Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates

Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 342; S. 280 - 294
Hauptverfasser: Al-Smadi, Mohammed, Arqub, Omar Abu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2019
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a class of partial integrodifferential equations of fractional order in Hilbert space within appropriate kernel functions. The algorithm relies on the reproducing kernel Hilbert space method that provides the solutions in rapidly convergent series representations for the reproducing kernel based upon the Fourier coefficients of orthogonalization process. The Caputo fractional derivatives are introduced to address these issues. Moreover, the error estimate of the generated solutions is established as well as the convergence of the iterative method is investigated under some theoretical assumptions. The superiority and applicability of the present technique is illustrated by handling linear and nonlinear numerical examples. The outcomes obtained are compared with exact solutions and existing methods to confirm the effectiveness of the reproducing kernel method.
AbstractList Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a class of partial integrodifferential equations of fractional order in Hilbert space within appropriate kernel functions. The algorithm relies on the reproducing kernel Hilbert space method that provides the solutions in rapidly convergent series representations for the reproducing kernel based upon the Fourier coefficients of orthogonalization process. The Caputo fractional derivatives are introduced to address these issues. Moreover, the error estimate of the generated solutions is established as well as the convergence of the iterative method is investigated under some theoretical assumptions. The superiority and applicability of the present technique is illustrated by handling linear and nonlinear numerical examples. The outcomes obtained are compared with exact solutions and existing methods to confirm the effectiveness of the reproducing kernel method.
Author Arqub, Omar Abu
Al-Smadi, Mohammed
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0003-0226-7254
  surname: Al-Smadi
  fullname: Al-Smadi, Mohammed
  organization: Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan
– sequence: 2
  givenname: Omar Abu
  orcidid: 0000-0001-9526-6095
  surname: Arqub
  fullname: Arqub, Omar Abu
  email: o.abuarqub@ju.edu.jo
  organization: Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
BookMark eNp9kE1OwzAQRi0EEm3hAOx8gYRxEpJYrFDFn1SJDawtxx63rpK42G4R5-DCuC0rFl2NNJr3zcybkvPRjUjIDYOcAatv17kcVF4Aa3PgORRwRiasbcrsrq74OZkA8DorAcpLMg1hDQBNzaoJ-Zm7YbONMlo3yp7Kfum8jauBGudpcP3OjktqPOqV6wca7YCZ8VL9jW-kjzZVO0ZceqetMehxPPTwc3tIDdQZqq23atVjpGY7qmM7fm-QfqVlFL1P2zCkeBkxXJELI_uA1391Rj6eHt_nL9ni7fl1_rDIVMGbmFUM667R0ABnKLGrGg5Gm84wVUhddkoVjdFt1zHVqZprjW1X8RZq4GiMlOWMNMdc5V0IHo1Q9mgieml7wUDs3Yq1SG7F3q0ALpLbRLJ_5Man2_33Seb-yGB6aWfRi6AsjgqTG1RRaGdP0L98nZuE
CitedBy_id crossref_primary_10_1155_2019_7609879
crossref_primary_10_1007_s40314_022_01857_8
crossref_primary_10_3390_math8111972
crossref_primary_10_3390_sym11020205
crossref_primary_10_1007_s11277_020_07085_9
crossref_primary_10_1016_j_apnum_2020_12_007
crossref_primary_10_1155_2022_4471757
crossref_primary_10_3390_app13042245
crossref_primary_10_1002_mma_6998
crossref_primary_10_1186_s13662_021_03428_3
crossref_primary_10_1155_2020_1010382
crossref_primary_10_1002_num_22502
crossref_primary_10_1108_EC_01_2019_0011
crossref_primary_10_1002_num_22587
crossref_primary_10_1080_17458080_2022_2115483
crossref_primary_10_3934_math_2025091
crossref_primary_10_1016_j_chaos_2020_110506
crossref_primary_10_1007_s12190_019_01241_6
crossref_primary_10_1088_1742_6596_1212_1_012022
crossref_primary_10_1007_s12190_023_01874_8
crossref_primary_10_1515_phys_2022_0190
crossref_primary_10_32604_cmes_2022_017010
crossref_primary_10_1007_s12190_020_01353_4
crossref_primary_10_1186_s13662_019_2021_8
crossref_primary_10_1088_1402_4896_abb420
crossref_primary_10_1002_mma_5573
crossref_primary_10_1002_mma_5497
crossref_primary_10_1002_mma_5530
crossref_primary_10_1016_j_apnum_2020_12_015
crossref_primary_10_1007_s10473_020_0310_7
crossref_primary_10_1186_s13662_019_2042_3
crossref_primary_10_1088_1402_4896_abb739
crossref_primary_10_1007_s40995_022_01404_4
crossref_primary_10_1088_1572_9494_ab8a29
crossref_primary_10_1016_j_apnum_2021_03_019
crossref_primary_10_1177_14613484251319893
crossref_primary_10_1088_1402_4896_ab96e0
crossref_primary_10_3390_math11020404
crossref_primary_10_1016_j_apnum_2021_08_005
crossref_primary_10_1155_2021_3230272
crossref_primary_10_1016_j_apnum_2023_01_019
crossref_primary_10_1002_mma_7507
crossref_primary_10_1186_s13662_019_1996_5
crossref_primary_10_1155_2021_6858592
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1109_ACCESS_2022_3168788
crossref_primary_10_1016_j_apnum_2021_02_003
crossref_primary_10_3390_fractalfract7050346
crossref_primary_10_1088_1402_4896_acae64
crossref_primary_10_1002_mma_6443
crossref_primary_10_1515_phys_2021_0047
crossref_primary_10_1007_s00500_020_05313_9
crossref_primary_10_1088_1402_4896_ac13e0
crossref_primary_10_1515_phys_2021_0042
crossref_primary_10_1155_2022_4422186
crossref_primary_10_1007_s40314_024_02703_9
Cites_doi 10.1007/s00521-015-2110-x
10.1016/j.camwa.2016.11.032
10.1090/S0002-9947-1950-0051437-7
10.1108/HFF-07-2016-0278
10.1016/j.amc.2014.12.121
10.1002/num.21809
10.1155/2014/431965
10.1016/j.amc.2014.04.057
10.1016/j.aml.2013.05.006
10.3233/FI-2016-1384
10.1016/j.cam.2013.04.040
10.1016/j.jcp.2014.08.004
10.1002/num.22209
10.1002/num.22236
10.1007/s00500-016-2262-3
10.1016/j.cam.2009.01.012
10.3390/e18060206
10.1007/s00009-017-0904-z
10.1186/s13662-017-1085-6
10.1016/S0165-1684(03)00181-6
10.1016/j.amc.2017.08.048
10.1016/j.amc.2013.03.006
10.1155/2013/608943
10.1016/j.jaubas.2014.02.002
10.1016/j.aml.2011.10.025
10.1155/2014/162896
10.1007/s00500-015-1707-4
10.1016/j.camwa.2016.01.001
10.1016/j.camwa.2011.03.037
10.3390/e16010471
10.1016/j.amc.2014.06.063
10.1016/j.apm.2015.01.021
10.1002/mma.3884
10.1007/s00521-016-2484-4
10.1016/j.jcp.2014.09.034
10.1016/j.amc.2013.03.123
10.1016/j.aml.2005.10.010
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2018.09.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 294
ExternalDocumentID 10_1016_j_amc_2018_09_020
S0096300318307926
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-41e6b7d07091eaeb4790fdfbf1c2ad3bcc27fd8bb1cbc69dde8b4980609effaa3
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447376100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Tue Nov 18 21:55:22 EST 2025
Sat Nov 29 02:52:24 EST 2025
Fri Feb 23 02:25:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Partial integrodifferential equation
Computational algorithm
Fredholm operator
Caputo fractional derivative
Fractional calculus theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-41e6b7d07091eaeb4790fdfbf1c2ad3bcc27fd8bb1cbc69dde8b4980609effaa3
ORCID 0000-0001-9526-6095
0000-0003-0226-7254
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2018_09_020
crossref_primary_10_1016_j_amc_2018_09_020
elsevier_sciencedirect_doi_10_1016_j_amc_2018_09_020
PublicationCentury 2000
PublicationDate 2019-02-01
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Momani, Abu Arqub, Hayat, Al-Sulami (bib0039) 2014; 240
Geng, Qian (bib0048) 2013; 26
Abu Arqub, Al-Smadi, Momani, Hayat (bib0040) 2016; 20
El-Ajou, Abu Arqub, Momani, Baleanu, Alsaedi (bib0017) 2015; 257
Mohammed (bib0010) 2014
Jiang, Chen (bib0049) 2014; 30
Abu Arqub, Maayah (bib0044) 2018; 29
Cui, Lin (bib0027) 2009
Ray (bib0019) 2016; 71
Geng, Qian (bib0053) 2015; 39
Zaremba (bib0021) 1907; 39
Abu Arqub (bib0036) 2016; 39
Arshed (bib0007) 2017
Podlubny (bib0003) 1999
Zaslavsky (bib0002) 2005
Daniel (bib0029) 2003
Abu Arqub (bib0042) 2017; 28
Shawagfeh, Abu Arqub, Momani (bib0047) 2014; 16
Abu Arqub, Al-Smadi (bib0038) 2014; 243
Geng, Qian, Li (bib0050) 2014; 255
Abu Arqub (bib0045) 2018; 28
Samko, Kilbas, Marichev (bib0004) 1993
Wang, Zhu (bib0015) 2017; 2017
A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006.
Ortigueira, Machado (bib0020) 2003; 83
Zhoua, Cui, Lin (bib0032) 2009; 230
Yang, Lin (bib0033) 2008; 2008
Huang, Li, Zhao, Duan (bib0009) 2011; 62
Abu Arqub (bib0043) 2016; 146
Jiang, Chen (bib0052) 2013; 219
El-Ajou, Abu Arqub, Momani (bib0018) 2015; 293
Kumar, Singh, Kılıçman (bib0022) 2013
Abu Arqub, Shawagfeh (bib0046) 2017
Weinert (bib0030) 1982
Mainardi (bib0001) 2010
Rostami, Maleknejad (bib0008) 2017; 14
Singh, Kumar, Swroop, Kumar (bib0023) 2017
Aronszajn (bib0026) 1950; 68
Geng, Cui (bib0051) 2012; 25
Singh, Kumar, Nieto (bib0025) 2016; 18
Abu Arqub, Al-Smadi, Shawagfeh (bib0037) 2013; 219
Abu Arqub, Al-Smadi, Momani, Hayat (bib0041) 2017; 21
Singh, Kumar, Hammouch, Atangana (bib0006) 2018; 316
Tohidi, Ezadkhah, Shateyi (bib0012) 2014
Abu Arqub, El-Ajou, Al Zhour, Momani (bib0013) 2014; 16
Berlinet, Agnan (bib0028) 2004
Abu Arqub (bib0034) 2017; 73
Abu Arqub, Rashaideh (bib0035) 2017
Lin, Cui, Yang (bib0031) 2006; 19
Abu Arqub, El-Ajou, Momani (bib0016) 2015; 293
Abu Arqub, Al-Smadi (bib0011) 2018; 34
Kumar, Singh, Kumar (bib0024) 2015; 17
Abu Arqub (bib0014) 2018; 34
Mohammed (10.1016/j.amc.2018.09.020_bib0010) 2014
Momani (10.1016/j.amc.2018.09.020_bib0039) 2014; 240
Abu Arqub (10.1016/j.amc.2018.09.020_bib0034) 2017; 73
Abu Arqub (10.1016/j.amc.2018.09.020_bib0038) 2014; 243
El-Ajou (10.1016/j.amc.2018.09.020_bib0017) 2015; 257
Abu Arqub (10.1016/j.amc.2018.09.020_bib0041) 2017; 21
Abu Arqub (10.1016/j.amc.2018.09.020_bib0046) 2017
Kumar (10.1016/j.amc.2018.09.020_bib0022) 2013
Abu Arqub (10.1016/j.amc.2018.09.020_bib0037) 2013; 219
Abu Arqub (10.1016/j.amc.2018.09.020_bib0044) 2018; 29
Zaremba (10.1016/j.amc.2018.09.020_bib0021) 1907; 39
10.1016/j.amc.2018.09.020_bib0005
Geng (10.1016/j.amc.2018.09.020_bib0051) 2012; 25
Shawagfeh (10.1016/j.amc.2018.09.020_bib0047) 2014; 16
Mainardi (10.1016/j.amc.2018.09.020_bib0001) 2010
Jiang (10.1016/j.amc.2018.09.020_bib0052) 2013; 219
Abu Arqub (10.1016/j.amc.2018.09.020_bib0011) 2018; 34
Jiang (10.1016/j.amc.2018.09.020_bib0049) 2014; 30
Samko (10.1016/j.amc.2018.09.020_bib0004) 1993
Cui (10.1016/j.amc.2018.09.020_bib0027) 2009
Tohidi (10.1016/j.amc.2018.09.020_bib0012) 2014
Arshed (10.1016/j.amc.2018.09.020_bib0007) 2017
Abu Arqub (10.1016/j.amc.2018.09.020_bib0014) 2018; 34
Lin (10.1016/j.amc.2018.09.020_bib0031) 2006; 19
Abu Arqub (10.1016/j.amc.2018.09.020_bib0013) 2014; 16
Geng (10.1016/j.amc.2018.09.020_bib0053) 2015; 39
Singh (10.1016/j.amc.2018.09.020_bib0023) 2017
Ortigueira (10.1016/j.amc.2018.09.020_bib0020) 2003; 83
Berlinet (10.1016/j.amc.2018.09.020_bib0028) 2004
Weinert (10.1016/j.amc.2018.09.020_bib0030) 1982
Huang (10.1016/j.amc.2018.09.020_bib0009) 2011; 62
Yang (10.1016/j.amc.2018.09.020_bib0033) 2008; 2008
Abu Arqub (10.1016/j.amc.2018.09.020_bib0035) 2017
Abu Arqub (10.1016/j.amc.2018.09.020_bib0040) 2016; 20
Geng (10.1016/j.amc.2018.09.020_bib0048) 2013; 26
Abu Arqub (10.1016/j.amc.2018.09.020_bib0043) 2016; 146
Geng (10.1016/j.amc.2018.09.020_bib0050) 2014; 255
Podlubny (10.1016/j.amc.2018.09.020_bib0003) 1999
Daniel (10.1016/j.amc.2018.09.020_bib0029) 2003
Kumar (10.1016/j.amc.2018.09.020_bib0024) 2015; 17
Rostami (10.1016/j.amc.2018.09.020_bib0008) 2017; 14
Ray (10.1016/j.amc.2018.09.020_bib0019) 2016; 71
El-Ajou (10.1016/j.amc.2018.09.020_bib0018) 2015; 293
Wang (10.1016/j.amc.2018.09.020_bib0015) 2017; 2017
Abu Arqub (10.1016/j.amc.2018.09.020_bib0036) 2016; 39
Zaslavsky (10.1016/j.amc.2018.09.020_bib0002) 2005
Singh (10.1016/j.amc.2018.09.020_bib0006) 2018; 316
Abu Arqub (10.1016/j.amc.2018.09.020_bib0016) 2015; 293
Abu Arqub (10.1016/j.amc.2018.09.020_bib0045) 2018; 28
Singh (10.1016/j.amc.2018.09.020_bib0025) 2016; 18
Zhoua (10.1016/j.amc.2018.09.020_bib0032) 2009; 230
Abu Arqub (10.1016/j.amc.2018.09.020_bib0042) 2017; 28
Aronszajn (10.1016/j.amc.2018.09.020_bib0026) 1950; 68
References_xml – year: 1993
  ident: bib0004
  article-title: Fractional Integrals and Derivatives Theory and Applications
– volume: 26
  start-page: 998
  year: 2013
  end-page: 1004
  ident: bib0048
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Appl. Math. Lett.
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib0023
  article-title: An efficient computational approach for time-fractional Rosenau–Hyman equation
  publication-title: Neural Computing and Applications
– volume: 30
  start-page: 289
  year: 2014
  end-page: 300
  ident: bib0049
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 316
  start-page: 504
  year: 2018
  end-page: 515
  ident: bib0006
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
– year: 2014
  ident: bib0012
  article-title: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials
  publication-title: Abstract and Applied Analysis
– year: 1982
  ident: bib0030
  article-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing
  publication-title: Hutchinson Ross
– year: 2013
  ident: bib0022
  article-title: An Efficient Approach for Fractional Harry Dym Equation by Using Sumudu Transform
  publication-title: Abstract and Applied Analysis
– volume: 2017
  start-page: 27
  year: 2017
  ident: bib0015
  article-title: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method
  publication-title: Advances in Difference Equations
– year: 2017
  ident: bib0007
  article-title: B-spline solution of fractional integro partial differential equation with a weakly singular kernel
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 293
  start-page: 385
  year: 2015
  end-page: 399
  ident: bib0016
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 818
  year: 2012
  end-page: 823
  ident: bib0051
  article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems
  publication-title: Appl. Math. Lett.
– volume: 21
  start-page: 7191
  year: 2017
  end-page: 7206
  ident: bib0041
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Computing
– volume: 18
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0025
  article-title: A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
  publication-title: Entropy
– volume: 219
  start-page: 10225
  year: 2013
  end-page: 10230
  ident: bib0052
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Appl. Math. Comput.
– volume: 62
  start-page: 1127
  year: 2011
  end-page: 1134
  ident: bib0009
  article-title: Approximate solution of fractional integro-differential equations by Taylor expansion method
  publication-title: Computers & Mathematics with Applications
– year: 2005
  ident: bib0002
  article-title: Hamiltonian Chaos and Fractional Dynamics
– volume: 146
  start-page: 231
  year: 2016
  end-page: 254
  ident: bib0043
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fundamenta Informaticae
– volume: 83
  start-page: 2285
  year: 2003
  end-page: 2286
  ident: bib0020
  article-title: Fractional signal processing and applications
  publication-title: Signal Process
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib0035
  article-title: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs
  publication-title: Neural Computing and Applications
– volume: 219
  start-page: 8938
  year: 2013
  end-page: 8948
  ident: bib0037
  article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method
  publication-title: Appl. Math. Comput.
– volume: 243
  start-page: 911
  year: 2014
  end-page: 922
  ident: bib0038
  article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations
  publication-title: Appl. Math. Comput.
– volume: 293
  start-page: 81
  year: 2015
  end-page: 95
  ident: bib0018
  article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm
  publication-title: J. Comput. Phys.
– volume: 240
  start-page: 229
  year: 2014
  end-page: 239
  ident: bib0039
  article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type
  publication-title: Appl. Math. Comput.
– volume: 255
  start-page: 97
  year: 2014
  end-page: 105
  ident: bib0050
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: J. Comput. Appl. Math.
– volume: 230
  start-page: 770
  year: 2009
  end-page: 780
  ident: bib0032
  article-title: Numerical algorithm for parabolic problems with non-classical conditions
  publication-title: J. Comput. Appl. Math.
– year: 2009
  ident: bib0027
  article-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
– volume: 16
  start-page: 471
  year: 2014
  end-page: 493
  ident: bib0013
  article-title: Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique
  publication-title: Entropy
– year: 2003
  ident: bib0029
  article-title: Reproducing Kernel Spaces and Applications
– volume: 17
  start-page: 20
  year: 2015
  end-page: 26
  ident: bib0024
  article-title: Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method
  publication-title: Journal of the Association of Arab Universities for Basic and Applied Sciences
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 11
  ident: bib0033
  article-title: Reproducing kernel methods for solving linear initial-boundary-value problems
  publication-title: Electronic Journal of Differential Equations
– volume: 68
  start-page: 337
  year: 1950
  end-page: 404
  ident: bib0026
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
– volume: 71
  start-page: 859
  year: 2016
  end-page: 868
  ident: bib0019
  article-title: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound
  publication-title: Computers & Mathematics with Applications
– volume: 29
  start-page: 1465
  year: 2018
  end-page: 1479
  ident: bib0044
  article-title: Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm
  publication-title: Neural Computing & Applications
– volume: 34
  start-page: 1759
  year: 2018
  end-page: 1780
  ident: bib0014
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numerical Methods for Partial Differential Equations
– year: 2004
  ident: bib0028
  article-title: Reproducing Kernel Hilbert Space in Probability and Statistics
– volume: 19
  start-page: 808
  year: 2006
  end-page: 813
  ident: bib0031
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Appl. Math. Lett.
– reference: A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006.
– volume: 16
  start-page: 750
  year: 2014
  end-page: 762
  ident: bib0047
  article-title: Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method
  publication-title: Journal of Computational Analysis and Applications
– volume: 14
  start-page: 113
  year: 2017
  ident: bib0008
  article-title: Numerical solution of partial integro-differential equations by using projection method
  publication-title: Mediterranean Journal of Mathematics
– volume: 34
  start-page: 1577
  year: 2018
  end-page: 1597
  ident: bib0011
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 73
  start-page: 1243
  year: 2017
  end-page: 1261
  ident: bib0034
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Computers & Mathematics with Applications
– volume: 20
  start-page: 3283
  year: 2016
  end-page: 3302
  ident: bib0040
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Computing
– year: 2014
  ident: bib0010
  article-title: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial
  publication-title: Mathematical Problems in Engineering
– volume: 39
  start-page: 147
  year: 1907
  end-page: 196
  ident: bib0021
  article-title: L'equation biharminique et une class remarquable defonctionsfoundamentals harmoniques
  publication-title: Bulletin International de l'Academie des Sciences de Cracovie
– volume: 39
  start-page: 4549
  year: 2016
  end-page: 4562
  ident: bib0036
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 28
  start-page: 828
  year: 2018
  end-page: 856
  ident: bib0045
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– year: 1999
  ident: bib0003
  article-title: Fractional Differential Equations
– year: 2017
  ident: bib0046
  article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media
  publication-title: Journal of Porous Media
– volume: 257
  start-page: 119
  year: 2015
  end-page: 133
  ident: bib0017
  article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 5592
  year: 2015
  end-page: 5597
  ident: bib0053
  article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay
  publication-title: Appl. Math. Modell.
– volume: 28
  start-page: 1591
  year: 2017
  end-page: 1610
  ident: bib0042
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations
  publication-title: Neural Computing & Applications
– year: 2010
  ident: bib0001
  article-title: Fractional Calculus and Waves in Linear Viscoelasticity
– volume: 28
  start-page: 1591
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0042
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-015-2110-x
– volume: 73
  start-page: 1243
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0034
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2016.11.032
– volume: 68
  start-page: 337
  year: 1950
  ident: 10.1016/j.amc.2018.09.020_bib0026
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– year: 2005
  ident: 10.1016/j.amc.2018.09.020_bib0002
– volume: 28
  start-page: 828
  year: 2018
  ident: 10.1016/j.amc.2018.09.020_bib0045
  article-title: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– volume: 257
  start-page: 119
  year: 2015
  ident: 10.1016/j.amc.2018.09.020_bib0017
  article-title: A novel expansion iterative method for solving linear partial differential equations of fractional order
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.12.121
– volume: 30
  start-page: 289
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0049
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.21809
– year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0010
  article-title: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2014/431965
– volume: 240
  start-page: 229
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0039
  article-title: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.04.057
– volume: 26
  start-page: 998
  year: 2013
  ident: 10.1016/j.amc.2018.09.020_bib0048
  article-title: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.05.006
– volume: 146
  start-page: 231
  year: 2016
  ident: 10.1016/j.amc.2018.09.020_bib0043
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2016-1384
– volume: 255
  start-page: 97
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0050
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.04.040
– volume: 293
  start-page: 81
  year: 2015
  ident: 10.1016/j.amc.2018.09.020_bib0018
  article-title: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.004
– volume: 16
  start-page: 750
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0047
  article-title: Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method
  publication-title: Journal of Computational Analysis and Applications
– volume: 34
  start-page: 1577
  year: 2018
  ident: 10.1016/j.amc.2018.09.020_bib0011
  article-title: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.22209
– volume: 34
  start-page: 1759
  year: 2018
  ident: 10.1016/j.amc.2018.09.020_bib0014
  article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.22236
– volume: 21
  start-page: 7191
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0041
  article-title: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2262-3
– volume: 230
  start-page: 770
  year: 2009
  ident: 10.1016/j.amc.2018.09.020_bib0032
  article-title: Numerical algorithm for parabolic problems with non-classical conditions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.01.012
– year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0046
  article-title: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media
  publication-title: Journal of Porous Media
– year: 2003
  ident: 10.1016/j.amc.2018.09.020_bib0029
– volume: 18
  start-page: 1
  year: 2016
  ident: 10.1016/j.amc.2018.09.020_bib0025
  article-title: A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
  publication-title: Entropy
  doi: 10.3390/e18060206
– volume: 14
  start-page: 113
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0008
  article-title: Numerical solution of partial integro-differential equations by using projection method
  publication-title: Mediterranean Journal of Mathematics
  doi: 10.1007/s00009-017-0904-z
– volume: 2017
  start-page: 27
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0015
  article-title: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method
  publication-title: Advances in Difference Equations
  doi: 10.1186/s13662-017-1085-6
– volume: 83
  start-page: 2285
  year: 2003
  ident: 10.1016/j.amc.2018.09.020_bib0020
  article-title: Fractional signal processing and applications
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(03)00181-6
– year: 1993
  ident: 10.1016/j.amc.2018.09.020_bib0004
– volume: 316
  start-page: 504
  year: 2018
  ident: 10.1016/j.amc.2018.09.020_bib0006
  article-title: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.08.048
– year: 2010
  ident: 10.1016/j.amc.2018.09.020_bib0001
– volume: 219
  start-page: 8938
  year: 2013
  ident: 10.1016/j.amc.2018.09.020_bib0037
  article-title: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.006
– year: 2013
  ident: 10.1016/j.amc.2018.09.020_bib0022
  article-title: An Efficient Approach for Fractional Harry Dym Equation by Using Sumudu Transform
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2013/608943
– volume: 17
  start-page: 20
  year: 2015
  ident: 10.1016/j.amc.2018.09.020_bib0024
  article-title: Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method
  publication-title: Journal of the Association of Arab Universities for Basic and Applied Sciences
  doi: 10.1016/j.jaubas.2014.02.002
– volume: 25
  start-page: 818
  year: 2012
  ident: 10.1016/j.amc.2018.09.020_bib0051
  article-title: A reproducing kernel method for solving nonlocal fractional boundary value problems
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.10.025
– year: 2009
  ident: 10.1016/j.amc.2018.09.020_bib0027
– year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0007
  article-title: B-spline solution of fractional integro partial differential equation with a weakly singular kernel
– year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0012
  article-title: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials
  publication-title: Abstract and Applied Analysis
  doi: 10.1155/2014/162896
– year: 1982
  ident: 10.1016/j.amc.2018.09.020_bib0030
  article-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing
  publication-title: Hutchinson Ross
– year: 1999
  ident: 10.1016/j.amc.2018.09.020_bib0003
– volume: 20
  start-page: 3283
  year: 2016
  ident: 10.1016/j.amc.2018.09.020_bib0040
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Computing
  doi: 10.1007/s00500-015-1707-4
– year: 2004
  ident: 10.1016/j.amc.2018.09.020_bib0028
– volume: 71
  start-page: 859
  year: 2016
  ident: 10.1016/j.amc.2018.09.020_bib0019
  article-title: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2016.01.001
– volume: 62
  start-page: 1127
  year: 2011
  ident: 10.1016/j.amc.2018.09.020_bib0009
  article-title: Approximate solution of fractional integro-differential equations by Taylor expansion method
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2011.03.037
– volume: 16
  start-page: 471
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0013
  article-title: Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique
  publication-title: Entropy
  doi: 10.3390/e16010471
– volume: 2008
  start-page: 1
  year: 2008
  ident: 10.1016/j.amc.2018.09.020_bib0033
  article-title: Reproducing kernel methods for solving linear initial-boundary-value problems
  publication-title: Electronic Journal of Differential Equations
– volume: 243
  start-page: 911
  year: 2014
  ident: 10.1016/j.amc.2018.09.020_bib0038
  article-title: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.06.063
– volume: 39
  start-page: 5592
  year: 2015
  ident: 10.1016/j.amc.2018.09.020_bib0053
  article-title: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2015.01.021
– volume: 39
  start-page: 4549
  year: 2016
  ident: 10.1016/j.amc.2018.09.020_bib0036
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.3884
– start-page: 1
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0035
  article-title: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs
  publication-title: Neural Computing and Applications
– ident: 10.1016/j.amc.2018.09.020_bib0005
– volume: 29
  start-page: 1465
  year: 2018
  ident: 10.1016/j.amc.2018.09.020_bib0044
  article-title: Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-016-2484-4
– volume: 39
  start-page: 147
  year: 1907
  ident: 10.1016/j.amc.2018.09.020_bib0021
  article-title: L'equation biharminique et une class remarquable defonctionsfoundamentals harmoniques
  publication-title: Bulletin International de l'Academie des Sciences de Cracovie
– volume: 293
  start-page: 385
  year: 2015
  ident: 10.1016/j.amc.2018.09.020_bib0016
  article-title: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.034
– start-page: 1
  year: 2017
  ident: 10.1016/j.amc.2018.09.020_bib0023
  article-title: An efficient computational approach for time-fractional Rosenau–Hyman equation
  publication-title: Neural Computing and Applications
– volume: 219
  start-page: 10225
  year: 2013
  ident: 10.1016/j.amc.2018.09.020_bib0052
  article-title: Solving a system of linear Volterra integral equations using the new reproducing kernel method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.03.123
– volume: 19
  start-page: 808
  year: 2006
  ident: 10.1016/j.amc.2018.09.020_bib0031
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2005.10.010
SSID ssj0007614
Score 2.6140208
Snippet Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms Caputo fractional derivative
Computational algorithm
Fractional calculus theory
Fredholm operator
Partial integrodifferential equation
Title Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
URI https://dx.doi.org/10.1016/j.amc.2018.09.020
Volume 342
WOSCitedRecordID wos000447376100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE1WQ89g4Pq5QESC1IFGkvUV-sq022Tbdrfo_uPbHdmzHzrK0iB64RJG1cZKdLzPj8cw3CL2tSrDjmdCJVNU4KcZCJTBEEq5yYXRK86LkrtkEPTioplP2bTS6DLUw53PattXFBTv5r6KGMRC2LZ29hbjjpDAA5yB0OILY4fhPgvd9GkKMj89_LmD9P2tcPiHc2QUQTKeVDYe61vKJ6Xx1gy3KshM6Hg7LIrEI7VPcmD5dDXlzYAqP5AyEvmstox924VwX2NVdZ5nEQX001pdd94CD29tEvtizUFsXHjuCcJ58b7hy-Qb7i5mNsasBoKcrt5X0teHd7kSs1sMXtmIqpoL0KpnZ5DuSr6vk3DNuBaXqez319jnzTZH_UP0-CnH8njeWmTKtHH1tRgY7F_b2N8xfTEoM-W7HNUxR2ylqwmqY4g7azuiYgc7cnnzem36Jlp6Wnjs-vELYNXf5gxvPcb3fs-bLHD5ED_pFCJ548DxCI90-Rvf3B4k8Qb9-gxGOMMIAI9zDCAcY4Q0Y4R5G-BoY4QgjvDA4wghHGGELI2xhhB2McITRU_Tj497hh09J38AjkRmjy6RIdSmoAqvCUs21KCgjRhlhUplZZSBlRo2qhEilkCUDS1uJglWkJEwbw3n-DG21i1Y_R5iozFLvsVTqqpBKC0n5WJdEw_qZSU13EAl_by17dnvbZGVe3yjWHfQuXnLiqV3-9uMiyKzufVPvc9aAv5sve3Gbe7xE94Yv5BXaWnYr_RrdlefLo7PuTQ--K4vau_Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+algorithm+for+solving+fredholm+time-fractional+partial+integrodifferential+equations+of+dirichlet+functions+type+with+error+estimates&rft.jtitle=Applied+mathematics+and+computation&rft.au=Al-Smadi%2C+Mohammed&rft.au=Arqub%2C+Omar+Abu&rft.date=2019-02-01&rft.issn=0096-3003&rft.volume=342&rft.spage=280&rft.epage=294&rft_id=info:doi/10.1016%2Fj.amc.2018.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2018_09_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon