Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection

•Three candidate bi-objective key quality characteristic selection models are proposed.•A new hybrid method of a GA and direct multisearch is proposed for optimization.•The model with geometric mean measure performs better than the other two models.•The proposed method effectively addresses the prod...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 523; pp. 245 - 265
Main Authors: Li, An-Da, Xue, Bing, Zhang, Mengjie
Format: Journal Article
Language:English
Published: Elsevier Inc 01.06.2020
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Three candidate bi-objective key quality characteristic selection models are proposed.•A new hybrid method of a GA and direct multisearch is proposed for optimization.•The model with geometric mean measure performs better than the other two models.•The proposed method effectively addresses the production data imbalance problem.•The optimization approach shows better search performance than benchmark methods. A multi-objective feature selection approach for selecting key quality characteristics (KQCs) of unbalanced production data is proposed. We define KQC (feature) selection as a bi-objective problem of maximizing the quality characteristic (QC) subset importance and minimizing the QC subset size. Three candidate feature importance measures, the geometric mean (GM), F1 score and accuracy, are applied to construct three KQC selection models. To solve the models, a two-phase optimization method for selecting the candidate solutions (QC subsets) using a novel multi-objective optimization method (GADMS) and the final KQC set from the candidate solutions using the ideal point method (IPM) is proposed. GADMS is a hybrid method composed of a genetic algorithm (GA) and a local search strategy named direct multisearch (DMS). In GADMS, we combine binary encoding with real value encoding to utilize the advantages of GAs and DMS. The experimental results on four production datasets show that the proposed method with GM performs the best in handling the data imbalance problem and outperforms the benchmark methods. Moreover, GADMS obtains significantly better search performance than the benchmark multi-objective optimization methods, which include a modified nondominated sorting genetic algorithm II (NSGA-II), two multi-objective particle swarm optimization algorithms and an improved DMS method.
AbstractList •Three candidate bi-objective key quality characteristic selection models are proposed.•A new hybrid method of a GA and direct multisearch is proposed for optimization.•The model with geometric mean measure performs better than the other two models.•The proposed method effectively addresses the production data imbalance problem.•The optimization approach shows better search performance than benchmark methods. A multi-objective feature selection approach for selecting key quality characteristics (KQCs) of unbalanced production data is proposed. We define KQC (feature) selection as a bi-objective problem of maximizing the quality characteristic (QC) subset importance and minimizing the QC subset size. Three candidate feature importance measures, the geometric mean (GM), F1 score and accuracy, are applied to construct three KQC selection models. To solve the models, a two-phase optimization method for selecting the candidate solutions (QC subsets) using a novel multi-objective optimization method (GADMS) and the final KQC set from the candidate solutions using the ideal point method (IPM) is proposed. GADMS is a hybrid method composed of a genetic algorithm (GA) and a local search strategy named direct multisearch (DMS). In GADMS, we combine binary encoding with real value encoding to utilize the advantages of GAs and DMS. The experimental results on four production datasets show that the proposed method with GM performs the best in handling the data imbalance problem and outperforms the benchmark methods. Moreover, GADMS obtains significantly better search performance than the benchmark multi-objective optimization methods, which include a modified nondominated sorting genetic algorithm II (NSGA-II), two multi-objective particle swarm optimization algorithms and an improved DMS method.
Author Xue, Bing
Zhang, Mengjie
Li, An-Da
Author_xml – sequence: 1
  givenname: An-Da
  orcidid: 0000-0002-2111-8724
  surname: Li
  fullname: Li, An-Da
  email: adli@tjcu.edu.cn
  organization: School of Management, Tianjin University of Commerce, Tianjin 300134, China
– sequence: 2
  givenname: Bing
  surname: Xue
  fullname: Xue, Bing
  organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
– sequence: 3
  givenname: Mengjie
  surname: Zhang
  fullname: Zhang, Mengjie
  organization: Evolutionary Computation Research Group, School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
BookMark eNp9kN1KxDAQhYMouP48gHd5ga5J2m1avBLxD1a80euQTia7s3ZbTbLC-gw-tK0rXnghDAyc4TvDOUdsv-s7ZOxMiqkUsjxfTamLUyWUmIp8GLXHJrLSKitVLffZRAyXTKjZ7JAdxbgSQhS6LCfs82HTJsr6ZoWQ6B25R5s2AXnEdlT6jm8idQu-3DaBHH3Yb6333PIFdpgIuG0XfaC0XHPbOe4oDCBfj74RbYAl933gL7jlbxvbUtpyWNpgIWGgOPK_r07YgbdtxNOffcyeb66fru6y-ePt_dXlPANV65QVRV1VwpW5d2UlRdXkEpTNh_A1WOc8AEKhKy9mAE1Ze-2Kxua6bPRMaulEfsz0zhdCH2NAb4DSd7AULLVGCjOWalZmKNWMpRqRD6MGUv4hXwOtbdj-y1zsGBwivRMGE4GwA9w1ZVxP_9BfLMKWdw
CitedBy_id crossref_primary_10_1088_2515_7620_acabb5
crossref_primary_10_1016_j_aei_2021_101309
crossref_primary_10_1007_s11075_022_01364_1
crossref_primary_10_1007_s12293_021_00328_7
crossref_primary_10_1016_j_rineng_2025_105658
crossref_primary_10_1016_j_eswa_2022_118825
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_3390_systems13080716
crossref_primary_10_1016_j_eswa_2025_129112
crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_1016_j_knosys_2020_106583
crossref_primary_10_1109_TAI_2023_3282564
crossref_primary_10_1109_TEVC_2022_3197427
crossref_primary_10_1016_j_cie_2022_108247
crossref_primary_10_1016_j_kjs_2023_02_009
crossref_primary_10_1038_s41598_021_97990_1
crossref_primary_10_1007_s42979_023_02106_3
crossref_primary_10_1007_s00521_022_07704_5
crossref_primary_10_1016_j_aei_2024_102844
crossref_primary_10_1016_j_swevo_2020_100770
crossref_primary_10_3390_a18030158
crossref_primary_10_1109_TSMC_2025_3573080
crossref_primary_10_1016_j_asoc_2023_109987
crossref_primary_10_1109_TAI_2022_3145333
crossref_primary_10_1007_s10596_022_10160_8
crossref_primary_10_1007_s00366_021_01299_6
crossref_primary_10_1016_j_retram_2021_103319
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1016_j_asoc_2022_109166
crossref_primary_10_1016_j_ress_2023_109374
crossref_primary_10_1007_s10489_024_05411_3
crossref_primary_10_1016_j_birob_2025_100216
crossref_primary_10_1016_j_ejor_2024_12_036
crossref_primary_10_1016_j_ins_2023_03_144
crossref_primary_10_1007_s42243_024_01254_x
crossref_primary_10_1016_j_asoc_2024_112042
crossref_primary_10_1016_j_cie_2022_108617
crossref_primary_10_1007_s13042_021_01291_y
crossref_primary_10_1109_JSTARS_2022_3200693
crossref_primary_10_1016_j_ins_2021_09_052
crossref_primary_10_1007_s40747_023_01177_2
crossref_primary_10_1016_j_ins_2024_120269
crossref_primary_10_1016_j_ins_2023_119062
crossref_primary_10_1109_TEVC_2024_3388725
crossref_primary_10_1007_s11831_025_10240_9
crossref_primary_10_1002_asmb_2614
crossref_primary_10_1016_j_knosys_2023_110947
crossref_primary_10_1016_j_conengprac_2024_106097
crossref_primary_10_1016_j_ins_2022_12_117
crossref_primary_10_1016_j_swevo_2022_101174
crossref_primary_10_1007_s12293_022_00354_z
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1080_0952813X_2024_2383649
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1155_2023_4196920
crossref_primary_10_1007_s10489_023_04696_0
crossref_primary_10_3390_machines11080835
crossref_primary_10_1016_j_cie_2020_106852
crossref_primary_10_1109_JAS_2023_123648
crossref_primary_10_1016_j_asoc_2021_107302
crossref_primary_10_1016_j_patcog_2025_112084
crossref_primary_10_1088_1742_6596_1802_4_042062
Cites_doi 10.1109/TEVC.2013.2281535
10.1109/TEVC.2015.2504420
10.1016/j.knosys.2017.10.028
10.1109/TCYB.2015.2404806
10.1016/j.asoc.2013.09.018
10.1145/1656274.1656278
10.1016/j.chemolab.2009.03.004
10.1016/S0169-7439(01)00158-7
10.1016/j.ins.2019.08.040
10.1016/j.eswa.2014.08.025
10.1016/j.knosys.2013.10.016
10.1016/S0169-7439(01)00155-1
10.1016/j.ejor.2011.10.015
10.1016/j.neucom.2012.12.057
10.1023/A:1025667309714
10.1109/TEVC.2015.2420112
10.1109/4235.996017
10.1016/j.ins.2015.02.031
10.1016/j.knosys.2014.08.013
10.1016/j.ejor.2018.10.051
10.1016/j.ins.2017.09.028
10.1109/TPAMI.2004.105
10.1016/S0304-3975(97)00115-1
10.1016/j.ins.2017.04.009
10.1016/j.neucom.2017.11.016
10.1016/j.asoc.2010.08.020
10.1016/j.compind.2016.05.008
10.1080/00207543.2014.948222
10.1016/j.ipl.2009.03.029
10.1016/j.patcog.2015.03.009
10.1016/j.eswa.2018.07.013
10.1016/S0004-3702(97)00043-X
10.1016/j.knosys.2013.01.019
10.1109/TSMCB.2012.2227469
10.1016/j.ins.2018.12.074
10.1016/j.patrec.2014.10.007
10.1007/s10898-018-0618-1
10.2307/3001968
10.1109/TEVC.2012.2199119
10.1109/TEVC.2018.2869405
10.1016/j.ins.2013.07.007
10.1287/mnsc.22.6.688
10.1016/j.ins.2019.01.041
10.1137/10079731X
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.03.032
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 265
ExternalDocumentID 10_1016_j_ins_2020_03_032
S0020025520302139
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-449880d63fd68108b31c2a32029caddfccec478f05ccb69f7d4ba376b75171d03
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527016100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:53:24 EST 2025
Tue Nov 18 22:12:23 EST 2025
Fri Feb 23 02:49:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Key quality characteristics
Feature selection
Quality improvement
Multi-objective optimization
Unbalanced data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-449880d63fd68108b31c2a32029caddfccec478f05ccb69f7d4ba376b75171d03
ORCID 0000-0002-2111-8724
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2020_03_032
crossref_primary_10_1016_j_ins_2020_03_032
elsevier_sciencedirect_doi_10_1016_j_ins_2020_03_032
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hancer, Xue, Zhang (bib0020) 2018; 140
Custódio, Madeira, Vaz, Vicente (bib0009) 2011; 21
Li, He, Wang, Zhang (bib0028) 2019; 274
Hamdani, Won, Alimi, Karray (bib0019) 2011; 11
Pacheco, Casado, Angel-Bello, Álvarez (bib0032) 2013; 44
Tan, Lim, Cheah (bib0034) 2014; 125
Xue, Zhang, Browne, Yao (bib0044) 2016; 20
Yuan, Xu, Wang, Yao (bib0046) 2016; 20
Nag, Pal (bib0030) 2016; 46
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0018) 2009; 11
Ishibuchi, Tsukamoto, Nojima (bib0022) 2008
Guyon, Elisseeff (bib0017) 2003; 3
García-Nieto, Alba, Jourdan, Talbi (bib0015) 2009; 109
Gauchi, Chagnon (bib0016) 2001; 58
Chen, Li, Fan, Luo (bib0008) 2019; 483
Wu, Liu, Zhu (bib0041) 2015; 53
Zhou, Hu, Li, Wu (bib0049) 2019; 481
Kohavi, John (bib0025) 1997; 97
Wong (bib0040) 2015; 48
Deb, Jain (bib0013) 2014; 18
Lipton, Elkan, Naryanaswamy (bib0029) 2014
Wold, Sjöström, Eriksson (bib0039) 2001; 58
Kim, Kang, Kim (bib0024) 2015; 42
López, Fernández, García, Palade, Herrera (bib0026) 2013; 250
Amaldi, Kann (bib0001) 1998; 209
Anzanello, Albin, Chaovalitwongse (bib0004) 2012; 218
Robnik-Šikonja, Kononenko (bib0033) 2003; 53
Yilmaz Eroglu, Kilic (bib0045) 2017; 405
Zhang, Gong, Gao, Tian, Sun (bib0048) 2020; 507
Bhowan, Johnston, Zhang, Yao (bib0007) 2013; 17
Wilcoxon (bib0038) 1945; 1
Banka, Dara (bib0005) 2015; 52
John, Langley (bib0023) 1995
Tian, He, Yan (bib0035) 2013
Hancer, Xue, Zhang, Karaboga, Akay (bib0021) 2018; 422
Xue, Zhang, Browne (bib0042) 2013; 43
Bermejo, Gámez, Puerta (bib0006) 2014; 55
Freimer, Yu (bib0014) 1976; 22
Custódio, Madeira (bib0010) 2018; 72
Amoozegar, Minaei-Bidgoli (bib0002) 2018; 113
Li, He, Zhang (bib0027) 2016; 82
Wang, Li, Li (bib0037) 2015; 307
Anzanello, Albin, Chaovalitwongse (bib0003) 2009; 97
Xue, Zhang, Browne (bib0043) 2014; 18
Deb, Pratap, Agarwal, Meyarivan (bib0012) 2002; 6
Zhang, Zhang, Chen, Sun, Qin, Li (bib0047) 2018; 275
de la Hoz, de la Hoz, Ortiz, Ortega, Martínez-Álvarez (bib0011) 2014; 71
Oh, Lee, Moon (bib0031) 2004; 26
Tran, Xue, Zhang (bib0036) 2019; 23
Wu (10.1016/j.ins.2020.03.032_bib0041) 2015; 53
Amoozegar (10.1016/j.ins.2020.03.032_bib0002) 2018; 113
Yilmaz Eroglu (10.1016/j.ins.2020.03.032_bib0045) 2017; 405
Tran (10.1016/j.ins.2020.03.032_bib0036) 2019; 23
Guyon (10.1016/j.ins.2020.03.032_bib0017) 2003; 3
Zhang (10.1016/j.ins.2020.03.032_bib0048) 2020; 507
Zhou (10.1016/j.ins.2020.03.032_bib0049) 2019; 481
Anzanello (10.1016/j.ins.2020.03.032_bib0003) 2009; 97
Hall (10.1016/j.ins.2020.03.032_bib0018) 2009; 11
Freimer (10.1016/j.ins.2020.03.032_bib0014) 1976; 22
Wold (10.1016/j.ins.2020.03.032_bib0039) 2001; 58
Banka (10.1016/j.ins.2020.03.032_bib0005) 2015; 52
Bhowan (10.1016/j.ins.2020.03.032_bib0007) 2013; 17
Hancer (10.1016/j.ins.2020.03.032_bib0021) 2018; 422
Tan (10.1016/j.ins.2020.03.032_bib0034) 2014; 125
Wilcoxon (10.1016/j.ins.2020.03.032_bib0038) 1945; 1
Yuan (10.1016/j.ins.2020.03.032_bib0046) 2016; 20
Chen (10.1016/j.ins.2020.03.032_bib0008) 2019; 483
Deb (10.1016/j.ins.2020.03.032_bib0013) 2014; 18
Kohavi (10.1016/j.ins.2020.03.032_bib0025) 1997; 97
Xue (10.1016/j.ins.2020.03.032_bib0043) 2014; 18
Pacheco (10.1016/j.ins.2020.03.032_bib0032) 2013; 44
Robnik-Šikonja (10.1016/j.ins.2020.03.032_bib0033) 2003; 53
Xue (10.1016/j.ins.2020.03.032_bib0042) 2013; 43
Anzanello (10.1016/j.ins.2020.03.032_bib0004) 2012; 218
Tian (10.1016/j.ins.2020.03.032_bib0035) 2013
Oh (10.1016/j.ins.2020.03.032_bib0031) 2004; 26
Wang (10.1016/j.ins.2020.03.032_bib0037) 2015; 307
Ishibuchi (10.1016/j.ins.2020.03.032_bib0022) 2008
Custódio (10.1016/j.ins.2020.03.032_bib0010) 2018; 72
García-Nieto (10.1016/j.ins.2020.03.032_bib0015) 2009; 109
Amaldi (10.1016/j.ins.2020.03.032_bib0001) 1998; 209
Zhang (10.1016/j.ins.2020.03.032_bib0047) 2018; 275
Kim (10.1016/j.ins.2020.03.032_bib0024) 2015; 42
Li (10.1016/j.ins.2020.03.032_bib0027) 2016; 82
Deb (10.1016/j.ins.2020.03.032_bib0012) 2002; 6
John (10.1016/j.ins.2020.03.032_bib0023) 1995
Hamdani (10.1016/j.ins.2020.03.032_bib0019) 2011; 11
Nag (10.1016/j.ins.2020.03.032_bib0030) 2016; 46
López (10.1016/j.ins.2020.03.032_bib0026) 2013; 250
Wong (10.1016/j.ins.2020.03.032_bib0040) 2015; 48
Li (10.1016/j.ins.2020.03.032_bib0028) 2019; 274
de la Hoz (10.1016/j.ins.2020.03.032_bib0011) 2014; 71
Custódio (10.1016/j.ins.2020.03.032_bib0009) 2011; 21
Hancer (10.1016/j.ins.2020.03.032_bib0020) 2018; 140
Lipton (10.1016/j.ins.2020.03.032_bib0029) 2014
Bermejo (10.1016/j.ins.2020.03.032_bib0006) 2014; 55
Xue (10.1016/j.ins.2020.03.032_bib0044) 2016; 20
Gauchi (10.1016/j.ins.2020.03.032_bib0016) 2001; 58
References_xml – volume: 82
  start-page: 95
  year: 2016
  end-page: 103
  ident: bib0027
  article-title: Bi-objective variable selection for key quality characteristics selection based on a modified NSGA-II and the ideal point method
  publication-title: Comput. Ind.
– volume: 71
  start-page: 322
  year: 2014
  end-page: 338
  ident: bib0011
  article-title: Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps
  publication-title: Knowl.-Based Syst.
– volume: 422
  start-page: 462
  year: 2018
  end-page: 479
  ident: bib0021
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Inf. Sci.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0018
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0017
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 1109
  year: 2011
  end-page: 1140
  ident: bib0009
  article-title: Direct multisearch for multi-objective optimization
  publication-title: SIAM J. Optim.
– volume: 97
  start-page: 111
  year: 2009
  end-page: 117
  ident: bib0003
  article-title: Selecting the best variables for classifying production batches into two quality levels
  publication-title: Chemom. Intell. Lab. Syst.
– start-page: 338
  year: 1995
  end-page: 345
  ident: bib0023
  article-title: Estimating continuous distributions in Bayesian classifiers
  publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
– volume: 209
  start-page: 237
  year: 1998
  end-page: 260
  ident: bib0001
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theor. Comput. Sci.
– volume: 274
  start-page: 978
  year: 2019
  end-page: 989
  ident: bib0028
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: Eur. J. Oper. Res.
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib0039
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0012
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 218
  start-page: 97
  year: 2012
  end-page: 105
  ident: bib0004
  article-title: Multicriteria variable selection for classification of production batches
  publication-title: Eur. J. Oper. Res.
– volume: 109
  start-page: 887
  year: 2009
  end-page: 896
  ident: bib0015
  article-title: Sensitivity and specificity based multi-objective approach for feature selection: application to cancer diagnosis
  publication-title: Inf. Process. Lett.
– volume: 23
  start-page: 473
  year: 2019
  end-page: 487
  ident: bib0036
  article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 2501
  year: 2011
  end-page: 2509
  ident: bib0019
  article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 688
  year: 1976
  end-page: 693
  ident: bib0014
  article-title: Some new results on compromise solutions for group decision problems
  publication-title: Manag. Sci.
– volume: 113
  start-page: 499
  year: 2018
  end-page: 514
  ident: bib0002
  article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
  publication-title: Expert Syst. Appl.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0038
  article-title: Solution comparisons by ranking methods
  publication-title: Biometr. Bull.
– start-page: 2419
  year: 2008
  end-page: 2426
  ident: bib0022
  article-title: Evolutionary many-objective optimization: a short review
  publication-title: IEEE Congress on Evolutionary Computation, Citeseer
– volume: 275
  start-page: 2426
  year: 2018
  end-page: 2439
  ident: bib0047
  article-title: A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method
  publication-title: Neurocomputing
– volume: 405
  start-page: 18
  year: 2017
  end-page: 32
  ident: bib0045
  article-title: A novel hybrid genetic local search algorithm for feature selection and weighting with an application in strategic decision making in innovation management
  publication-title: Inf. Sci.
– volume: 42
  start-page: 1074
  year: 2015
  end-page: 1082
  ident: bib0024
  article-title: Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
  publication-title: Expert Syst. Appl.
– volume: 125
  start-page: 217
  year: 2014
  end-page: 228
  ident: bib0034
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: bib0048
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf. Sci.
– start-page: 263
  year: 2013
  end-page: 270
  ident: bib0035
  article-title: Key process variable identification for quality classification based on PLSR model and wrapper feature selection
  publication-title: Proceedings of 2012 3rd International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012)
– volume: 72
  start-page: 323
  year: 2018
  end-page: 345
  ident: bib0010
  article-title: MultiGLODS: global and local multi-objective optimization using direct search
  publication-title: J. Global Optim.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib0043
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: bib0044
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 140
  year: 2014
  end-page: 147
  ident: bib0006
  article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier
  publication-title: Knowledge-Based Syst.
– volume: 307
  start-page: 73
  year: 2015
  end-page: 88
  ident: bib0037
  article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
  publication-title: Inf. Sci.
– volume: 44
  start-page: 57
  year: 2013
  end-page: 64
  ident: bib0032
  article-title: Bi-objective feature selection for discriminant analysis in two-class classification
  publication-title: Knowl.-Based Syst.
– volume: 17
  start-page: 368
  year: 2013
  end-page: 386
  ident: bib0007
  article-title: Evolving diverse ensembles using genetic programming for classification with unbalanced data
  publication-title: IEEE Trans. Evol. Comput.
– volume: 483
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib0008
  article-title: Feature selection for imbalanced data based on neighborhood rough sets
  publication-title: Inf. Sci.
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: bib0042
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybernet.
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: bib0031
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 53
  start-page: 2026
  year: 2015
  end-page: 2040
  ident: bib0041
  article-title: Control chart pattern recognition using an integrated model based on binary-tree support vector machine
  publication-title: Int. J. Prod. Res.
– volume: 58
  start-page: 171
  year: 2001
  end-page: 193
  ident: bib0016
  article-title: Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib0025
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: bib0033
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
– volume: 250
  start-page: 113
  year: 2013
  end-page: 141
  ident: bib0026
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
– volume: 46
  start-page: 499
  year: 2016
  end-page: 510
  ident: bib0030
  article-title: A multi-objective genetic programming-based ensemble for simultaneous feature Selection and classification
  publication-title: IEEE Trans. Cybernet.
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: bib0046
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 2839
  year: 2015
  end-page: 2846
  ident: bib0040
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit.
– volume: 140
  start-page: 103
  year: 2018
  end-page: 119
  ident: bib0020
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
– start-page: 225
  year: 2014
  end-page: 239
  ident: bib0029
  article-title: Optimal thresholding of classifiers to maximize F1 measure
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 481
  start-page: 258
  year: 2019
  end-page: 279
  ident: bib0049
  article-title: Online streaming feature selection using adapted Neighborhood Rough Set
  publication-title: Inf. Sci.
– volume: 52
  start-page: 94
  year: 2015
  end-page: 100
  ident: bib0005
  article-title: A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.ins.2020.03.032_bib0017
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0013
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2020.03.032_bib0044
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 140
  start-page: 103
  year: 2018
  ident: 10.1016/j.ins.2020.03.032_bib0020
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.028
– volume: 46
  start-page: 499
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2020.03.032_bib0030
  article-title: A multi-objective genetic programming-based ensemble for simultaneous feature Selection and classification
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2015.2404806
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0043
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2020.03.032_bib0018
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1656274.1656278
– volume: 97
  start-page: 111
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2020.03.032_bib0003
  article-title: Selecting the best variables for classifying production batches into two quality levels
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2009.03.004
– volume: 58
  start-page: 171
  issue: 2
  year: 2001
  ident: 10.1016/j.ins.2020.03.032_bib0016
  article-title: Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00158-7
– volume: 507
  start-page: 67
  year: 2020
  ident: 10.1016/j.ins.2020.03.032_bib0048
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.040
– volume: 42
  start-page: 1074
  issue: 3
  year: 2015
  ident: 10.1016/j.ins.2020.03.032_bib0024
  article-title: Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.025
– volume: 55
  start-page: 140
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0006
  article-title: Speeding up incremental wrapper feature subset selection with Naive Bayes classifier
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2013.10.016
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 10.1016/j.ins.2020.03.032_bib0039
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 218
  start-page: 97
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2020.03.032_bib0004
  article-title: Multicriteria variable selection for classification of production batches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.10.015
– volume: 125
  start-page: 217
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0034
  article-title: A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.057
– volume: 53
  start-page: 23
  issue: 1-2
  year: 2003
  ident: 10.1016/j.ins.2020.03.032_bib0033
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2020.03.032_bib0046
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2020.03.032_bib0012
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 307
  start-page: 73
  year: 2015
  ident: 10.1016/j.ins.2020.03.032_bib0037
  article-title: A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.02.031
– volume: 71
  start-page: 322
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0011
  article-title: Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.013
– volume: 274
  start-page: 978
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2020.03.032_bib0028
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.10.051
– volume: 422
  start-page: 462
  year: 2018
  ident: 10.1016/j.ins.2020.03.032_bib0021
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.09.028
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10.1016/j.ins.2020.03.032_bib0031
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.105
– volume: 209
  start-page: 237
  issue: 1-2
  year: 1998
  ident: 10.1016/j.ins.2020.03.032_bib0001
  article-title: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00115-1
– volume: 405
  start-page: 18
  year: 2017
  ident: 10.1016/j.ins.2020.03.032_bib0045
  article-title: A novel hybrid genetic local search algorithm for feature selection and weighting with an application in strategic decision making in innovation management
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.009
– volume: 275
  start-page: 2426
  year: 2018
  ident: 10.1016/j.ins.2020.03.032_bib0047
  article-title: A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.016
– volume: 11
  start-page: 2501
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2020.03.032_bib0019
  article-title: Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.08.020
– volume: 82
  start-page: 95
  year: 2016
  ident: 10.1016/j.ins.2020.03.032_bib0027
  article-title: Bi-objective variable selection for key quality characteristics selection based on a modified NSGA-II and the ideal point method
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2016.05.008
– volume: 53
  start-page: 2026
  issue: 7
  year: 2015
  ident: 10.1016/j.ins.2020.03.032_bib0041
  article-title: Control chart pattern recognition using an integrated model based on binary-tree support vector machine
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2014.948222
– volume: 109
  start-page: 887
  issue: 16
  year: 2009
  ident: 10.1016/j.ins.2020.03.032_bib0015
  article-title: Sensitivity and specificity based multi-objective approach for feature selection: application to cancer diagnosis
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2009.03.029
– volume: 48
  start-page: 2839
  issue: 9
  year: 2015
  ident: 10.1016/j.ins.2020.03.032_bib0040
  article-title: Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.03.009
– volume: 113
  start-page: 499
  year: 2018
  ident: 10.1016/j.ins.2020.03.032_bib0002
  article-title: Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.07.013
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2020.03.032_bib0025
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 44
  start-page: 57
  year: 2013
  ident: 10.1016/j.ins.2020.03.032_bib0032
  article-title: Bi-objective feature selection for discriminant analysis in two-class classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.01.019
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 10.1016/j.ins.2020.03.032_bib0042
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 481
  start-page: 258
  year: 2019
  ident: 10.1016/j.ins.2020.03.032_bib0049
  article-title: Online streaming feature selection using adapted Neighborhood Rough Set
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.074
– volume: 52
  start-page: 94
  year: 2015
  ident: 10.1016/j.ins.2020.03.032_bib0005
  article-title: A Hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.10.007
– volume: 72
  start-page: 323
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2020.03.032_bib0010
  article-title: MultiGLODS: global and local multi-objective optimization using direct search
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0618-1
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.ins.2020.03.032_bib0038
  article-title: Solution comparisons by ranking methods
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– start-page: 2419
  year: 2008
  ident: 10.1016/j.ins.2020.03.032_bib0022
  article-title: Evolutionary many-objective optimization: a short review
– volume: 17
  start-page: 368
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2020.03.032_bib0007
  article-title: Evolving diverse ensembles using genetic programming for classification with unbalanced data
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2199119
– start-page: 225
  year: 2014
  ident: 10.1016/j.ins.2020.03.032_bib0029
  article-title: Optimal thresholding of classifiers to maximize F1 measure
– volume: 23
  start-page: 473
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2020.03.032_bib0036
  article-title: Variable-length particle swarm optimisation for feature selection on high-dimensional classification
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869405
– volume: 250
  start-page: 113
  year: 2013
  ident: 10.1016/j.ins.2020.03.032_bib0026
  article-title: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.07.007
– volume: 22
  start-page: 688
  issue: 6
  year: 1976
  ident: 10.1016/j.ins.2020.03.032_bib0014
  article-title: Some new results on compromise solutions for group decision problems
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.22.6.688
– start-page: 338
  year: 1995
  ident: 10.1016/j.ins.2020.03.032_bib0023
  article-title: Estimating continuous distributions in Bayesian classifiers
– start-page: 263
  year: 2013
  ident: 10.1016/j.ins.2020.03.032_bib0035
  article-title: Key process variable identification for quality classification based on PLSR model and wrapper feature selection
– volume: 483
  start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2020.03.032_bib0008
  article-title: Feature selection for imbalanced data based on neighborhood rough sets
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.041
– volume: 21
  start-page: 1109
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2020.03.032_bib0009
  article-title: Direct multisearch for multi-objective optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/10079731X
SSID ssj0004766
Score 2.5475624
Snippet •Three candidate bi-objective key quality characteristic selection models are proposed.•A new hybrid method of a GA and direct multisearch is proposed for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Feature selection
Key quality characteristics
Multi-objective optimization
Quality improvement
Unbalanced data
Title Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection
URI https://dx.doi.org/10.1016/j.ins.2020.03.032
Volume 523
WOSCitedRecordID wos000527016100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELYq4GF7mDa2aYyB7mHiYShSYjs4fmQbaEMI8cCkvkWJ44xWVYq6FsH_MIl_eecfSdwyJniYVEWV1ZxT3-c7-3L3mZCPJeNplegy0kUqIo57iKjQHLGsMhnzOhO6siSup-LsLBsO5flgcNfWwlxPRNNkNzfy6r-qGttQ2aZ09gnq7oRiA35HpeMV1Y7XRyneltRG03LsTNl-rS135_4ve-KN0fbCxgcub02xli_DdGWSKFNbAtfJz-lsNL90x2c4r-dSD32QxOQm4uz3JZm3pnw4oH3uuwqXvr7wyfbm_W63nj8dueTK6GvnJYYLG2r93LrWMLhtUnHHIx1GLGjcZ1Z1FQTYRh09b2uFU8pCO-o4Jr1Lpu44iXvW3gUexrhFMcTrNLZ0tT5cusSsveLxujzENsVtnKOI3IjIY4Yf9OnrVKQSLf364fej4Ulfaivc6-_2L7Qvym3K4Mpz_H2pEyxfLl6SF37fAYcOL6_IQDeb5HnARrlJdnwNC-xBoCvw1v81-b2CLPDIgk7dYJEFS8iCaQ0FeGRBhyxAZIFDFgTIAuwXEFngkQXLyOq7ekN-HB9dfPkW-cM8IkWlmEecS3QV1QGrK0OBl5UsUbRgOFxSoY-tldKKi6yOU6XKA1mLipcFer9SpIlIqpi9JWvNtNHvCHCpEpXRwjA3odgkk4VK0koxhotVlLNF4nbcc-WZ7s2BK5P8QX1vkU_dLVeO5uVfP-atMnM_X9x45QjMh297_5Q-tsmzfup8IGvz2ULvkA11jfqY7XpU_gHAW7pN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+feature+selection+using+hybridization+of+a+genetic+algorithm+and+direct+multisearch+for+key+quality+characteristic+selection&rft.jtitle=Information+sciences&rft.au=Li%2C+An-Da&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2020-06-01&rft.issn=0020-0255&rft.volume=523&rft.spage=245&rft.epage=265&rft_id=info:doi/10.1016%2Fj.ins.2020.03.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_03_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon