Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine–cosine and the exp-function methods

In this article we find the exact traveling wave solutions of the generalized nonlinear Schrödinger (GNLS) equation with variable coefficients using three methods via the generalized extended tanh-function method, the sine–cosine method and the exp-function method. The main objective of this article...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 218; no. 5; pp. 2259 - 2268
Main Authors: Zayed, E.M.E., Abdelaziz, M.A.M.
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2011
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article we find the exact traveling wave solutions of the generalized nonlinear Schrödinger (GNLS) equation with variable coefficients using three methods via the generalized extended tanh-function method, the sine–cosine method and the exp-function method. The main objective of this article is to compare the efficiency of these methods by delivering the exact traveling wave solutions of the proposed nonlinear equation.
AbstractList In this article we find the exact traveling wave solutions of the generalized nonlinear Schrödinger (GNLS) equation with variable coefficients using three methods via the generalized extended tanh-function method, the sine–cosine method and the exp-function method. The main objective of this article is to compare the efficiency of these methods by delivering the exact traveling wave solutions of the proposed nonlinear equation.
Author Abdelaziz, M.A.M.
Zayed, E.M.E.
Author_xml – sequence: 1
  givenname: E.M.E.
  surname: Zayed
  fullname: Zayed, E.M.E.
  email: e.m.e.zayed@hotmail.com
– sequence: 2
  givenname: M.A.M.
  surname: Abdelaziz
  fullname: Abdelaziz, M.A.M.
  email: mamabdelaziz@hotmail.com
BookMark eNp9kE1uFDEQRi2USEwSDsDOB6CbctvTHosVisKPFIkFZG157HLaox472J4wsOIOHIQdF8hNchK6J4hFFllVqfS9T6p3Qo5iikjISwYtA9a_3rRma9sOGGtBtiD4M7JgK8mbZS_UEVkAqL7hAPw5OSllAwCyZ2JBfl_sja20pHFXQ4qF-pRpHZBO_WOIaDL9bId898eFeI2Z4tedmYP0W6gDvTU5mPWI1Cb0PtiAsRa6K1P2UHKNEbMZww90FPcVo5uWauLQ-F20c8-rQ24C8P7nL5vmhZroDlfc3_zP0S3WIblyRo69GQu--DdPydW7iy_nH5rLT-8_nr-9bGynZG24V503xivHpOdiLZTqVk4o9BZ4LzgYLnhn14ASwC7F0ii_QtP1cqk8COCnhD302pxKyej1TQ5bk79rBno2rjd6Mq5n4xqknoxPjHzE2FAPtmo2YXySfPNA4vTSbcCsy-zSogsZbdUuhSfov9wgpBg
CitedBy_id crossref_primary_10_1155_ijde_8436408
crossref_primary_10_1088_1402_4896_ac42eb
crossref_primary_10_1088_1402_4896_ac0075
crossref_primary_10_1016_j_amc_2016_02_049
crossref_primary_10_1140_epjp_i2017_11527_4
crossref_primary_10_1007_s10598_015_9305_y
crossref_primary_10_1002_mma_7395
crossref_primary_10_1080_17455030_2015_1062577
crossref_primary_10_1186_s13662_020_2529_y
crossref_primary_10_1140_epjp_i2018_12288_2
crossref_primary_10_1088_1742_6596_2173_1_012022
crossref_primary_10_1155_2012_892420
crossref_primary_10_1155_2014_259190
crossref_primary_10_1016_j_cjph_2018_04_017
crossref_primary_10_1088_0031_8949_90_1_015208
crossref_primary_10_1088_2633_1357_abec2a
crossref_primary_10_3390_e17064255
crossref_primary_10_1007_s10598_023_09563_8
crossref_primary_10_1088_1402_4896_ad3859
crossref_primary_10_1007_s11071_015_2060_y
crossref_primary_10_1155_2021_6694980
crossref_primary_10_1155_2013_170835
crossref_primary_10_1002_mma_9860
crossref_primary_10_1007_s40819_021_01076_5
crossref_primary_10_1007_s10598_016_9351_0
crossref_primary_10_1016_j_physletb_2021_136351
crossref_primary_10_1016_j_jaubas_2016_09_003
crossref_primary_10_1140_epjp_i2014_14136_9
crossref_primary_10_1140_epjp_s13360_020_00624_0
crossref_primary_10_1088_0031_8949_86_03_035005
Cites_doi 10.1016/S0375-9601(01)00580-1
10.1142/S0217979206034819
10.1016/j.amc.2009.01.002
10.1016/j.chaos.2005.04.071
10.1515/IJNSNS.2005.6.2.207
10.1016/S0375-9601(00)00725-8
10.1088/0031-8949/54/6/003
10.1016/j.physleta.2005.10.099
10.1016/S0096-3003(03)00745-8
10.1016/j.chaos.2006.11.014
10.1016/j.amc.2009.12.059
10.1016/S0375-9601(02)01516-5
10.1016/j.chaos.2005.10.100
10.1016/j.mcm.2003.12.010
10.1016/j.chaos.2007.01.116
10.1515/IJNSNS.2010.11.8.595
10.1016/0375-9601(96)00103-X
10.1016/j.chaos.2005.05.016
10.1016/j.chaos.2005.10.032
10.1016/j.chaos.2006.05.072
10.1016/j.chaos.2006.03.020
10.1016/j.amc.2009.11.037
10.1016/S0375-9601(98)00547-7
10.1016/j.amc.2006.09.013
10.1119/1.17120
10.1515/IJNSNS.2007.8.3.465
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright_xml – notice: 2011 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2011.07.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 2268
ExternalDocumentID 10_1016_j_amc_2011_07_043
S0096300311009908
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-3f92faaf9d17f34b49928d49efc036430a3432cb0e700c545a9f8ea26759f0403
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294300800073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sat Nov 29 06:12:26 EST 2025
Tue Nov 18 22:10:48 EST 2025
Fri Feb 23 02:31:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sine–cosine method
The generalized nonlinear Schrödinger equation with variable coefficients
Exp-function method
Generalized extended tanh-function method
Exact solutions
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3f92faaf9d17f34b49928d49efc036430a3432cb0e700c545a9f8ea26759f0403
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_amc_2011_07_043
crossref_citationtrail_10_1016_j_amc_2011_07_043
elsevier_sciencedirect_doi_10_1016_j_amc_2011_07_043
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zayed, AbdelRahman (b0020) 2010; 1
El-Wakil, Abdou (b0005) 2007; 31
Yaghobi Moghaddam, Asgari, Yazdani (b0045) 2009; 210
Zhao, Zhi, Zhang (b0105) 2006; 28
Liu, Liu, Zhao (b0100) 2001; 289
Wazwaz (b0050) 2004; 40
Wazwaz (b0015) 2007; 187
Fan (b0010) 2000; 277
Zayed, Abdelaziz (b0025) 2010; 11
Zhang, Li, Wang (b0150) 2009; 39
Zhang (b0080) 2008; 38
He (b0115) 2006; 20
Malfliet, Hereman (b0035) 1996; 54
Zhang, Wang, Wang, Fang (b0110) 2006; 350
Yang, Tao, Austin (b0055) 2010; 216
He, Abdou (b0075) 2007; 34
Fan, Zhang (b0060) 1998; 246
Hirota (b0140) 2004
Fan, Zhang (b0095) 2002; 305
He (b0120) 2005; 6
Zhu (b0085) 2007; 8
He, Wu (b0125) 2006; 29
Parkes (b0155) 2010; 217
Dai, Zhang (b0090) 2006; 27
Hirota (b0135) 1980
Wazwaz (b0040) 2004; 154
Ablowitz, Segur (b0130) 1981
Malfliet (b0030) 1992; 60
He, Wu (b0070) 2006; 30
Wazwaz (b0145) 2010; 1
Wang (b0065) 1996; 213
He (10.1016/j.amc.2011.07.043_b0125) 2006; 29
Wazwaz (10.1016/j.amc.2011.07.043_b0145) 2010; 1
El-Wakil (10.1016/j.amc.2011.07.043_b0005) 2007; 31
Wazwaz (10.1016/j.amc.2011.07.043_b0050) 2004; 40
Zhang (10.1016/j.amc.2011.07.043_b0150) 2009; 39
Liu (10.1016/j.amc.2011.07.043_b0100) 2001; 289
Yaghobi Moghaddam (10.1016/j.amc.2011.07.043_b0045) 2009; 210
Hirota (10.1016/j.amc.2011.07.043_b0140) 2004
Zayed (10.1016/j.amc.2011.07.043_b0020) 2010; 1
Malfliet (10.1016/j.amc.2011.07.043_b0030) 1992; 60
Fan (10.1016/j.amc.2011.07.043_b0060) 1998; 246
Zhao (10.1016/j.amc.2011.07.043_b0105) 2006; 28
Wazwaz (10.1016/j.amc.2011.07.043_b0015) 2007; 187
Zayed (10.1016/j.amc.2011.07.043_b0025) 2010; 11
He (10.1016/j.amc.2011.07.043_b0120) 2005; 6
Parkes (10.1016/j.amc.2011.07.043_b0155) 2010; 217
Zhu (10.1016/j.amc.2011.07.043_b0085) 2007; 8
Hirota (10.1016/j.amc.2011.07.043_b0135) 1980
Wang (10.1016/j.amc.2011.07.043_b0065) 1996; 213
Wazwaz (10.1016/j.amc.2011.07.043_b0040) 2004; 154
Yang (10.1016/j.amc.2011.07.043_b0055) 2010; 216
Malfliet (10.1016/j.amc.2011.07.043_b0035) 1996; 54
He (10.1016/j.amc.2011.07.043_b0075) 2007; 34
Fan (10.1016/j.amc.2011.07.043_b0095) 2002; 305
Fan (10.1016/j.amc.2011.07.043_b0010) 2000; 277
He (10.1016/j.amc.2011.07.043_b0115) 2006; 20
Zhang (10.1016/j.amc.2011.07.043_b0080) 2008; 38
Ablowitz (10.1016/j.amc.2011.07.043_b0130) 1981
He (10.1016/j.amc.2011.07.043_b0070) 2006; 30
Dai (10.1016/j.amc.2011.07.043_b0090) 2006; 27
Zhang (10.1016/j.amc.2011.07.043_b0110) 2006; 350
References_xml – volume: 246
  start-page: 403
  year: 1998
  end-page: 406
  ident: b0060
  article-title: A note on the homogeneous balance method
  publication-title: Phys. Lett. A
– volume: 34
  start-page: 1421
  year: 2007
  end-page: 1429
  ident: b0075
  article-title: New periodic solutions for nonlinear evolution equations using Exp-function method
  publication-title: Chaos Solitons Fract.
– year: 2004
  ident: b0140
  article-title: The Direct Method in Soliton Theory
– volume: 154
  start-page: 713
  year: 2004
  end-page: 723
  ident: b0040
  article-title: The tanh-method for traveling wave solutions of nonlinear equations
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 289
  year: 2010
  end-page: 296
  ident: b0145
  article-title: On multiple soliton solutions for coupled KdV-mKdV equation
  publication-title: Nonlinear Sci. Lett. A
– volume: 1
  start-page: 193
  year: 2010
  end-page: 200
  ident: b0020
  article-title: The extended tanh-method for finding traveling wave solutions of nonlinear PDEs
  publication-title: Nonlinear Sci. Lett. A
– volume: 187
  start-page: 1131
  year: 2007
  end-page: 1142
  ident: b0015
  article-title: The tanh-method for traveling wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
– volume: 31
  start-page: 840
  year: 2007
  end-page: 852
  ident: b0005
  article-title: New exact traveling wave solutions using modified extended tanh-function method
  publication-title: Chaos Solitons Fract.
– volume: 54
  start-page: 563
  year: 1996
  end-page: 568
  ident: b0035
  article-title: The tanh-method part I. Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Script.
– volume: 11
  start-page: 595
  year: 2010
  end-page: 601
  ident: b0025
  article-title: The tanh-function method using a generalized wave transformation for nonlinear equations
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 40
  start-page: 499
  year: 2004
  end-page: 508
  ident: b0050
  article-title: A sine–cosine method for handling nonlinear wave equations
  publication-title: Math. Comput. Model.
– volume: 38
  start-page: 270
  year: 2008
  end-page: 276
  ident: b0080
  article-title: Application of exp-function method to high dimensional evolution equation
  publication-title: Chaos Solitons Fract.
– volume: 289
  start-page: 69
  year: 2001
  end-page: 74
  ident: b0100
  article-title: Jacobi elliptic function method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
– volume: 216
  start-page: 1029
  year: 2010
  end-page: 1035
  ident: b0055
  article-title: Solutions of the generalized KdV equation with time-dependent damping and dispersion
  publication-title: Appl. Math. Comput.
– year: 1980
  ident: b0135
  article-title: Direct method of finding exact solutions of nonlinear evolution equations
  publication-title: Backlund Transformation
– volume: 210
  start-page: 422
  year: 2009
  end-page: 435
  ident: b0045
  article-title: Exact travelling wave solutions for the generalized nonlinear Schrödinger (GNLS) equation with a source by extended tanh–coth, sine–cosine and Exp-function methods
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 2561
  year: 2006
  end-page: 2568
  ident: b0115
  article-title: New interpretation of homotopy perturbation method
  publication-title: Int. J. Mod. Phys. B
– year: 1981
  ident: b0130
  article-title: Solitons and the Inverse Scattering Transform
– volume: 30
  start-page: 700
  year: 2006
  end-page: 708
  ident: b0070
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fract.
– volume: 8
  start-page: 465
  year: 2007
  end-page: 469
  ident: b0085
  article-title: Exp-function method for the discrete mKdV lattice
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 305
  start-page: 383
  year: 2002
  end-page: 392
  ident: b0095
  article-title: Applications of the Jacobi elliptic function method to special-type nonlinear equations
  publication-title: Phys. Lett. A
– volume: 6
  start-page: 207
  year: 2005
  end-page: 208
  ident: b0120
  article-title: Asymptology by homotopy perturbation method
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 217
  start-page: 1749
  year: 2010
  end-page: 1754
  ident: b0155
  article-title: Observation on the tanh-coth expansion method for finding solutions to nonlinear evolution equations
  publication-title: Appl. Math. Comput.
– volume: 213
  start-page: 279
  year: 1996
  end-page: 287
  ident: b0065
  article-title: Exact solutions of a compound Kdv-Burgers equations
  publication-title: Phys. Lett. A
– volume: 39
  start-page: 858
  year: 2009
  end-page: 865
  ident: b0150
  article-title: The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients
  publication-title: Chaos Solitons Fract.
– volume: 29
  start-page: 108
  year: 2006
  end-page: 113
  ident: b0125
  article-title: Construction of solitary solutions and compact on like solution by variational iteration method
  publication-title: Chaos Solitons Fract.
– volume: 60
  start-page: 650
  year: 1992
  end-page: 654
  ident: b0030
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
– volume: 28
  start-page: 112
  year: 2006
  end-page: 116
  ident: b0105
  article-title: Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system
  publication-title: Chaos Solitons Fract.
– volume: 27
  start-page: 1042
  year: 2006
  end-page: 1047
  ident: b0090
  article-title: Jacobian elliptic function method for nonlinear differential-difference equations
  publication-title: Chaos Solitons Fract.
– volume: 350
  start-page: 103
  year: 2006
  end-page: 109
  ident: b0110
  article-title: The improved
  publication-title: Phys. Lett. A
– volume: 277
  start-page: 212
  year: 2000
  end-page: 218
  ident: b0010
  article-title: Extended tanh-function method, and its applications to nonlinear equations
  publication-title: Phys. Lett. A
– volume: 289
  start-page: 69
  year: 2001
  ident: 10.1016/j.amc.2011.07.043_b0100
  article-title: Jacobi elliptic function method and periodic wave solutions of nonlinear wave equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00580-1
– year: 1980
  ident: 10.1016/j.amc.2011.07.043_b0135
  article-title: Direct method of finding exact solutions of nonlinear evolution equations
– volume: 20
  start-page: 2561
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0115
  article-title: New interpretation of homotopy perturbation method
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979206034819
– volume: 210
  start-page: 422
  year: 2009
  ident: 10.1016/j.amc.2011.07.043_b0045
  article-title: Exact travelling wave solutions for the generalized nonlinear Schrödinger (GNLS) equation with a source by extended tanh–coth, sine–cosine and Exp-function methods
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.01.002
– volume: 1
  start-page: 289
  issue: 3
  year: 2010
  ident: 10.1016/j.amc.2011.07.043_b0145
  article-title: On multiple soliton solutions for coupled KdV-mKdV equation
  publication-title: Nonlinear Sci. Lett. A
– volume: 27
  start-page: 1042
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0090
  article-title: Jacobian elliptic function method for nonlinear differential-difference equations
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.04.071
– year: 1981
  ident: 10.1016/j.amc.2011.07.043_b0130
– volume: 6
  start-page: 207
  year: 2005
  ident: 10.1016/j.amc.2011.07.043_b0120
  article-title: Asymptology by homotopy perturbation method
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2005.6.2.207
– volume: 277
  start-page: 212
  year: 2000
  ident: 10.1016/j.amc.2011.07.043_b0010
  article-title: Extended tanh-function method, and its applications to nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00725-8
– volume: 54
  start-page: 563
  year: 1996
  ident: 10.1016/j.amc.2011.07.043_b0035
  article-title: The tanh-method part I. Exact solutions of nonlinear evolution and wave equations
  publication-title: Phys. Script.
  doi: 10.1088/0031-8949/54/6/003
– volume: 350
  start-page: 103
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0110
  article-title: The improved F-expansion method and its applications
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.10.099
– volume: 154
  start-page: 713
  year: 2004
  ident: 10.1016/j.amc.2011.07.043_b0040
  article-title: The tanh-method for traveling wave solutions of nonlinear equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00745-8
– volume: 38
  start-page: 270
  year: 2008
  ident: 10.1016/j.amc.2011.07.043_b0080
  article-title: Application of exp-function method to high dimensional evolution equation
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.11.014
– volume: 216
  start-page: 1029
  year: 2010
  ident: 10.1016/j.amc.2011.07.043_b0055
  article-title: Solutions of the generalized KdV equation with time-dependent damping and dispersion
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.12.059
– volume: 305
  start-page: 383
  year: 2002
  ident: 10.1016/j.amc.2011.07.043_b0095
  article-title: Applications of the Jacobi elliptic function method to special-type nonlinear equations
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01516-5
– volume: 29
  start-page: 108
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0125
  article-title: Construction of solitary solutions and compact on like solution by variational iteration method
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.10.100
– volume: 40
  start-page: 499
  year: 2004
  ident: 10.1016/j.amc.2011.07.043_b0050
  article-title: A sine–cosine method for handling nonlinear wave equations
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2003.12.010
– volume: 39
  start-page: 858
  year: 2009
  ident: 10.1016/j.amc.2011.07.043_b0150
  article-title: The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2007.01.116
– volume: 11
  start-page: 595
  issue: 8
  year: 2010
  ident: 10.1016/j.amc.2011.07.043_b0025
  article-title: The tanh-function method using a generalized wave transformation for nonlinear equations
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2010.11.8.595
– volume: 213
  start-page: 279
  year: 1996
  ident: 10.1016/j.amc.2011.07.043_b0065
  article-title: Exact solutions of a compound Kdv-Burgers equations
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00103-X
– year: 2004
  ident: 10.1016/j.amc.2011.07.043_b0140
– volume: 28
  start-page: 112
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0105
  article-title: Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.05.016
– volume: 31
  start-page: 840
  year: 2007
  ident: 10.1016/j.amc.2011.07.043_b0005
  article-title: New exact traveling wave solutions using modified extended tanh-function method
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.10.032
– volume: 34
  start-page: 1421
  year: 2007
  ident: 10.1016/j.amc.2011.07.043_b0075
  article-title: New periodic solutions for nonlinear evolution equations using Exp-function method
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.05.072
– volume: 30
  start-page: 700
  year: 2006
  ident: 10.1016/j.amc.2011.07.043_b0070
  article-title: Exp-function method for nonlinear wave equations
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.03.020
– volume: 217
  start-page: 1749
  year: 2010
  ident: 10.1016/j.amc.2011.07.043_b0155
  article-title: Observation on the tanh-coth expansion method for finding solutions to nonlinear evolution equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.11.037
– volume: 1
  start-page: 193
  issue: 2
  year: 2010
  ident: 10.1016/j.amc.2011.07.043_b0020
  article-title: The extended tanh-method for finding traveling wave solutions of nonlinear PDEs
  publication-title: Nonlinear Sci. Lett. A
– volume: 246
  start-page: 403
  year: 1998
  ident: 10.1016/j.amc.2011.07.043_b0060
  article-title: A note on the homogeneous balance method
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(98)00547-7
– volume: 187
  start-page: 1131
  year: 2007
  ident: 10.1016/j.amc.2011.07.043_b0015
  article-title: The tanh-method for traveling wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.013
– volume: 60
  start-page: 650
  year: 1992
  ident: 10.1016/j.amc.2011.07.043_b0030
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17120
– volume: 8
  start-page: 465
  year: 2007
  ident: 10.1016/j.amc.2011.07.043_b0085
  article-title: Exp-function method for the discrete mKdV lattice
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2007.8.3.465
SSID ssj0007614
Score 2.2189274
Snippet In this article we find the exact traveling wave solutions of the generalized nonlinear Schrödinger (GNLS) equation with variable coefficients using three...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2259
SubjectTerms Exact solutions
Exp-function method
Generalized extended tanh-function method
Sine–cosine method
The generalized nonlinear Schrödinger equation with variable coefficients
Title Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine–cosine and the exp-function methods
URI https://dx.doi.org/10.1016/j.amc.2011.07.043
Volume 218
WOSCitedRecordID wos000294300800073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKhwUsEE8xvOQFKyCRJ0nteFlQECA6YjGgik3kOs7Q0Uyn9KUyK_6BD2HHD_AB_ANfwvUz6cAgZsEmahzHaXpP7evrc48RepjSHuNg9yinkkcwQslI8IpHCXgXOzmXI24khd69Zru7-XDI33Q6P3wuzOqQTSb5es2n_9XUUAbG1qmz5zB3aBQK4DMYHY5gdjj-k-GLtU57DM8IPMKJFcUQM628aRbIn9LKyhCqj1bw20ZlVzB9NglV8lgZgQmTBLec-8SqfatUPT4BX9XH0B-Dj_kh0oOkIYuA3XRNzan3bIpUHuvTwNhU62mo7_axnrc9Ze8eHwVd2bnPwZsuN_kD78UnG7It4kFcxM2KllbAPBmbEPkg7sPFdoxDk-xCjMP121wz9Eja7reTpuNulsZtL5w4lXHlTu3OPb-NFjZwcRCLI-nEXFlMrGrUpjL3qREz8Bg9Re6ghCZK3URJWAlNXEBbCevxvIu2-i-L4avgHDBq5eb9C_mFdkM5PPU9_uwqtdyfvavoipu34L7F2zXUUZPr6PKgMc4N9NUgDwfkYUAehus4IA9r5H3_ZlGHPeqwRh32qMNt1GGDOtNIC3XYow5voO6JqadB9vPzF4s2DIgxpW20YYe2m-jt82Lv2YvI7QcSyYSzRZTWPKmFqHm1w-o0G8FkPcmrjKta6tX0lAidJS1HRDFCJEwNBK9zJRKYE_MaBqv0FurCG6vbCFNaZ4JkomaCZoxUgvIeG0lBK62Vkfa2EfE_fSmdWL7es-WwPNPk2-hRuGVqlWL-Vjnz9iydq2td2BKwefZtd87zjLvoUvNfuoe6i9lS3UcX5Woxns8eOGD-AoLA0QI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+solutions+for+the+nonlinear+Schr%C3%B6dinger+equation+with+variable+coefficients+using+the+generalized+extended+tanh-function%2C+the+sine%E2%80%93cosine+and+the+exp-function+methods&rft.jtitle=Applied+mathematics+and+computation&rft.au=Zayed%2C+E.M.E.&rft.au=Abdelaziz%2C+M.A.M.&rft.date=2011-11-01&rft.issn=0096-3003&rft.volume=218&rft.issue=5&rft.spage=2259&rft.epage=2268&rft_id=info:doi/10.1016%2Fj.amc.2011.07.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2011_07_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon