A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning

•A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated lear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 196; s. 110454
Hlavní autoři: Lu, Yu, Yang, Tao, Zhao, Chong, Chen, Wen, Zeng, Rong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:0360-8352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated learning mechanism is implemented.•Results on five datasets show that our model outperforms similar models in terms of accuracy. The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise–removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model.
AbstractList •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated learning mechanism is implemented.•Results on five datasets show that our model outperforms similar models in terms of accuracy. The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise–removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model.
ArticleNumber 110454
Author Zhao, Chong
Yang, Tao
Lu, Yu
Zeng, Rong
Chen, Wen
Author_xml – sequence: 1
  givenname: Yu
  surname: Lu
  fullname: Lu, Yu
  email: luyu@stu.cwnu.edu.cn
  organization: School of Computer Science, China West Normal University, Nanchong, China
– sequence: 2
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  email: yangt@cwnu.edu.cn
  organization: School of Computer Science, China West Normal University, Nanchong, China
– sequence: 3
  givenname: Chong
  surname: Zhao
  fullname: Zhao, Chong
  email: 79335604@qq.com
  organization: School of Computer Science, China West Normal University, Nanchong, China
– sequence: 4
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  email: wenchen@scu.edu.cn
  organization: the School of Cyber Science and Engineering, Sichuan University, Chengdu, China
– sequence: 5
  givenname: Rong
  surname: Zeng
  fullname: Zeng, Rong
  email: 410012zr@cwnu.edu.cn
  organization: School of Electronic Information Engineering, China West Normal University, Nanchong, China
BookMark eNp9kE1LAzEQhnOoYFv9Ad7yB3ZNst94KsWPQkGQ6jVkk1lJ2U1KEpX-e6fUk4eeZpj3fYaZd0Fmzjsg5I6znDNe3-9zbSEXTJQ556ysyhmZs6JmWVtU4posYtwzhvOOz8lhReOPChNVzk9qPFIDCXSy3tHJGxjp4APd-B19X31E2qsIhqKm6PQ1JpuhR43IOG-jdZ9UfSUPTiMZcKOhA2CnEkIjqODQckOuBjVGuP2rS_L29Lhbv2Tb1-fNerXNtOialJVCN6bGG_vGdLpRrO2E6IBXbVsrVpmGi170WsBQQdkrPhTasL40wqBcLElzXqqDjzHAILVN6vRVCsqOkjN5SkrucQ7ylJQ8J4Uk_0cegp1UOF5kHs4M4D_fFoKMaHEajA2YpTTeXqB_AdbUhlA
CitedBy_id crossref_primary_10_1016_j_cie_2025_111084
crossref_primary_10_35234_fumbd_1668498
crossref_primary_10_1016_j_engappai_2025_111584
crossref_primary_10_1016_j_ins_2025_122211
crossref_primary_10_1016_j_aei_2025_103255
crossref_primary_10_1109_TII_2025_3567378
crossref_primary_10_48084_etasr_10336
crossref_primary_10_1016_j_aei_2025_103866
crossref_primary_10_1109_TIM_2025_3580857
crossref_primary_10_1016_j_eswa_2024_126233
Cites_doi 10.1109/COMST.2015.2402161
10.1007/s10845-020-01600-2
10.1016/j.compag.2021.106608
10.1016/j.cja.2014.12.003
10.1177/0278364920966642
10.1109/TII.2019.2943898
10.1145/1390156.1390294
10.1016/j.apacoust.2021.108325
10.1613/jair.953
10.1016/j.eswa.2023.122869
10.1109/TII.2020.3005965
10.1016/j.engappai.2024.107961
10.3390/electronics12153304
10.11003/JPNT.2015.4.2.057
10.1007/s10514-022-10066-5
10.2118/193211-MS
10.1109/ACCESS.2021.3137201
10.3390/app13074301
10.1109/JIOT.2022.3200121
10.1016/j.petrol.2021.109633
10.1016/j.aei.2024.102440
10.3850/978-981-14-8593-0_3924-cd
10.1109/MPRV.2018.03367731
10.1109/BDACS53596.2021.00025
10.1109/JIOT.2023.3292308
10.1007/s11431-022-2312-8
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2024.110454
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2024_110454
S0360835224005758
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-42c7d6459b7d9c7a089229e15886a05d712b2bc2ef5e4ba1f3cd0b4d2d6a03
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Tue Nov 18 22:25:02 EST 2025
Sat Nov 29 04:15:56 EST 2025
Sat Sep 14 18:01:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Denoising autoencoder
Federated learning
UAV swarm
Intrusion detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-42c7d6459b7d9c7a089229e15886a05d712b2bc2ef5e4ba1f3cd0b4d2d6a03
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2024_110454
crossref_primary_10_1016_j_cie_2024_110454
elsevier_sciencedirect_doi_10_1016_j_cie_2024_110454
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References South China Morning Post. HK$1 million in damage caused by GPS jamming that caused 46 UAVs to plummet during Hong Kong show. 2018, URL https://www.scmp.com/news/hong-kong/law-and-crime/article/2170669/hk13-million-damage-caused-gps-jamming-caused-46-UAVs.
Altinors, Yol, Yaman (b0030) 2021; 183
Singapore.
Dudley (b0080) 2014
Air Accidents Investigation Branch reports, “AAIB investigation to DJI M600 Pro (UAS, registration n/a) 131219”, Website 06 2020. [Online], Available: https://www.gov.uk/aaib-reports/aaib-investigation-to-dji-m600-pro-uas-registration-n-a-131219.
Asadzadeh, de Oliveira, de Souza Filho (b0035) 2022; 208
Subbarayalu, Vensuslaus (b0155) 2023; 7
Alos, Dahrouj, Dakkak (b0025) 2020; 9
OnePetro.
Bell, V., Rengasamy, D., Rothwell, B., et al. (2022). Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding[J]. arXiv preprint arXiv:2203.04734.
Hassler, Mughal, Ismail (b0085) 2023
Ahn, Chung (b0005) 2024; 244
Seo, Lee, Im, Jee (b0140) 2015; 06
Motlagh, Kortoçi, Su (b0130) 2023
Kolias, Kambourakis, Stavrou (b0115) 2015; 18
Bronz, Baskaya, Delahaye (b0045) 2020
He, Chen, Tang (b0095) 2022; 10
Vincent, P., Larochelle, H., Bengio, Y., et al. (2008). Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning, pp. 1096–1103.
Al Amir, N., Marar, A., & Saeed, M. (2018) Eye in the sky: how the rise of UAVs will transfrom the oil & gas industry. In
Meidan, Bohadana, Mathov (b0125) 2018; 17
Zhao, Zhong, Fu (b0195) 2019; 16
Deng, Lu, Yang (b0075) 2024; 132
Yang, Li, Li (b0170) 2023; 66
Shao, Xia, Han (b0145) 2020; 17
Chawla, Bowyer, Hall (b0055) 2002; 16
Zeeshan, Riaz, Bilal (b0190) 2021; 10
Wang, Wang, Wang (b0165) 2015; 28
Horyna, Baca, Walter (b0100) 2023; 47
Yang, Li, Zhu (b0175) 2024; 60
Chen, J., Yang, T., He, B., et al. (2021). An analysis and research on wireless network security dataset[C]//2021 International Conference on Big Data Analysis and Computer Science (BDACS). IEEE, pp. 80–83.
Chen, Wang, Yang (b0065) 2023; 12
Keipour, Mousaei, Scherer (b0110) 2021; 40
Yang, Lu, Deng (b0180) 2023; 13
Albiero, Garcia, Umezu (b0020) 2022; 193
Brundage, M., Avin, S., Clark, J., et al. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation[J]. arXiv preprint arXiv:1802.07228.
Hayawi, Anwar, Malik (b0090) 2023
Krishna, Murphy (b0120) 2017
Johnsen, S. O., Bakken, T., Transeth, A. A., Holmstrøm, S., Merz, M., Grøtli, E. I., & Storvold, R. (2020). Safety and security of UAVs in the oil and gas industry. In
《Replicating peregrine attack strategies could help down rogue UAVs》https://www.ox.ac.uk/news/2017-12-04-replicating-peregrine-attack-strategies-could-help-down-rogue-UAVs.
Yang, Shami, Stevens (b0185) 2022
Chen, Zhang, Gao (b0070) 2021; 32
10.1016/j.cie.2024.110454_b0160
10.1016/j.cie.2024.110454_b0040
Yang (10.1016/j.cie.2024.110454_b0185) 2022
Horyna (10.1016/j.cie.2024.110454_b0100) 2023; 47
Zhao (10.1016/j.cie.2024.110454_b0195) 2019; 16
Dudley (10.1016/j.cie.2024.110454_b0080) 2014
Alos (10.1016/j.cie.2024.110454_b0025) 2020; 9
10.1016/j.cie.2024.110454_b0105
Shao (10.1016/j.cie.2024.110454_b0145) 2020; 17
Albiero (10.1016/j.cie.2024.110454_b0020) 2022; 193
Asadzadeh (10.1016/j.cie.2024.110454_b0035) 2022; 208
Kolias (10.1016/j.cie.2024.110454_b0115) 2015; 18
10.1016/j.cie.2024.110454_b0050
Zeeshan (10.1016/j.cie.2024.110454_b0190) 2021; 10
10.1016/j.cie.2024.110454_b0150
Yang (10.1016/j.cie.2024.110454_b0170) 2023; 66
Chen (10.1016/j.cie.2024.110454_b0065) 2023; 12
Krishna (10.1016/j.cie.2024.110454_b0120) 2017
10.1016/j.cie.2024.110454_b0010
Chawla (10.1016/j.cie.2024.110454_b0055) 2002; 16
Meidan (10.1016/j.cie.2024.110454_b0125) 2018; 17
Subbarayalu (10.1016/j.cie.2024.110454_b0155) 2023; 7
Chen (10.1016/j.cie.2024.110454_b0070) 2021; 32
Yang (10.1016/j.cie.2024.110454_b0175) 2024; 60
10.1016/j.cie.2024.110454_b0135
10.1016/j.cie.2024.110454_b0015
Hayawi (10.1016/j.cie.2024.110454_b0090) 2023
Motlagh (10.1016/j.cie.2024.110454_b0130) 2023
Yang (10.1016/j.cie.2024.110454_b0180) 2023; 13
Altinors (10.1016/j.cie.2024.110454_b0030) 2021; 183
Deng (10.1016/j.cie.2024.110454_b0075) 2024; 132
Keipour (10.1016/j.cie.2024.110454_b0110) 2021; 40
He (10.1016/j.cie.2024.110454_b0095) 2022; 10
Wang (10.1016/j.cie.2024.110454_b0165) 2015; 28
Hassler (10.1016/j.cie.2024.110454_b0085) 2023
Bronz (10.1016/j.cie.2024.110454_b0045) 2020
Ahn (10.1016/j.cie.2024.110454_b0005) 2024; 244
10.1016/j.cie.2024.110454_b0060
Seo (10.1016/j.cie.2024.110454_b0140) 2015; 06
References_xml – volume: 183
  year: 2021
  ident: b0030
  article-title: A sound based method for fault detection with statistical feature extraction in UAV motors[J]
  publication-title: Applied Acoustics
– volume: 12
  start-page: 3304
  year: 2023
  ident: b0065
  article-title: An enhancement method in few-shot scenarios for intrusion detection in smart home environments[J]
  publication-title: Electronics
– start-page: 194
  year: 2017
  end-page: 199
  ident: b0120
  article-title: A review on cybersecurity vulnerabilities for unmanned aerial vehicles
  publication-title: 2017 IEEE international symposium on safety, security and rescue robotics (SSRR)
– volume: 40
  start-page: 515
  year: 2021
  end-page: 520
  ident: b0110
  article-title: Alfa: A dataset for uav fault and anomaly detection[J]
  publication-title: The International Journal of Robotics Research
– volume: 06
  start-page: 57
  year: 2015
  end-page: 65
  ident: b0140
  article-title: Effect of spoofing on unmanned aerial vehicle using counterfeited gps signal
  publication-title: Journal of Positioning Navigation and Timing
– volume: 10
  start-page: 2269
  year: 2021
  end-page: 2283
  ident: b0190
  article-title: Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets[J]
  publication-title: IEEE Access
– start-page: 1
  year: 2020:
  end-page: 10
  ident: b0045
  article-title: Real-time fault detection on small fixed-wing UAVs using machine learning[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)
  publication-title: IEEE
– year: 2023
  ident: b0090
  article-title: Airborne computing: A toolkit for UAV-assisted federated computing for sustainable smart cities[J]
  publication-title: IEEE Internet of Things Journal
– volume: 17
  start-page: 12
  year: 2018
  end-page: 22
  ident: b0125
  article-title: N-baiot—network-based detection of IoT botnet attacks using deep autoencoders[J]
  publication-title: IEEE Pervasive Computing
– volume: 32
  start-page: 971
  year: 2021
  end-page: 987
  ident: b0070
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]
  publication-title: Journal of Intelligent Manufacturing
– volume: 18
  start-page: 184
  year: 2015
  end-page: 208
  ident: b0115
  article-title: Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset[J]
  publication-title: IEEE Communications Surveys & Tutorials
– volume: 17
  start-page: 3488
  year: 2020
  end-page: 3496
  ident: b0145
  article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J]
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 28
  start-page: 206
  year: 2015
  end-page: 213
  ident: b0165
  article-title: A data driven approach for detection and isolation of anomalies in a group of UAVs[J]
  publication-title: Chinese Journal of Aeronautics
– volume: 132
  year: 2024
  ident: b0075
  article-title: Unmanned Aerial Vehicles anomaly detection model based on sensor information fusion and hybrid multimodal neural network[J]
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Al Amir, N., Marar, A., & Saeed, M. (2018) Eye in the sky: how the rise of UAVs will transfrom the oil & gas industry. In:
– reference: . OnePetro.
– volume: 60
  year: 2024
  ident: b0175
  article-title: Spatio-temporal correlation-based multiple regression for anomaly detection and recovery of unmanned aerial vehicle flight data[J]
  publication-title: Advanced Engineering Informatics
– reference: 《Replicating peregrine attack strategies could help down rogue UAVs》https://www.ox.ac.uk/news/2017-12-04-replicating-peregrine-attack-strategies-could-help-down-rogue-UAVs.
– reference: Vincent, P., Larochelle, H., Bengio, Y., et al. (2008). Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning, pp. 1096–1103.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b0055
  article-title: SMOTE: Synthetic minority over-sampling technique[J]
  publication-title: Journal of artificial Intelligence Research
– volume: 7
  start-page: 248
  year: 2023
  ident: b0155
  article-title: An intrusion detection system for UAV swarming utilizing timed probabilistic automata[J]
  publication-title: UAVs
– volume: 13
  start-page: 4301
  year: 2023
  ident: b0180
  article-title: Acquisition and processing of UAV fault data based on time line modeling method[J]
  publication-title: Applied Sciences
– reference: South China Morning Post. HK$1 million in damage caused by GPS jamming that caused 46 UAVs to plummet during Hong Kong show. 2018, URL https://www.scmp.com/news/hong-kong/law-and-crime/article/2170669/hk13-million-damage-caused-gps-jamming-caused-46-UAVs.
– volume: 208
  year: 2022
  ident: b0035
  article-title: UAV-based remote sensing for the petroleum industry and environ-mental monitoring: State-of-the-art and perspectives
  publication-title: Journal of Petroleum Science and Engineering
– reference: , Singapore.
– volume: 244
  year: 2024
  ident: b0005
  article-title: Deep learning-based anomaly detection for individual UAV vehicles performing swarm missions[J]
  publication-title: Expert Systems with Applications
– volume: 66
  start-page: 1304
  year: 2023
  end-page: 1316
  ident: b0170
  article-title: Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation[J]
  publication-title: Science China Technological Sciences
– start-page: 3545
  year: 2022:
  end-page: 3550
  ident: b0185
  article-title: LCCDE: A decision-based ensemble framework for intrusion detection in the internet of vehicles[C]//GLOBECOM 2022–2022
  publication-title: IEEE Global Communications Conference. IEEE
– volume: 16
  start-page: 4681
  year: 2019
  end-page: 4690
  ident: b0195
  article-title: Deep residual shrinkage networks for fault diagnosis[J]
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 9
  start-page: 721
  year: 2020
  end-page: 726
  ident: b0025
  article-title: A novel technique to assess UAV behavior using PCA-based anomaly detection algorithm[J]
  publication-title: International Journal of Mechanical Engineering and Robotics Research
– volume: 10
  start-page: 120
  year: 2022
  end-page: 132
  ident: b0095
  article-title: Cgan-based collaborative intrusion detection for uav networks: A blockchain-empowered distributed federated learning approach[J]
  publication-title: IEEE Internet of Things Journal
– reference: Bell, V., Rengasamy, D., Rothwell, B., et al. (2022). Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding[J]. arXiv preprint arXiv:2203.04734.
– reference: Johnsen, S. O., Bakken, T., Transeth, A. A., Holmstrøm, S., Merz, M., Grøtli, E. I., & Storvold, R. (2020). Safety and security of UAVs in the oil and gas industry. In
– volume: 47
  start-page: 77
  year: 2023
  end-page: 93
  ident: b0100
  article-title: Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication[J]
  publication-title: Autonomous Robots
– year: 2023
  ident: b0130
  article-title: Unmanned aerial vehicles for air pollution monitoring: A survey[J]
  publication-title: IEEE Internet of Things Journal
– reference: Chen, J., Yang, T., He, B., et al. (2021). An analysis and research on wireless network security dataset[C]//2021 International Conference on Big Data Analysis and Computer Science (BDACS). IEEE, pp. 80–83.
– year: 2014
  ident: b0080
  article-title: Uniform central limit theorems[M]
– reference: Brundage, M., Avin, S., Clark, J., et al. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation[J]. arXiv preprint arXiv:1802.07228.
– volume: 193
  year: 2022
  ident: b0020
  article-title: Swarm robots in mechanized agricultural operations: A review about challenges for research[J]
  publication-title: Computers and Electronics in Agriculture
– year: 2023
  ident: b0085
  article-title: Cyber-physical intrusion detection system for unmanned aerial vehicles[J]
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Air Accidents Investigation Branch reports, “AAIB investigation to DJI M600 Pro (UAS, registration n/a) 131219”, Website 06 2020. [Online], Available: https://www.gov.uk/aaib-reports/aaib-investigation-to-dji-m600-pro-uas-registration-n-a-131219.
– volume: 18
  start-page: 184
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2024.110454_b0115
  article-title: Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset[J]
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2015.2402161
– volume: 32
  start-page: 971
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2024.110454_b0070
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01600-2
– volume: 193
  year: 2022
  ident: 10.1016/j.cie.2024.110454_b0020
  article-title: Swarm robots in mechanized agricultural operations: A review about challenges for research[J]
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106608
– ident: 10.1016/j.cie.2024.110454_b0040
– ident: 10.1016/j.cie.2024.110454_b0135
– volume: 28
  start-page: 206
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2024.110454_b0165
  article-title: A data driven approach for detection and isolation of anomalies in a group of UAVs[J]
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2014.12.003
– start-page: 3545
  year: 2022
  ident: 10.1016/j.cie.2024.110454_b0185
  article-title: LCCDE: A decision-based ensemble framework for intrusion detection in the internet of vehicles[C]//GLOBECOM 2022–2022
  publication-title: IEEE Global Communications Conference. IEEE
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2024.110454_b0045
  article-title: Real-time fault detection on small fixed-wing UAVs using machine learning[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC)
  publication-title: IEEE
– volume: 40
  start-page: 515
  issue: 2–3
  year: 2021
  ident: 10.1016/j.cie.2024.110454_b0110
  article-title: Alfa: A dataset for uav fault and anomaly detection[J]
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364920966642
– volume: 16
  start-page: 4681
  issue: 7
  year: 2019
  ident: 10.1016/j.cie.2024.110454_b0195
  article-title: Deep residual shrinkage networks for fault diagnosis[J]
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2943898
– ident: 10.1016/j.cie.2024.110454_b0160
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.cie.2024.110454_b0150
– volume: 7
  start-page: 248
  issue: 4
  year: 2023
  ident: 10.1016/j.cie.2024.110454_b0155
  article-title: An intrusion detection system for UAV swarming utilizing timed probabilistic automata[J]
  publication-title: UAVs
– volume: 183
  year: 2021
  ident: 10.1016/j.cie.2024.110454_b0030
  article-title: A sound based method for fault detection with statistical feature extraction in UAV motors[J]
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2021.108325
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.cie.2024.110454_b0055
  article-title: SMOTE: Synthetic minority over-sampling technique[J]
  publication-title: Journal of artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 244
  year: 2024
  ident: 10.1016/j.cie.2024.110454_b0005
  article-title: Deep learning-based anomaly detection for individual UAV vehicles performing swarm missions[J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122869
– volume: 17
  start-page: 3488
  issue: 5
  year: 2020
  ident: 10.1016/j.cie.2024.110454_b0145
  article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J]
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.3005965
– ident: 10.1016/j.cie.2024.110454_b0010
– volume: 132
  year: 2024
  ident: 10.1016/j.cie.2024.110454_b0075
  article-title: Unmanned Aerial Vehicles anomaly detection model based on sensor information fusion and hybrid multimodal neural network[J]
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.107961
– volume: 12
  start-page: 3304
  issue: 15
  year: 2023
  ident: 10.1016/j.cie.2024.110454_b0065
  article-title: An enhancement method in few-shot scenarios for intrusion detection in smart home environments[J]
  publication-title: Electronics
  doi: 10.3390/electronics12153304
– volume: 06
  start-page: 57
  year: 2015
  ident: 10.1016/j.cie.2024.110454_b0140
  article-title: Effect of spoofing on unmanned aerial vehicle using counterfeited gps signal
  publication-title: Journal of Positioning Navigation and Timing
  doi: 10.11003/JPNT.2015.4.2.057
– volume: 47
  start-page: 77
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2024.110454_b0100
  article-title: Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication[J]
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-022-10066-5
– ident: 10.1016/j.cie.2024.110454_b0015
  doi: 10.2118/193211-MS
– volume: 10
  start-page: 2269
  year: 2021
  ident: 10.1016/j.cie.2024.110454_b0190
  article-title: Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets[J]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137201
– volume: 13
  start-page: 4301
  issue: 7
  year: 2023
  ident: 10.1016/j.cie.2024.110454_b0180
  article-title: Acquisition and processing of UAV fault data based on time line modeling method[J]
  publication-title: Applied Sciences
  doi: 10.3390/app13074301
– volume: 10
  start-page: 120
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2024.110454_b0095
  article-title: Cgan-based collaborative intrusion detection for uav networks: A blockchain-empowered distributed federated learning approach[J]
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2022.3200121
– volume: 9
  start-page: 721
  year: 2020
  ident: 10.1016/j.cie.2024.110454_b0025
  article-title: A novel technique to assess UAV behavior using PCA-based anomaly detection algorithm[J]
  publication-title: International Journal of Mechanical Engineering and Robotics Research
– volume: 208
  year: 2022
  ident: 10.1016/j.cie.2024.110454_b0035
  article-title: UAV-based remote sensing for the petroleum industry and environ-mental monitoring: State-of-the-art and perspectives
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2021.109633
– year: 2023
  ident: 10.1016/j.cie.2024.110454_b0085
  article-title: Cyber-physical intrusion detection system for unmanned aerial vehicles[J]
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 60
  year: 2024
  ident: 10.1016/j.cie.2024.110454_b0175
  article-title: Spatio-temporal correlation-based multiple regression for anomaly detection and recovery of unmanned aerial vehicle flight data[J]
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2024.102440
– ident: 10.1016/j.cie.2024.110454_b0105
  doi: 10.3850/978-981-14-8593-0_3924-cd
– volume: 17
  start-page: 12
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2024.110454_b0125
  article-title: N-baiot—network-based detection of IoT botnet attacks using deep autoencoders[J]
  publication-title: IEEE Pervasive Computing
  doi: 10.1109/MPRV.2018.03367731
– ident: 10.1016/j.cie.2024.110454_b0050
– year: 2014
  ident: 10.1016/j.cie.2024.110454_b0080
– start-page: 194
  year: 2017
  ident: 10.1016/j.cie.2024.110454_b0120
  article-title: A review on cybersecurity vulnerabilities for unmanned aerial vehicles
– year: 2023
  ident: 10.1016/j.cie.2024.110454_b0130
  article-title: Unmanned aerial vehicles for air pollution monitoring: A survey[J]
  publication-title: IEEE Internet of Things Journal
– ident: 10.1016/j.cie.2024.110454_b0060
  doi: 10.1109/BDACS53596.2021.00025
– year: 2023
  ident: 10.1016/j.cie.2024.110454_b0090
  article-title: Airborne computing: A toolkit for UAV-assisted federated computing for sustainable smart cities[J]
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2023.3292308
– volume: 66
  start-page: 1304
  issue: 5
  year: 2023
  ident: 10.1016/j.cie.2024.110454_b0170
  article-title: Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation[J]
  publication-title: Science China Technological Sciences
  doi: 10.1007/s11431-022-2312-8
SSID ssj0004591
Score 2.4842815
Snippet •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110454
SubjectTerms Denoising autoencoder
Federated learning
Intrusion detection
UAV swarm
Title A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning
URI https://dx.doi.org/10.1016/j.cie.2024.110454
Volume 196
WOSCitedRecordID wos001296235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOPAqI8pIPnFilShwnTo5RVUQ5VAgW2FvkV-hWJVltsm3593hs50F5CJC4RKskdlaeT5PJeOb7EHqRpCKLUxkHnGRJQM0rNcihETgRQsYplXlUKSs2wY6Ps-Uyf-tLglorJ8DqOru8zNf_1dTmnDE2tM7-hbmHSc0J89sY3RyN2c3xjwxfzNsLvgHli-YLP_s6V7rTTg_cqt7YusKjZjH_UHxs5_ASU7BhwF1pYWDugW0bXTcrm0Xg264BrkugnIAcewXkExzCVK838Xka3vYaEa1F1GqUBdEj7eFQArS17n87-B2fuV7wZpLNdpnck2Ycd-D7ST75JjafsiB0KH7zebS-l2YsXHL9W2EA8eB3vtnJ3f7g513K4XTf-L99eAJ0M1DHRn2FPvs9zGvDTAqNt0l2He0QluTZDO0UR4fLNxNueaev2P-Pfg_cVgNeedDPo5hJZLK4i277TwpcOCjcQ9d0vYvu-M8L7J13u4tuTbgn76N1gS1OsMcJHnCCLU6wwQk2OMGAE2xxgs01jic4wQNO8AQnZkaFB5zgHicP0LtXh4uD14GX3wgkyVkXUCKZAq4hwVQuGQ-znJBcR0mWpTxMFIuIIEISXSWaCh5VsVShoIooczl-iGZ1U-tHCItYhVUcJRKkD8waCm6iTiJTmknKWKL2UNivZSk9MT3oo5yVfQXiqTmvS1j-0i3_Hno5DFk7Vpbf3Ux7A5U-rHThYmnQ9Othj_9t2BN0c4T8UzTrNlv9DN2Q592q3Tz3mPsGGIebIQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+swarm+anomaly+detection+model+for+IoT+UAVs+based+on+a+multi-modal+denoising+autoencoder+and+federated+learning&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Lu%2C+Yu&rft.au=Yang%2C+Tao&rft.au=Zhao%2C+Chong&rft.au=Chen%2C+Wen&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=196&rft_id=info:doi/10.1016%2Fj.cie.2024.110454&rft.externalDocID=S0360835224005758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon