A simple deterministic algorithm for symmetric submodular maximization subject to a knapsack constraint
We obtain a polynomial-time deterministic (2ee−1+ϵ)-approximation algorithm for maximizing symmetric submodular functions under a budget constraint. Although there exist randomized algorithms with better expected performance, our algorithm achieves the best known factor achieved by a deterministic a...
Gespeichert in:
| Veröffentlicht in: | Information processing letters Jg. 163; S. 106010 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.11.2020
|
| Schlagworte: | |
| ISSN: | 0020-0190, 1872-6119 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We obtain a polynomial-time deterministic (2ee−1+ϵ)-approximation algorithm for maximizing symmetric submodular functions under a budget constraint. Although there exist randomized algorithms with better expected performance, our algorithm achieves the best known factor achieved by a deterministic algorithm, improving on the previously known factor of 6. Furthermore, it is simple, combining two elegant algorithms for related problems; the local search algorithm of Feige, Mirrokni and Vondrák [1] for unconstrained submodular maximization, and the greedy algorithm of Sviridenko [2] for non-decreasing submodular maximization subject to a knapsack constraint.
•We study symmetric submodular maximization subject to a knapsack constraint.•Submodular functions become monotone when restricted to their local maxima.•They are “almost” monotone on their approximate local maxima.•There is a greedy approach that is robust under small deviations from monotonicity.•There is a 2e/(e−1)-approximation algorithm for symmetric submodular objectives. |
|---|---|
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2020.106010 |