of the perturbed nonlinear Schrödinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124972
SubjectTerms Exact solution
Highly dispersive soliton
Nonlinear differential equation
Nonlinear Schrödiner equation
Optical soliton
Title Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations
URI https://dx.doi.org/10.1016/j.amc.2019.124972
Volume 371
WOSCitedRecordID wos000504843100031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007614
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZg4wEeEFexcZEfeGJylcRebD8WNARITEgM0bfITmzB2LrSNN36x_gD_DHOqWO3lIsAiZcoiWI7Op9ln5u_Q8jjvOGwNtqcOWklAw1cMaULz3KlnOPSClWEYhPy8FCNRvpNX5a9XZYTkOOxurjQk_8KNbwDsPHo7F_AnTqFF3APoMMVYIfrHwGPmRsnC4y8TNAXNnd7Lea4YXbcuQlPXUp_g09gz7GYAxA4M8wUiTmX8fOnZRNYCt3nbs2vFylre_X1NPG-tvGM3KTbiO93zXRh2g9n8zD3PoE5vdgbDtY9DgWmf7Jw5jK4weJRmO8yNdEWYjzL-PrSykN5lR-W6eAxOB6YU2SRzPUAS2CHEj4b7NdvsV_sFhRNuBPlZbJdyH0NC9j28OXB6FXadmUZiNzjf8QQ9jKZb2Ognysha4rF0Q1yvbcI6DAgeZNccuNb5NrrlVhvk_cBU7rClEZMKWJKE6b0zNOEKU2YUsT065eAJ0143iHvnh8cPXvB-ooYrC60nDGwLpvSKAtGNmjeojZe6YzDdsvRSLLcC6Rz07ZxnkuujTQ-E9Zb4Z2VNmv4XbIFQ7t7hNZKGC280Ll1SCFkXAmm-L5RGa8xtrtDsiiiqu7p4rFqyUkV8wKPK5BqhVKtglR3yJPUZBK4Un73sYhyr3plLyhxFUySXzfb_bdm98nV1Ux-QLZm0849JFfq-exjO33UT6VvtmB7Sw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+dispersive+solitary+wave+solutions+of+perturbed+nonlinear+Schr%C3%B6dinger+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Kudryashov%2C+Nikolay+A.&rft.date=2020-04-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=371&rft_id=info:doi/10.1016%2Fj.amc.2019.124972&rft.externalDocID=S0096300319309646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon