Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation
We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders. We prove that our approach has the same solution as previous methods but has significantly lower computational complexity; in other words, we reduce the computational cost witho...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 372; p. 113291 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2020
|
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!