A novel fault diagnosis method based on nonlinear-CWT and improved YOLOv8 for axial piston pump using output pressure signal
Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health condit...
Saved in:
| Published in: | Advanced engineering informatics Vol. 64; p. 103041 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2025
|
| Subjects: | |
| ISSN: | 1474-0346 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health conditions. However, these signals are non-stationary, containing transient and pulse components, making traditional time and frequency analysis methods insufficient for accurate fault diagnosis. To address this, a novel fault diagnosis method is proposed. First, a Nonlinear Continuous Wavelet Transform (Nonlinear-CWT) is developed to transforms one-dimensional output pressure signals into two-dimensional time–frequency images, amplifying key signal characteristics and reducing noise. Then, a Horizontal Deformable Convolutional Network (HDCN) is proposed to handle horizontal deformations in the images caused by varying sampling lengths, replacing standard convolution modules in the YOLO (You Only Look Once) model. Lastly, Bayesian Optimization (BO) is employed to automatically optimize the hyperparameters, thereby producing a BHDCN-YOLO model. The experimental data of six health conditions with pump output pressure of 21 MPa is collected. Model performances are analyzed through the ablation experiments, comparison of other five deep learning model, and dataset with signal-to-noise ratios (SNR) of 30–50 dB. The results show that the BHDCN-YOLO model achieves an average accuracy of 97.38 % and inference speed of 0.9 ms. BHDCN-YOLO model accuracy improved by 20.2 % compared to the YOLO model. The adaptability experiment verified that HDCN-YOLO also has good recognition accuracy on datasets with additional sampling lengths. This study provides a novel method for more accurately diagnosing faults in axial piston pumps. |
|---|---|
| AbstractList | Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health conditions. However, these signals are non-stationary, containing transient and pulse components, making traditional time and frequency analysis methods insufficient for accurate fault diagnosis. To address this, a novel fault diagnosis method is proposed. First, a Nonlinear Continuous Wavelet Transform (Nonlinear-CWT) is developed to transforms one-dimensional output pressure signals into two-dimensional time–frequency images, amplifying key signal characteristics and reducing noise. Then, a Horizontal Deformable Convolutional Network (HDCN) is proposed to handle horizontal deformations in the images caused by varying sampling lengths, replacing standard convolution modules in the YOLO (You Only Look Once) model. Lastly, Bayesian Optimization (BO) is employed to automatically optimize the hyperparameters, thereby producing a BHDCN-YOLO model. The experimental data of six health conditions with pump output pressure of 21 MPa is collected. Model performances are analyzed through the ablation experiments, comparison of other five deep learning model, and dataset with signal-to-noise ratios (SNR) of 30–50 dB. The results show that the BHDCN-YOLO model achieves an average accuracy of 97.38 % and inference speed of 0.9 ms. BHDCN-YOLO model accuracy improved by 20.2 % compared to the YOLO model. The adaptability experiment verified that HDCN-YOLO also has good recognition accuracy on datasets with additional sampling lengths. This study provides a novel method for more accurately diagnosing faults in axial piston pumps. |
| ArticleNumber | 103041 |
| Author | Huang, Weidi Xia, Shiqi Zhang, Jie |
| Author_xml | – sequence: 1 givenname: Shiqi surname: Xia fullname: Xia, Shiqi organization: College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Weidi surname: Huang fullname: Huang, Weidi organization: College of Mechanical Engineering, Zhejiang University, Hangzhou 310014, China – sequence: 3 givenname: Jie surname: Zhang fullname: Zhang, Jie email: zhangjie77@csu.edu.cn organization: College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China |
| BookMark | eNp90L9qwzAQBnANKTRJ-wDd9AJOJVuJbTqF0H8QyJJSOglZOqcXHMlIcmihD1-FdOqQ6Tj4fgf3TcjIOguE3HE244wv7vczBTjLWS7SXjDBR2TMRSkyVojFNZmEsGcpV9XlmPwsqXVH6Girhi5Sg2pnXcBADxA_naGNCmCosyllO7SgfLZ631JlDcVD7xM19GOz3hwr2jpP1ReqjvYYYiL9cOjpENDuqBtiP0Taewhh8EAD7qzqbshVq7oAt39zSt6eHrerl2y9eX5dLdeZzusyZoI3FRghoDasqhpdQ8NFPTesBa2FynPDGyhgobiBqil4xXlZQNGUjHNg83kxJfx8V3sXgodW9h4Pyn9LzuSpMrmXqTJ5qkyeK0um_Gc0RhXR2egVdhflw1lCeumI4GXQCFaDQQ86SuPwgv4Fak6MDA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_118441 crossref_primary_10_1109_TIM_2025_3556190 crossref_primary_10_1016_j_measurement_2025_117892 crossref_primary_10_1016_j_eswa_2025_126452 crossref_primary_10_1063_5_0279740 |
| Cites_doi | 10.1016/j.neucom.2020.02.042 10.1016/j.ymssp.2012.10.020 10.1016/j.asoc.2023.110911 10.3390/s20247152 10.1016/j.aei.2022.101554 10.1016/j.ymssp.2018.04.038 10.1016/j.apacoust.2021.108336 10.1016/j.ast.2017.03.039 10.1007/s11465-022-0692-4 10.1016/j.apacoust.2020.107323 10.1016/j.apacoust.2020.107634 10.3390/s20226576 10.1016/j.compag.2023.108475 10.1016/j.cie.2023.109795 10.1007/s40857-021-00222-9 10.3390/jmse11030594 10.1007/s11431-021-1904-7 10.1109/CVPR.2019.00953 10.1016/j.ins.2024.120608 10.1088/1361-6501/ab8c11 10.1016/j.energy.2024.130882 10.3390/jmse11081609 10.1109/JSEN.2023.3263924 10.1007/s11465-018-0472-3 10.1016/j.isatra.2020.12.054 10.1016/j.isatra.2022.01.013 10.3390/s23052542 10.1016/j.apacoust.2022.108718 10.1109/TIM.2023.3264045 10.1016/j.aei.2021.101406 10.1016/j.engappai.2023.106139 10.1145/2818302 10.1016/j.measurement.2022.111582 10.1038/s41598-022-26316-6 10.1016/j.jestch.2023.101498 10.1016/j.engfailanal.2022.106300 10.1016/j.ymssp.2021.108752 10.1016/j.cja.2015.12.020 10.1016/j.asoc.2023.110682 10.1016/j.ress.2022.108560 10.1007/s10489-022-03344-3 10.1088/1361-6501/ab8d5a |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.aei.2024.103041 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| ExternalDocumentID | 10_1016_j_aei_2024_103041 S147403462400692X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-41b8ed44e9d088bc9eb1495d0fecc4a22d1be3e6a1de8b3181173e3b7011e0553 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001379436500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-0346 |
| IngestDate | Sat Nov 29 08:14:28 EST 2025 Tue Nov 18 22:35:04 EST 2025 Sat Mar 08 15:42:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Deep learning Bayesian algorithm Horizontal deformable convolutional networks Continuous wavelet transform |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-41b8ed44e9d088bc9eb1495d0fecc4a22d1be3e6a1de8b3181173e3b7011e0553 |
| ParticipantIDs | crossref_primary_10_1016_j_aei_2024_103041 crossref_citationtrail_10_1016_j_aei_2024_103041 elsevier_sciencedirect_doi_10_1016_j_aei_2024_103041 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced engineering informatics |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhu X, Hu H, Lin S, et al. Deformable convnets v2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9300-9308. Tang, Zhu, Yuan (b0020) 2022; 138 Tang, Zhu, Yuan (b0030) 2020; 20 Tang, Zhu, Yuan (b0105) 2022; 52 Chao, Gao, Tao (b0150) 2022; 17 Tang, Zhu, Yuan (b0025) 2022; 129 Li, Li, Jia (b0055) 2024; 187 Wang, Xiang, Zhong (b0170) 2018; 112 Vos, Peng, Jenkins (b0080) 2022; 169 Jiao, Xia, Ma (b0215) 2023; 532–533 Zhu, Su, Tang (b0190) 2023; 11 Zhu, Wu, Tang (b0010) 2023; 11 Fernandes, Corchado, Marreiros (b0050) 2022; 52 Safaei, Soleymani, Safaei (b0180) 2023; 146 Wang, Lin, Wang (b0005) 2016; 29 Chen, Wang, Qiao (b0035) 2018; 13 Zhao, Shi, Tan (b0045) 2022; 12 Du, Wang, Zhang (b0095) 2013; 36 Chao, Tao, Wei (b0160) 2020; 31 Ma, Liu, Wu (b0015) 2023; 45 Chen, Cheng, Tang (b0070) 2020; 31 Zhu, Li, Wang (b0185) 2021; 183 Murovec, Čurović, Novaković (b0060) 2020; 165 Zhu, Li, Tang (b0195) 2022; 192 Peng, Xu, Wang (b0065) 2023; 23 Deng, Deng, Lu (b0140) 2023; 23 Tang, Yuan, Zhu (b0165) 2020; 20 Tang, Zhu, Yuan (b0210) 2022; 224 Wang, Taylor, Rees (b0120) 2021; 49 Wang, Yao, Chen (b0075) 2021; 114 Zhang, Li, Wang (b0220) 2020; 398 Zhang, Shi (b0225) 2023; 148 Lan, Li, Liu (b0100) 2022; 200 Tang, Fu, Huang (b0085) 2021; 172 Dong, Tao, Chao (b0145) 2023; 72 Ma, Liu, Wu (b0090) 2024; 114113 Shi, Zheng, Quan (b0130) 2024; 670 Tang, Zhu, Yuan (b0175) 2021; 50 Gawde, Patil, Kumar (b0040) 2023; 123 Chen, Li, Zhang (b0205) 2024; 216 Liu, Liu, Shan (b0115) 2015; 10 Lu, Wang, Maids (b0110) 2017; 67 Chan, Han, Pan (b0135) 2024; 103 Chao, Gao, Tao (b0155) 2022; 65 Yao, Chang, Han (b0125) 2024; 294 10.1016/j.aei.2024.103041_b0200 Murovec (10.1016/j.aei.2024.103041_b0060) 2020; 165 Shi (10.1016/j.aei.2024.103041_b0130) 2024; 670 Wang (10.1016/j.aei.2024.103041_b0170) 2018; 112 Chen (10.1016/j.aei.2024.103041_b0205) 2024; 216 Chao (10.1016/j.aei.2024.103041_b0155) 2022; 65 Wang (10.1016/j.aei.2024.103041_b0120) 2021; 49 Safaei (10.1016/j.aei.2024.103041_b0180) 2023; 146 Dong (10.1016/j.aei.2024.103041_b0145) 2023; 72 Ma (10.1016/j.aei.2024.103041_b0090) 2024; 114113 Zhao (10.1016/j.aei.2024.103041_b0045) 2022; 12 Tang (10.1016/j.aei.2024.103041_b0165) 2020; 20 Chen (10.1016/j.aei.2024.103041_b0070) 2020; 31 Zhu (10.1016/j.aei.2024.103041_b0195) 2022; 192 Zhu (10.1016/j.aei.2024.103041_b0010) 2023; 11 Tang (10.1016/j.aei.2024.103041_b0020) 2022; 138 Fernandes (10.1016/j.aei.2024.103041_b0050) 2022; 52 Zhang (10.1016/j.aei.2024.103041_b0225) 2023; 148 Chao (10.1016/j.aei.2024.103041_b0160) 2020; 31 Vos (10.1016/j.aei.2024.103041_b0080) 2022; 169 Jiao (10.1016/j.aei.2024.103041_b0215) 2023; 532–533 Lu (10.1016/j.aei.2024.103041_b0110) 2017; 67 Zhu (10.1016/j.aei.2024.103041_b0185) 2021; 183 Chan (10.1016/j.aei.2024.103041_b0135) 2024; 103 Liu (10.1016/j.aei.2024.103041_b0115) 2015; 10 Deng (10.1016/j.aei.2024.103041_b0140) 2023; 23 Tang (10.1016/j.aei.2024.103041_b0175) 2021; 50 Tang (10.1016/j.aei.2024.103041_b0025) 2022; 129 Gawde (10.1016/j.aei.2024.103041_b0040) 2023; 123 Chen (10.1016/j.aei.2024.103041_b0035) 2018; 13 Ma (10.1016/j.aei.2024.103041_b0015) 2023; 45 Zhang (10.1016/j.aei.2024.103041_b0220) 2020; 398 Tang (10.1016/j.aei.2024.103041_b0030) 2020; 20 Du (10.1016/j.aei.2024.103041_b0095) 2013; 36 Chao (10.1016/j.aei.2024.103041_b0150) 2022; 17 Lan (10.1016/j.aei.2024.103041_b0100) 2022; 200 Tang (10.1016/j.aei.2024.103041_b0210) 2022; 224 Peng (10.1016/j.aei.2024.103041_b0065) 2023; 23 Zhu (10.1016/j.aei.2024.103041_b0190) 2023; 11 Wang (10.1016/j.aei.2024.103041_b0075) 2021; 114 Tang (10.1016/j.aei.2024.103041_b0085) 2021; 172 Wang (10.1016/j.aei.2024.103041_b0005) 2016; 29 Tang (10.1016/j.aei.2024.103041_b0105) 2022; 52 Li (10.1016/j.aei.2024.103041_b0055) 2024; 187 Yao (10.1016/j.aei.2024.103041_b0125) 2024; 294 |
| References_xml | – volume: 20 start-page: 6576 year: 2020 ident: b0165 article-title: An integrated deep learning method towards fault diagnosis of hydraulic axial piston pump[J] publication-title: Sensors – volume: 31 year: 2020 ident: b0160 article-title: Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data[J] publication-title: Meas. Sci. Technol. – volume: 20 start-page: 7152 year: 2020 ident: b0030 article-title: Intelligent diagnosis towards hydraulic axial piston pump using a novel integrated CNN model[J] publication-title: Sensors – volume: 12 start-page: 21996 year: 2022 ident: b0045 article-title: Research on an intelligent diagnosis method of mechanical faults for small sample data sets[J] publication-title: Sci. Rep. – volume: 13 start-page: 264 year: 2018 end-page: 291 ident: b0035 article-title: Basic research on machinery fault diagnostics: Past, present, and future trends[J] publication-title: Front. Mech. Eng. – volume: 52 start-page: 14246 year: 2022 end-page: 14280 ident: b0050 article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review[J] publication-title: Appl. Intell. – volume: 49 start-page: 207 year: 2021 end-page: 219 ident: b0120 article-title: Recent advancement of deep learning applications to machine condition monitoring part 1: a critical review[J] publication-title: Acoust. Aust. – volume: 31 year: 2020 ident: b0070 article-title: Pattern recognition of a sensitive feature set based on the orthogonal neighborhood preserving embedding and adaboost_SVM algorithm for rolling bearing early fault diagnosis[J] publication-title: Meas. Sci. Technol. – volume: 129 start-page: 555 year: 2022 end-page: 563 ident: b0025 article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization[J] publication-title: ISA Trans. – volume: 138 year: 2022 ident: b0020 article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal[J] publication-title: Eng. Fail. Anal. – volume: 23 start-page: 2542 year: 2023 ident: b0140 article-title: Fault diagnosis method for imbalanced data based on multi-signal fusion and improved deep convolution generative adversarial network[J] publication-title: Sensors – volume: 103 year: 2024 ident: b0135 article-title: Variational autoencoder-driven adversarial SVDD for power battery anomaly detection on real industrial data[J] publication-title: J. Storage Mater. – volume: 11 start-page: 594 year: 2023 ident: b0190 article-title: A novel fault diagnosis method based on SWT and VGG-LSTM model for hydraulic axial piston pump[J] publication-title: Journal of Marine Science and Engineering – volume: 200 year: 2022 ident: b0100 article-title: Experimental investigation on cavitation and cavitation detection of axial piston pump based on MLP-Mixer[J] publication-title: Measurement – volume: 183 year: 2021 ident: b0185 article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization[J] publication-title: Appl. Acoust. – volume: 114113 year: 2024 ident: b0090 article-title: An in-situ measurement approach for the oil film characteristics of the spherical valve plate pair in axial piston pumps[J] publication-title: Measurement – volume: 294 year: 2024 ident: b0125 article-title: Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems[J] publication-title: Energy – volume: 65 start-page: 470 year: 2022 end-page: 480 ident: b0155 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals[J] publication-title: Sci. China Technol. Sci. – volume: 52 year: 2022 ident: b0105 article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images[J] publication-title: Adv. Eng. Inf. – volume: 148 year: 2023 ident: b0225 article-title: Sparse and semi-attention guided faults diagnosis approach for distributed online services[J] publication-title: Appl. Soft Comput. – volume: 172 year: 2021 ident: b0085 article-title: A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load[J] publication-title: Appl. Acoust. – volume: 45 year: 2023 ident: b0015 article-title: Modeling and analysis of the leakage performance of the spherical valve plate pair in axial piston pumps[J] publication-title: Engineering Science and Technology, an International Journal – volume: 17 start-page: 36 year: 2022 ident: b0150 article-title: Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network[J] publication-title: Front. Mech. Eng. – volume: 216 year: 2024 ident: b0205 article-title: Soft X-ray image recognition and classification of maize seed cracks based on image enhancement and optimized YOLOv8 model[J] publication-title: Comput. Electron. Agric. – volume: 112 start-page: 154 year: 2018 end-page: 170 ident: b0170 article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps[J] publication-title: Mech. Syst. Sig. Process. – volume: 67 start-page: 105 year: 2017 end-page: 117 ident: b0110 article-title: Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J] publication-title: Aerosp. Sci. Technol. – volume: 50 year: 2021 ident: b0175 article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J] publication-title: Adv. Eng. Inf. – volume: 224 year: 2022 ident: b0210 article-title: Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J] publication-title: Reliab. Eng. Syst. Saf. – volume: 11 start-page: 1609 year: 2023 ident: b0010 article-title: Intelligent fault diagnosis methods for hydraulic piston pumps: a review[J] publication-title: Journal of Marine Science and Engineering – reference: Zhu X, Hu H, Lin S, et al. Deformable convnets v2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9300-9308. – volume: 398 start-page: 31 year: 2020 end-page: 44 ident: b0220 article-title: Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis[J] publication-title: Neurocomputing – volume: 36 start-page: 487 year: 2013 end-page: 504 ident: b0095 article-title: Layered clustering multi-fault diagnosis for hydraulic piston pump[J] publication-title: Mech. Syst. Sig. Process. – volume: 72 year: 2023 ident: b0145 article-title: Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J] publication-title: IEEE Trans. Instrum. Meas. – volume: 123 year: 2023 ident: b0040 article-title: Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach : A review of two decades of research[J] publication-title: Eng. Appl. Artif. Intel. – volume: 165 year: 2020 ident: b0060 article-title: Psychoacoustic approach for cavitation detection in centrifugal pumps[J] publication-title: Appl. Acoust. – volume: 10 year: 2015 ident: b0115 article-title: A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network[J] publication-title: PLoS One – volume: 532–533 year: 2023 ident: b0215 article-title: Effect of running-in on the low-pressure tribological performance of valve plate pair in axial piston pumps[J] publication-title: Wear – volume: 187 year: 2024 ident: b0055 article-title: A domain adversarial graph convolutional network for intelligent monitoring of tool wear in machine tools[J] publication-title: Comput. Ind. Eng. – volume: 114 start-page: 470 year: 2021 end-page: 484 ident: b0075 article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J] publication-title: ISA Trans. – volume: 192 year: 2022 ident: b0195 article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN[J] publication-title: Appl. Acoust. – volume: 29 start-page: 779 year: 2016 end-page: 788 ident: b0005 article-title: Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J] publication-title: Chin. J. Aeronaut. – volume: 670 year: 2024 ident: b0130 article-title: Wasserstein distance regularized graph neural networks[J] publication-title: Inf. Sci. – volume: 146 year: 2023 ident: b0180 article-title: Deep learning algorithm for supervision process in production using acoustic signal[J] publication-title: Appl. Soft Comput. – volume: 23 start-page: 10706 year: 2023 end-page: 10717 ident: b0065 article-title: Ensemble multiple distinct ResNet networks with channel-attention mechanism for multisensor fault diagnosis of hydraulic systems[J] publication-title: IEEE Sens. J. – volume: 169 year: 2022 ident: b0080 article-title: Vibration-based anomaly detection using LSTM/SVM approaches[J] publication-title: Mech. Syst. Sig. Process. – volume: 398 start-page: 31 year: 2020 ident: 10.1016/j.aei.2024.103041_b0220 article-title: Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis[J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.042 – volume: 114113 year: 2024 ident: 10.1016/j.aei.2024.103041_b0090 article-title: An in-situ measurement approach for the oil film characteristics of the spherical valve plate pair in axial piston pumps[J] publication-title: Measurement – volume: 36 start-page: 487 issue: 2 year: 2013 ident: 10.1016/j.aei.2024.103041_b0095 article-title: Layered clustering multi-fault diagnosis for hydraulic piston pump[J] publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2012.10.020 – volume: 148 year: 2023 ident: 10.1016/j.aei.2024.103041_b0225 article-title: Sparse and semi-attention guided faults diagnosis approach for distributed online services[J] publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110911 – volume: 20 start-page: 7152 issue: 24 year: 2020 ident: 10.1016/j.aei.2024.103041_b0030 article-title: Intelligent diagnosis towards hydraulic axial piston pump using a novel integrated CNN model[J] publication-title: Sensors doi: 10.3390/s20247152 – volume: 52 year: 2022 ident: 10.1016/j.aei.2024.103041_b0105 article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images[J] publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101554 – volume: 112 start-page: 154 year: 2018 ident: 10.1016/j.aei.2024.103041_b0170 article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps[J] publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.04.038 – volume: 183 year: 2021 ident: 10.1016/j.aei.2024.103041_b0185 article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108336 – volume: 67 start-page: 105 year: 2017 ident: 10.1016/j.aei.2024.103041_b0110 article-title: Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J] publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2017.03.039 – volume: 17 start-page: 36 issue: 3 year: 2022 ident: 10.1016/j.aei.2024.103041_b0150 article-title: Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network[J] publication-title: Front. Mech. Eng. doi: 10.1007/s11465-022-0692-4 – volume: 165 year: 2020 ident: 10.1016/j.aei.2024.103041_b0060 article-title: Psychoacoustic approach for cavitation detection in centrifugal pumps[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107323 – volume: 172 year: 2021 ident: 10.1016/j.aei.2024.103041_b0085 article-title: A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107634 – volume: 20 start-page: 6576 issue: 22 year: 2020 ident: 10.1016/j.aei.2024.103041_b0165 article-title: An integrated deep learning method towards fault diagnosis of hydraulic axial piston pump[J] publication-title: Sensors doi: 10.3390/s20226576 – volume: 216 year: 2024 ident: 10.1016/j.aei.2024.103041_b0205 article-title: Soft X-ray image recognition and classification of maize seed cracks based on image enhancement and optimized YOLOv8 model[J] publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108475 – volume: 187 year: 2024 ident: 10.1016/j.aei.2024.103041_b0055 article-title: A domain adversarial graph convolutional network for intelligent monitoring of tool wear in machine tools[J] publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109795 – volume: 49 start-page: 207 issue: 2 year: 2021 ident: 10.1016/j.aei.2024.103041_b0120 article-title: Recent advancement of deep learning applications to machine condition monitoring part 1: a critical review[J] publication-title: Acoust. Aust. doi: 10.1007/s40857-021-00222-9 – volume: 11 start-page: 594 issue: 3 year: 2023 ident: 10.1016/j.aei.2024.103041_b0190 article-title: A novel fault diagnosis method based on SWT and VGG-LSTM model for hydraulic axial piston pump[J] publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11030594 – volume: 532–533 year: 2023 ident: 10.1016/j.aei.2024.103041_b0215 article-title: Effect of running-in on the low-pressure tribological performance of valve plate pair in axial piston pumps[J] publication-title: Wear – volume: 65 start-page: 470 issue: 2 year: 2022 ident: 10.1016/j.aei.2024.103041_b0155 article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals[J] publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-021-1904-7 – ident: 10.1016/j.aei.2024.103041_b0200 doi: 10.1109/CVPR.2019.00953 – volume: 670 year: 2024 ident: 10.1016/j.aei.2024.103041_b0130 article-title: Wasserstein distance regularized graph neural networks[J] publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120608 – volume: 31 issue: 10 year: 2020 ident: 10.1016/j.aei.2024.103041_b0070 article-title: Pattern recognition of a sensitive feature set based on the orthogonal neighborhood preserving embedding and adaboost_SVM algorithm for rolling bearing early fault diagnosis[J] publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab8c11 – volume: 294 year: 2024 ident: 10.1016/j.aei.2024.103041_b0125 article-title: Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems[J] publication-title: Energy doi: 10.1016/j.energy.2024.130882 – volume: 11 start-page: 1609 issue: 8 year: 2023 ident: 10.1016/j.aei.2024.103041_b0010 article-title: Intelligent fault diagnosis methods for hydraulic piston pumps: a review[J] publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse11081609 – volume: 23 start-page: 10706 issue: 10 year: 2023 ident: 10.1016/j.aei.2024.103041_b0065 article-title: Ensemble multiple distinct ResNet networks with channel-attention mechanism for multisensor fault diagnosis of hydraulic systems[J] publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3263924 – volume: 13 start-page: 264 issue: 2 year: 2018 ident: 10.1016/j.aei.2024.103041_b0035 article-title: Basic research on machinery fault diagnostics: Past, present, and future trends[J] publication-title: Front. Mech. Eng. doi: 10.1007/s11465-018-0472-3 – volume: 114 start-page: 470 year: 2021 ident: 10.1016/j.aei.2024.103041_b0075 article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J] publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.054 – volume: 129 start-page: 555 year: 2022 ident: 10.1016/j.aei.2024.103041_b0025 article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization[J] publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.01.013 – volume: 23 start-page: 2542 issue: 5 year: 2023 ident: 10.1016/j.aei.2024.103041_b0140 article-title: Fault diagnosis method for imbalanced data based on multi-signal fusion and improved deep convolution generative adversarial network[J] publication-title: Sensors doi: 10.3390/s23052542 – volume: 192 year: 2022 ident: 10.1016/j.aei.2024.103041_b0195 article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN[J] publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2022.108718 – volume: 103 year: 2024 ident: 10.1016/j.aei.2024.103041_b0135 article-title: Variational autoencoder-driven adversarial SVDD for power battery anomaly detection on real industrial data[J] publication-title: J. Storage Mater. – volume: 72 year: 2023 ident: 10.1016/j.aei.2024.103041_b0145 article-title: Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J] publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3264045 – volume: 50 year: 2021 ident: 10.1016/j.aei.2024.103041_b0175 article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J] publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2021.101406 – volume: 123 year: 2023 ident: 10.1016/j.aei.2024.103041_b0040 article-title: Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach : A review of two decades of research[J] publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2023.106139 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.aei.2024.103041_b0115 article-title: A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network[J] publication-title: PLoS One doi: 10.1145/2818302 – volume: 200 year: 2022 ident: 10.1016/j.aei.2024.103041_b0100 article-title: Experimental investigation on cavitation and cavitation detection of axial piston pump based on MLP-Mixer[J] publication-title: Measurement doi: 10.1016/j.measurement.2022.111582 – volume: 12 start-page: 21996 issue: 1 year: 2022 ident: 10.1016/j.aei.2024.103041_b0045 article-title: Research on an intelligent diagnosis method of mechanical faults for small sample data sets[J] publication-title: Sci. Rep. doi: 10.1038/s41598-022-26316-6 – volume: 45 year: 2023 ident: 10.1016/j.aei.2024.103041_b0015 article-title: Modeling and analysis of the leakage performance of the spherical valve plate pair in axial piston pumps[J] publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2023.101498 – volume: 138 year: 2022 ident: 10.1016/j.aei.2024.103041_b0020 article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal[J] publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106300 – volume: 169 year: 2022 ident: 10.1016/j.aei.2024.103041_b0080 article-title: Vibration-based anomaly detection using LSTM/SVM approaches[J] publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2021.108752 – volume: 29 start-page: 779 issue: 3 year: 2016 ident: 10.1016/j.aei.2024.103041_b0005 article-title: Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J] publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2015.12.020 – volume: 146 year: 2023 ident: 10.1016/j.aei.2024.103041_b0180 article-title: Deep learning algorithm for supervision process in production using acoustic signal[J] publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110682 – volume: 224 year: 2022 ident: 10.1016/j.aei.2024.103041_b0210 article-title: Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J] publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108560 – volume: 52 start-page: 14246 issue: 12 year: 2022 ident: 10.1016/j.aei.2024.103041_b0050 article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review[J] publication-title: Appl. Intell. doi: 10.1007/s10489-022-03344-3 – volume: 31 issue: 10 year: 2020 ident: 10.1016/j.aei.2024.103041_b0160 article-title: Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data[J] publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab8d5a |
| SSID | ssj0016897 |
| Score | 2.4505935 |
| Snippet | Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103041 |
| SubjectTerms | Bayesian algorithm Continuous wavelet transform Deep learning Fault diagnosis Horizontal deformable convolutional networks |
| Title | A novel fault diagnosis method based on nonlinear-CWT and improved YOLOv8 for axial piston pump using output pressure signal |
| URI | https://dx.doi.org/10.1016/j.aei.2024.103041 |
| Volume | 64 |
| WOSCitedRecordID | wos001379436500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1474-0346 databaseCode: AIEXJ dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016897 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3ojy0hw4YbnyY521j1FVBFXVIhFoOFm2d626ihyT2FEOlfrXmX3ZaaGIHrhY1sY7WXk-z-zOfDtLyHsvErHckOmi7Q9cykTk5lngu4WXcB5Gce6pQtrfj9nJSTybJV9Goyu7F2Y9Z3UdbzZJ819VjW2obLl19g7q7oViA96j0vGKasfrPyl-4tSLtZg7ZdbNWxlblVS6amXOinak2-IyRVDrIhnZ0j04m-ocggow4K8_To9P17EmWG5kSL2pVPmNBnXvdCq6sOjapmsdRaOVOQjJAzEjszVtLbtADCUPHVOntd3i2M80XffrefWzGkBmwthnouJ9ax_cPqrEdrQiiAa6ljGwlFFsM2FHY4HHdMuEynPPdC2s36y7DjRc7GeiwpV9QPeHZ69X0r7h4XreoaW0XaQoIpUiUi3iHtkNWJSgWdydfD6cHfWJqHGsz-exw7aJcUURvDGOP09ttqYr08fkoVlnwETj4wkZifopeWTWHGAs-uoZuZyAggsouEAPF9BwAQUXWNRwDS6AcAELF9BwAdQsKLiAhgtIuICCC2i4gIULaLg8J98-Hk4PPrnmRA63CBLWutTPY8EpFQlH75QXCXp6XGFzr0RLQLMg4H4uQjHOfC7iHN2F77NQhDlDLyK8KApfkB0crnhJQK58ue8XBXaiIucJyikZK7Mwky-73COefZlpYcrVy1NT5umtStwjH_ouja7V8reHqdVQaiabehKZItpu7_bqLv_xmjwYvoE3ZKddduItuV-s22q1fGeg9gvD_aDf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fault+diagnosis+method+based+on+nonlinear-CWT+and+improved+YOLOv8+for+axial+piston+pump+using+output+pressure+signal&rft.jtitle=Advanced+engineering+informatics&rft.au=Xia%2C+Shiqi&rft.au=Huang%2C+Weidi&rft.au=Zhang%2C+Jie&rft.date=2025-03-01&rft.issn=1474-0346&rft.volume=64&rft.spage=103041&rft_id=info:doi/10.1016%2Fj.aei.2024.103041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2024_103041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |