Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions
Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency....
Uložené v:
| Vydané v: | Computers & industrial engineering Ročník 200; s. 110856 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2025
|
| Predmet: | |
| ISSN: | 0360-8352 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency. Despite its benefits for the industry, machine scheduling remains a challenging combinatorial optimization problem to be solved, inherently due to its Non-deterministic Polynomial-time (NP) hard nature. Deep Reinforcement Learning (DRL) has been regarded as a foundation for “artificial general intelligence” with promising results in tasks such as gaming and robotics. Researchers have also aimed to leverage the application of DRL, attributed to extraction of knowledge from data, across variety of machine scheduling problems since 1995. This paper presents a comprehensive review and comparison of the methodology, application, and the advantages and limitations of different DRL-based approaches. Further, the study categorizes the DRL methods based on the integrated computational components including conventional neural networks, encoder–decoder architectures, graph neural networks and metaheuristic algorithms. Our literature review concludes that the DRL-based approaches surpass the performance of exact solvers, heuristics, and tabular reinforcement learning algorithms in either computation speed, generating near-global optimal solutions, or both. They have been applied to static or dynamic scheduling of different machine environments, which consist of single machine, parallel machine, flow shop, job shop, and open shop, with different job characteristics. Nonetheless, the existing DRL-based schedulers face limitations not only in considering complex operational constraints, and configurable multi-objective optimization but also in dealing with generalization, scalability, intepretability, and robustness. Therefore, addressing these challenges shapes future work in this field. This paper serves the researchers to establish a proper investigation of state of the art and research gaps in DRL-based machine scheduling and can help the experts and practitioners choose the proper approach to implement DRL for production scheduling.
•A comprehensive literature review on DRL-based machine scheduling is conducted.•The basics of MDP, DRL, encoder–decoders, and graph neural networks are provided.•DRL-based scheduling models are reviewed based on the integrated computational component.•The advantages and limitations of DRL-based scheduling approaches are discussed.•Future directions to address the current limitations are provided. |
|---|---|
| AbstractList | Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency. Despite its benefits for the industry, machine scheduling remains a challenging combinatorial optimization problem to be solved, inherently due to its Non-deterministic Polynomial-time (NP) hard nature. Deep Reinforcement Learning (DRL) has been regarded as a foundation for “artificial general intelligence” with promising results in tasks such as gaming and robotics. Researchers have also aimed to leverage the application of DRL, attributed to extraction of knowledge from data, across variety of machine scheduling problems since 1995. This paper presents a comprehensive review and comparison of the methodology, application, and the advantages and limitations of different DRL-based approaches. Further, the study categorizes the DRL methods based on the integrated computational components including conventional neural networks, encoder–decoder architectures, graph neural networks and metaheuristic algorithms. Our literature review concludes that the DRL-based approaches surpass the performance of exact solvers, heuristics, and tabular reinforcement learning algorithms in either computation speed, generating near-global optimal solutions, or both. They have been applied to static or dynamic scheduling of different machine environments, which consist of single machine, parallel machine, flow shop, job shop, and open shop, with different job characteristics. Nonetheless, the existing DRL-based schedulers face limitations not only in considering complex operational constraints, and configurable multi-objective optimization but also in dealing with generalization, scalability, intepretability, and robustness. Therefore, addressing these challenges shapes future work in this field. This paper serves the researchers to establish a proper investigation of state of the art and research gaps in DRL-based machine scheduling and can help the experts and practitioners choose the proper approach to implement DRL for production scheduling.
•A comprehensive literature review on DRL-based machine scheduling is conducted.•The basics of MDP, DRL, encoder–decoders, and graph neural networks are provided.•DRL-based scheduling models are reviewed based on the integrated computational component.•The advantages and limitations of DRL-based scheduling approaches are discussed.•Future directions to address the current limitations are provided. |
| ArticleNumber | 110856 |
| Author | Khadivi, Maziyar Najjaran, Homayoun Yaghoubi, Marjan Ahang, Maryam Jalayer, Masoud Shojaeinasab, Ardeshir Charter, Todd |
| Author_xml | – sequence: 1 givenname: Maziyar surname: Khadivi fullname: Khadivi, Maziyar email: mazy1996@uvic.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 2 givenname: Todd orcidid: 0000-0001-5982-255X surname: Charter fullname: Charter, Todd email: toddch@uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 3 givenname: Marjan orcidid: 0000-0002-8585-5854 surname: Yaghoubi fullname: Yaghoubi, Marjan email: marjanyaghoubi@uvic.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 4 givenname: Masoud orcidid: 0000-0001-8013-8613 surname: Jalayer fullname: Jalayer, Masoud email: mjalayer@ualberta.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 5 givenname: Maryam orcidid: 0000-0001-5580-3693 surname: Ahang fullname: Ahang, Maryam email: maryamahang@uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 6 givenname: Ardeshir surname: Shojaeinasab fullname: Shojaeinasab, Ardeshir email: ardeshir@uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada – sequence: 7 givenname: Homayoun orcidid: 0000-0002-3550-225X surname: Najjaran fullname: Najjaran, Homayoun email: najjaran@uvic.ca organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada |
| BookMark | eNp9kE1PAyEQhjnUxLb6A7zxA7oV9oNd9GTqZ1LjRc-EwtCl2UID1KT_Xsx68tDTZN6ZZzLvO0MT5x0gdEPJkhLKbndLZWFZkrJZUkq6hk3QlFSMFF3VlJdoFuOOEFI3nE7R8AhwwAGsMz4o2INLeAAZnHVbnCW8l6q3DnBUPejjkOU7_A6p99oPfnta4NTnYZIJCm-K3BQypAWWTmNzTMcAWNsAKlnv4hW6MHKIcP1X5-jr-elz9VqsP17eVg_rQpW8TUWleUsk8IqzujF8w3hnmCpB16ZTTBvZqppRzmQLEroNoXrDoQPJJGnLUkM1R3S8q4KPMYARh2D3MpwEJeI3IrETOSLxG5EYI8pM-49RNrvKb6cg7XCWvB9JyJa-LQQR84pTMBoX2tsz9A-PHIc6 |
| CitedBy_id | crossref_primary_10_1002_cpe_70218 crossref_primary_10_23919_cje_2024_00_014 crossref_primary_10_1016_j_tre_2025_104341 crossref_primary_10_1016_j_future_2025_108145 crossref_primary_10_1109_ACCESS_2025_3589064 crossref_primary_10_1007_s44196_025_00924_2 |
| Cites_doi | 10.1109/TASE.2024.3486919 10.26599/TST.2023.9010076 10.1145/2939672.2939778 10.1016/j.jmsy.2022.01.004 10.1023/A:1008942012299 10.1016/j.aei.2006.01.001 10.1145/279943.279964 10.1016/j.cie.2023.109718 10.1177/16878132221086120 10.1016/j.compchemeng.2024.108700 10.1016/j.cie.2023.109650 10.1016/j.compchemeng.2024.108748 10.1016/j.swevo.2024.101544 10.1016/j.cie.2023.109631 10.3390/s22145413 10.1007/s10951-020-00664-5 10.1016/j.cie.2023.109216 10.1038/s41586-020-03051-4 10.1016/j.jmsy.2024.03.012 10.1007/BF00992696 10.1145/203330.203343 10.1016/j.cor.2021.105400 10.1109/TEVC.2022.3175832 10.1007/BF00115009 10.1016/j.rcim.2021.102202 10.14743/apem2021.3.399 10.3390/a17080343 10.1007/s10845-022-02069-x 10.1109/TASE.2021.3104716 10.1016/j.cirpj.2022.11.003 10.3390/app11072977 10.1016/j.jclepro.2022.130419 10.3390/app12031491 10.1109/TETCI.2022.3146882 10.1016/j.eswa.2021.116222 10.1109/TII.2023.3272661 10.1155/2020/9462048 10.1145/937503.937505 10.2507/IJSIMM20-2-CO10 10.3390/app12189332 10.1007/s10951-017-0534-0 10.3390/machines10030210 10.1016/j.cie.2024.109995 10.1016/j.asoc.2020.106208 10.1080/00207543.2023.2188646 10.1016/j.cie.2021.107782 10.1080/00207543.2023.2172472 10.1016/j.cie.2024.109917 10.1049/cim2.12072 10.1145/1015330.1015430 10.1145/2939672.2939754 10.1016/j.knosys.2021.107526 10.1016/j.cie.2024.110325 10.1109/ACCESS.2020.2987820 10.1016/j.comnet.2021.107969 10.1007/s11740-020-00967-8 10.1287/opre.25.1.45 10.3390/math9202633 10.2507/IJSIMM20-2-CO7 10.1016/j.cie.2024.109894 10.1038/nature16961 10.3390/s21134553 10.1016/j.knosys.2024.111940 10.1109/TNNLS.2016.2543000 10.1016/j.cie.2023.109802 10.1016/S0167-5060(08)70356-X 10.1016/j.cirp.2020.04.005 10.1016/j.procir.2019.03.041 10.1007/s10845-022-01915-2 10.1016/j.ejor.2021.08.007 10.1007/s10845-023-02094-4 10.1016/j.eswa.2022.117796 10.3390/en15051626 10.1109/ACCESS.2020.3004964 10.1631/FITEE.1900533 10.1109/ACCESS.2020.3046784 10.1016/j.asoc.2023.110596 10.1016/j.cie.2024.110155 10.1038/nature14236 10.1016/j.rcim.2022.102324 10.1145/3453160 10.1016/j.artint.2022.103786 10.1016/S0004-3702(99)00052-1 10.1016/j.aej.2021.01.030 10.1016/j.cor.2022.106095 10.1016/0305-0483(83)90088-9 10.1109/MSP.2017.2743240 10.3390/pr10040760 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R 10.1016/j.swevo.2024.101660 10.1080/00207543.2020.1870013 10.1016/j.jmsy.2024.08.015 10.1109/ACCESS.2020.3029868 10.1016/j.eswa.2024.123592 10.1007/s10489-023-04479-7 10.1002/ail2.45 10.1080/00207543.2021.1975057 10.1002/amp2.10119 10.1016/j.ejor.2023.07.037 10.3390/su14095177 10.1109/TII.2022.3189725 10.1016/j.cie.2023.109255 10.3390/computers5010003 10.1016/j.rcim.2023.102605 10.2507/IJSIMM19-1-CO4 10.1016/j.swevo.2024.101605 10.1109/ACCESS.2021.3110242 10.1016/j.ejor.2020.07.063 10.1109/TII.2019.2908210 10.1287/inte.2021.1109 10.1109/TNN.2008.2005605 10.1016/j.asoc.2020.106790 10.1109/ACCESS.2021.3097254 10.1016/j.jmsy.2023.08.011 10.1016/j.ifacol.2022.10.025 10.1016/j.compchemeng.2024.108745 10.1016/j.swevo.2024.101550 10.3390/app112210870 10.1126/science.aar6404 10.1093/jcde/qwab068 10.1007/s10951-008-0090-8 10.1049/cim2.12060 10.3390/app12052366 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2025.110856 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2025_110856 S0360835225000014 |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) Canada grantid: ALLRP 555220 – 20 – fundername: NTWIST Inc. |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ADBBV ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-3d970ae939645f9b698f6c2ed4f8c6dfa7c46196a7eae8b01db9e8ea6a0722de3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 08:18:25 EST 2025 Tue Nov 18 21:06:24 EST 2025 Sat Feb 08 15:52:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neural combinatorial optimization Deep reinforcement learning Machine scheduling Graph neural networks Production scheduling Artificial intelligence |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-3d970ae939645f9b698f6c2ed4f8c6dfa7c46196a7eae8b01db9e8ea6a0722de3 |
| ORCID | 0000-0002-8585-5854 0000-0001-5580-3693 0000-0001-5982-255X 0000-0001-8013-8613 0000-0002-3550-225X |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2025_110856 crossref_citationtrail_10_1016_j_cie_2025_110856 elsevier_sciencedirect_doi_10_1016_j_cie_2025_110856 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Magalhaes, Martins, Vieira, Santos, Sousa (b110) 2021 Bellman, Dreyfus (b10) 2015 Zhao, Zhu, Zhang, Tang, Wang (b235) 2024 Schulman, Wolski, Dhariwal, Radford, Klimov (b153) 2017 Zhang, Li, Gong (b221) 2024; 189 Li, Lang, Hong, Reggelin (b92) 2024; 35 Luo, Zhang, Fan (b109) 2021; 19 Wang, Zhang, Lin, Zhao, Wang, Chen (b195) 2022; 77 Brucker, Gladky, Hoogeveen, Kovalyov, Potts, Tautenhahn (b16) 1998; 1 (pp. 101–103). Sutton, Barto (b167) 2018 Graham, Lawler, Lenstra, Kan (b45) 1979; vol. 5 Pinedo, Hadavi (b134) 1992 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche (b157) 2016; 529 Stone, Veloso (b160) 2000; 8 Zhu, Lin, Zhou (b240) 2020 Park, Chun, Kim, Kim, Park (b129) 2021; 59 Bellman (b9) 1957 Dittrich, Fohlmeister (b30) 2020; 69 Cho, Nam, Cho, Yoon, Woo (b24) 2022; 9 . Gabel, Riedmiller (b39) 2007 Gu, Chen, Wang (b48) 2023; 53 Yang, Sun, Narasimhan (b212) 2019; 32 Su, Zhang, Xia, Han, Wang, Chen (b163) 2023; 145 Vezhnevets, Osindero, Schaul, Heess, Jaderberg, Silver (b179) 2017 Zhang, Zhao, Yang, Du, Feng, Zhang (b230) 2024; 76 Zhao, Ma, Mo, Xu (b232) 2024; 188 Witty, Lee, Tosch, Atrey, Clary, Littman (b203) 2021; 2 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b176) 2017; 30 (pp. 855–864). Chung, Gulcehre, Cho (b26) 2014 Thomas, Koo, Chaterji, Bagchi (b173) 2018 Tian, Li, Ma, Zhang, Tan, Jin (b174) 2022; 7 Paeng, Park, Park (b124) 2021; 9 Mazyavkina, Sviridov, Ivanov, Burnaev (b112) 2021; 134 Wang, Cheng, Zhang, Hu (b185) 2022; 55 Wolsey (b204) 2020 Liu, Piplani, Toro (b103) 2022 Xu, Xu, Bastani, Bastani (b209) 2021 Liang, Yang, Wang, Liu, Ma, Zhu (b97) 2024; 249 McSweeney, Walton, Zounon (b113) 2020 Williams (b202) 1992; 8 Nazari, Oroojlooy, Takáč, Snyder (b121) 2018; 2018-Decem Julaiti, Oh, Das, Kumara (b70) 2022; 4 Panwalkar, Iskander (b126) 1977; 25 (p. 1). Seito, Munakata (b154) 2020 Geurtsen, Adan, Adan (b41) 2020 Wagle, Paranjape (b182) 2020 Park, Huh, Kim, Park (b130) 2019; 17 Esmaeilzadeh, Peh, Xu (b34) 2019 Kumar, Zhou, Tucker, Levine (b77) 2020; 33 Hammami, Lardeux, Hadj-Alouane, Jridi (b54) 2024 Monaci, Agasucci, Grani (b118) 2024; 312 Nawaz, Enscore Jr, Ham (b120) 1983; 11 Sutton, Precup, Singh (b169) 1999; 112 Csáji, Monostori, Kádár (b27) 2006; 20 Gil, Lee (b42) 2022; 12 Wu, Liao, Karatas, Chen, Zheng (b206) 2020; 97 Wang, Tang (b193) 2021; 233 Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra (b115) 2013 Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez (b158) 2018; 362 Zhang, Shen, Du, Chen, Zhang (b223) 2023; 71 Li, Liang, Zhu, Ding, Zha, Wu (b94) 2024; vol. 38 Wang, Li, Jiao, Ma (b189) 2024 Li, Fu, Zhen, Yuan, Wang, Lu (b88) 2022; 168 Gabel, Riedmiller (b38) 2006 Wesendrup, Hellingrath (b200) 2023; 179 Lee, Huang, Chen (b81) 2024; 187 Ouelhadj, Petrovic (b123) 2009; 12 Li, Zheng, Yin, Wang, Wang (b95) 2023; 40 Piot, Geist, Pietquin (b135) 2016; 28 Ding, Guan, Rauf, Yue (b29) 2024; 87 Wang, Ren, Bai, Chu, Yu, Meng (b192) 2024; 62 Hou, Q., Yang, J., Su, Y., Wang, X., & Deng, Y. (2023). Generalize learned heuristics to solve large-scale vehicle routing problems in real-time. In Rui, Zhang, Liu, Ling, Wang, Liu (b147) 2024; 193 Moon, Yang, Jeong (b119) 2021; 21 Bello, Pham, Le, Norouzi, Bengio (b11) 2016 Waubert de Puiseau, Meyes, Meisen (b198) 2022; 33 Zhang, Wu, Ma, Song, Le, Cao (b226) 2023; 5 Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Zhou, Tang, Zhu, Wang (b237) 2021; 9 Du, Li, Chen, Duan, Pan (b32) 2022 Kim, Kim, Lee, Kim (b72) 2022; 336 Rummery, Niranjan (b148) 1994 Li, Gong, Wang, Lu, Dong (b90) 2023 Zeng, Li, Bai (b218) 2022 Wu, Chen, Shen, Guo, Gao, Li (b205) 2021 Zhou, Tang, Zhu, Zhang (b238) 2021; 72 Russell, S. (1998). Learning agents for uncertain environments. In Yin, Zhuang, Jia, Wang (b215) 2020; 2020 Zhang, Lu, Hu, Amaitik (b222) 2022; 14 Zhao, Luo, Zhang (b231) 2024; 187 Wang, Hu, Wang, Xu, Ma, Yang (b187) 2021; 190 Xu, Hu, Leskovec, Jegelka (b208) 2018 Zhou, Zhu, Tang, Liu, Cai, Shi (b239) 2022; 14 Yao, Li, Gao (b214) 2024; 87 Pol, Baer, Turner, Samsonov, Meisen (b136) 2021 Ren, Ye, Yang (b144) 2021; 60 Cappart, Chételat, Khalil, Lodi, Morris, Veličković (b18) 2023; 24 Infantes, Roussel, Pereira, Jacquet, Benazera (b68) 2024 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b116) 2015; 518 Peng, Li, Zhao, Dang, Kong, Ding (b133) 2022; 15 Pan, Wang, Wang, Lu (b125) 2021 Gabel, Riedmiller (b40) 2008; 24 Luo (b105) 2020; 91 Tata, Austin (b170) 2021 Lillicrap (b98) 2015 Chen, Li, Yang (b20) 2022; XX Ahang, Jalayer, Shojaeinasab, Ogunfowora, Charter, Najjaran (b3) 2022; 22 Hu, Wang, Tang, Kanazawa, Gupta, Farahat (b63) 2023; 185 Zheng, Gupta, Serita (b236) 2019 Hasselt (b57) 2010; 23 Habib Zahmani, Atmani (b51) 2021; 24 Qu, Wang, Jasperneite (b138) 2018; vol. 2018-Septe Zhang, Dietterich (b220) 1995; 8 Luo, Zhang, Fan (b108) 2021; 159 Rahman, Sokkalingam, Othman, Biswas, Abdullah, Abdul Kadir (b139) 2021; 9 Zhao, Wang, Tan, Zhang, Yu (b233) 2021; 9 Choo, Kwon, Kim, Jae, Hottung, Tierney (b25) 2022; 35 Foerster, Farquhar, Afouras, Nardelli, Whiteson (b36) 2018 Wikimedia Commons (b201) 2017 Su, Huang, Li, Li, Hao (b161) 2022 Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b177) 2017 Schrittwieser, Antonoglou, Hubert, Simonyan, Sifre, Schmitt (b152) 2020; 588 Heger, Voß (b59) 2020 Zhang, Xie, Rose (b227) 2017 Bertsekas (b13) 2019 Rangel-Martinez, Ricardez-Sandoval (b140) 2024 (pp. 1–15). Wang, Luo, Xiong, Zhang, Peng (b191) 2020 Pateria, Subagdja, Tan, Quek (b132) 2021; 54 Zhuang, Hu, Wang (b241) 2019 Kayhan, Yildiz (b71) 2021 Grumbach, Müller, Reusch, Trojahn (b47) 2024; 35 Lee, Lee (b83) 2022; 191 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b151) 2008; 20 (pp. 1135–1144). Riedmiller, Riedmiller (b146) 1999; vol. 2 Tesauro (b172) 1995; 38 Song, Chen, Li, Cao (b159) 2022; 19 Sabri, Allaoui, Souissi (b150) 2024; 62 Lin, Deng, Chih, Chiu (b99) 2019; 15 Li, Lang, Tian, Hong, Rolf, Noortwyck (b93) 2024 Turgut, Bozdag (b175) 2020 Beck, Vuorio, Liu, Xiong, Zintgraf, Finn (b8) 2023 Ren, Ye, Yang (b143) 2020; 19 Hamilton, Ying, Leskovec (b53) 2017 In Wang, Cai, Li, Yang, Zhao, Xie (b184) 2023; 151 Yan, Wu, Wang (b211) 2022; 10 Zhang, Cui, Zhu (b219) 2020 Luo, Xiong, Zhang, Peng, Xiong (b107) 2022; 60 Zhang, Song, Cao, Zhang, Tan, Chi (b224) 2020; 33 Zhang, Wang, Qiu, Liu (b225) 2023; 186 Zhang, Xie, Rose (b228) 2019; vol. 2018-Decem Hottung, Tierney (b61) 2022; 313 Yan, Chow, Ho, Kuo, Wu, Ying (b210) 2021; 162 Davis, L., et al. (1985). Job shop scheduling with genetic algorithms. Vesselinova, Steinert, Perez-Ramirez, Boman (b178) 2020; 8 Bengio, Lodi, Prouvost (b12) 2021; 290 Ilyas, Engstrom, Santurkar, Tsipras, Janoos, Rudolph (b67) 2018 Yingying, Lianjuan, Jianan, Huimin (b216) 2022; 34 Kotary, Fioretto, van Hentenryck, Wilder (b74) 2021 Gilmer, Schoenholz, Riley, Vinyals, Dahl (b43) 2017 Li, Gu, Yuan, Tang (b91) 2022; 74 Han, Yang (b55) 2020; 8 Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Gui, Tang, Zhu, Zhang, Zhang (b50) 2023; 180 Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp (b196) 2018 Para, Del Ser, Nebro (b128) 2022; 12 Chen, Liu, Jia, Ren, Cui, Wei (b21) 2024 Marchesano, Guizzi, Santillo, Vespoli (b111) 2021 Vinyals, Bengio, Kudlur (b180) 2015 Han, Yang (b56) 2021; 20 Leng, Wang, Wu, Jin, Tang, Liu (b86) 2023 Mnih, Badia, Mirza, Graves, Lillicrap, Harley (b114) 2016 Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Liu, Chang, Tseng (b101) 2020; 8 Dong, Ren, Weng, Qi, Wang (b31) 2022; 12 Liang, Sun, Song, Chou, Fan, Fan (b96) 2022; 52 Wang, Wang, Sun, Deng, Chen (b194) 2023 Chien, Lan (b23) 2021; 162 Cai, He, Shi, Feng, Li (b17) 2024 Hwangbo, Liu, Ryu, Lee, Na (b65) 2024; 186 Vinyals, Fortunato, Jaitly (b181) 2015; 2015-Janua Zhang, Zhao, Li, Du, Feng, Mei (b229) 2024; 74 Luo, Lu, Zhu, Song (b106) 2021 Altenmüller, Stüker, Waschneck, Kuhnle, Lanza (b4) 2020; 14 Chen, Tian (b22) 2019; 32 Chang, Yu, Hu, He, Yu (b19) 2022; 10 Su, Zhang, Wang, Cen, Chen, Xie (b162) 2024; 88 Goodfellow, Bengio, Courville (b44) 2016 Foerster, Nardelli, Farquhar, Afouras, Torr, Kohli (b37) 2017 Lowe, Wu, Tamar, Harb, Pieter Abbeel, Mordatch (b104) 2017; 30 Yue, Peng, Ding, Mumtaz, Lin, Zou (b217) 2024; 90 Brammer, Lutz, Neumann (b15) 2022; 299 Tesauro (b171) 2003; 16 Li, Dong, Zhang, Han (b87) 2020; vol. 2020-Novem Liu, Fan, Zhao, Shen, Zhang (b102) 2023; 84 Xie, Zhang, Rose (b207) 2019; 1 Watkins (b197) 1989 Esteso, Peidro, Mula, Díaz-Madroñero (b35) 2022 Lang, Behrendt, Lanzerath, Reggelin, Müller (b79) 2020 Panzer, Bender (b127) 2021 Kuhnle, May, Schäfer, Lanza (b75) 2021 Sutskever, Vinyals, Le (b165) 2014; 4 Hasselt, Guez, Silver (b58) 2016 Lange, Riedmiller, Voigtländer (b80) 2012 Abbasi, Nishat, Bond, Graham-Knight, Lasserre, Lucet (b1) 2024; ahead-of-print Baer, S., Turner, D., Mohanty, P., Samsonov, V., Bakakeu, R., & Meisen, T. (2020). Multi agent deep q-network approach for online job shop scheduling in flexible manufacturing. Ni, Hao, Lu, Tong, Yuan, Duan (b122) 2021 Shahzad, Mebarki (b155) 2016; 5 Ren, Ye, Li (b142) 2021; 16 Wang, He, Li (b186) 2024; 29 Hameed, Schwung (b52) 2020 Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos (b188) 2016 Kuhnle, Schäfer, Stricker, Lanza (b76) 2019; 81 Park, Son, Ko, Noh (b131) 2021; 11 Priore, Gomez, Pino, Rosillo (b137) 2014; 28 Ingimundardottir, Runarsson (b69) 2018; 21 Sutton, McAllester, Singh, Mansour (b168) 2000 Gu, Liu, Guo, Yuan, Pei (b49) 2024; 191 Lin, Peng, Chang, Chang (b100) 2024; 189 Lei, Guo, Wang, Zhang, Meng, Qian (b84) 2023; 20 Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In Zhao, Zhang (b234) 2021; 20 Blum, Roli (b14) 2003; 35 Sun, Vogel-Heuser, Bi, Shen (b164) 2022; 4 Hochreiter (b60) 1997 Modrak, Sudhakarapandian, Balamurugan, Soltysova (b117) 2024; 17 Li, Gong, Lu, Wang (b89) 2022; 27 Wan, Fu, Li, Li (b183) 2024; 296 Yang, Xu (b213) 2021 Wang, Liu, Zhang, Feng, Huang, Li (b190) 2020; 21 Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel (b33) 2016 Huang, Gao, Li, Zhang (b64) 2023; 185 Lee, Kim (b82) 2024 Kwon, Choo, Kim, Yoon, Gwon, Min (b78) 2020; 33 Arulkumaran, Deisenroth, B Gui (10.1016/j.cie.2025.110856_b50) 2023; 180 Yin (10.1016/j.cie.2025.110856_b215) 2020; 2020 Liu (10.1016/j.cie.2025.110856_b102) 2023; 84 Para (10.1016/j.cie.2025.110856_b128) 2022; 12 Hottung (10.1016/j.cie.2025.110856_b61) 2022; 313 Chen (10.1016/j.cie.2025.110856_b22) 2019; 32 Sutskever (10.1016/j.cie.2025.110856_b165) 2014; 4 Zhang (10.1016/j.cie.2025.110856_b225) 2023; 186 Ren (10.1016/j.cie.2025.110856_b142) 2021; 16 10.1016/j.cie.2025.110856_b7 Gil (10.1016/j.cie.2025.110856_b42) 2022; 12 Modrak (10.1016/j.cie.2025.110856_b117) 2024; 17 10.1016/j.cie.2025.110856_b145 10.1016/j.cie.2025.110856_b6 10.1016/j.cie.2025.110856_b149 Stone (10.1016/j.cie.2025.110856_b160) 2000; 8 10.1016/j.cie.2025.110856_b2 Kumar (10.1016/j.cie.2025.110856_b77) 2020; 33 Leng (10.1016/j.cie.2025.110856_b86) 2023 Mnih (10.1016/j.cie.2025.110856_b115) 2013 Waubert de Puiseau (10.1016/j.cie.2025.110856_b198) 2022; 33 Ilyas (10.1016/j.cie.2025.110856_b67) 2018 Turgut (10.1016/j.cie.2025.110856_b175) 2020 Zhang (10.1016/j.cie.2025.110856_b228) 2019; vol. 2018-Decem Kwon (10.1016/j.cie.2025.110856_b78) 2020; 33 Luo (10.1016/j.cie.2025.110856_b107) 2022; 60 Sutton (10.1016/j.cie.2025.110856_b168) 2000 Gu (10.1016/j.cie.2025.110856_b48) 2023; 53 Wang (10.1016/j.cie.2025.110856_b193) 2021; 233 Tesauro (10.1016/j.cie.2025.110856_b172) 1995; 38 Cho (10.1016/j.cie.2025.110856_b24) 2022; 9 Rashid (10.1016/j.cie.2025.110856_b141) 2018 Park (10.1016/j.cie.2025.110856_b131) 2021; 11 Witty (10.1016/j.cie.2025.110856_b203) 2021; 2 Han (10.1016/j.cie.2025.110856_b56) 2021; 20 Williams (10.1016/j.cie.2025.110856_b202) 1992; 8 Li (10.1016/j.cie.2025.110856_b93) 2024 Liu (10.1016/j.cie.2025.110856_b103) 2022 Lillicrap (10.1016/j.cie.2025.110856_b98) 2015 Luo (10.1016/j.cie.2025.110856_b105) 2020; 91 Liang (10.1016/j.cie.2025.110856_b97) 2024; 249 Gabel (10.1016/j.cie.2025.110856_b40) 2008; 24 Bengio (10.1016/j.cie.2025.110856_b12) 2021; 290 Park (10.1016/j.cie.2025.110856_b129) 2021; 59 Rahman (10.1016/j.cie.2025.110856_b139) 2021; 9 Pateria (10.1016/j.cie.2025.110856_b132) 2021; 54 Zhang (10.1016/j.cie.2025.110856_b223) 2023; 71 Kool (10.1016/j.cie.2025.110856_b73) 2018 Marchesano (10.1016/j.cie.2025.110856_b111) 2021 Wang (10.1016/j.cie.2025.110856_b186) 2024; 29 Gu (10.1016/j.cie.2025.110856_b49) 2024; 191 Zhao (10.1016/j.cie.2025.110856_b232) 2024; 188 10.1016/j.cie.2025.110856_b28 Zhou (10.1016/j.cie.2025.110856_b237) 2021; 9 Ahang (10.1016/j.cie.2025.110856_b3) 2022; 22 Wang (10.1016/j.cie.2025.110856_b192) 2024; 62 Wang (10.1016/j.cie.2025.110856_b190) 2020; 21 Paeng (10.1016/j.cie.2025.110856_b124) 2021; 9 Ren (10.1016/j.cie.2025.110856_b144) 2021; 60 Rui (10.1016/j.cie.2025.110856_b147) 2024; 193 Cai (10.1016/j.cie.2025.110856_b17) 2024 Habib Zahmani (10.1016/j.cie.2025.110856_b51) 2021; 24 Han (10.1016/j.cie.2025.110856_b55) 2020; 8 Qu (10.1016/j.cie.2025.110856_b138) 2018; vol. 2018-Septe Mnih (10.1016/j.cie.2025.110856_b114) 2016 Li (10.1016/j.cie.2025.110856_b89) 2022; 27 Liang (10.1016/j.cie.2025.110856_b96) 2022; 52 Vinyals (10.1016/j.cie.2025.110856_b181) 2015; 2015-Janua Wikimedia Commons (10.1016/j.cie.2025.110856_b201) 2017 Foerster (10.1016/j.cie.2025.110856_b37) 2017 Wang (10.1016/j.cie.2025.110856_b194) 2023 Kim (10.1016/j.cie.2025.110856_b72) 2022; 336 Lei (10.1016/j.cie.2025.110856_b85) 2022; 205 Seito (10.1016/j.cie.2025.110856_b154) 2020 Zhang (10.1016/j.cie.2025.110856_b227) 2017 Mazyavkina (10.1016/j.cie.2025.110856_b112) 2021; 134 Pol (10.1016/j.cie.2025.110856_b136) 2021 Luo (10.1016/j.cie.2025.110856_b106) 2021 Vesselinova (10.1016/j.cie.2025.110856_b178) 2020; 8 Zeng (10.1016/j.cie.2025.110856_b218) 2022 Lange (10.1016/j.cie.2025.110856_b80) 2012 Vezhnevets (10.1016/j.cie.2025.110856_b179) 2017 Esteso (10.1016/j.cie.2025.110856_b35) 2022 Li (10.1016/j.cie.2025.110856_b95) 2023; 40 Sabri (10.1016/j.cie.2025.110856_b150) 2024; 62 10.1016/j.cie.2025.110856_b199 Geurtsen (10.1016/j.cie.2025.110856_b41) 2020 Lin (10.1016/j.cie.2025.110856_b100) 2024; 189 Ren (10.1016/j.cie.2025.110856_b143) 2020; 19 Rummery (10.1016/j.cie.2025.110856_b148) 1994 Xu (10.1016/j.cie.2025.110856_b208) 2018 Gilmer (10.1016/j.cie.2025.110856_b43) 2017 Zhang (10.1016/j.cie.2025.110856_b229) 2024; 74 Wolsey (10.1016/j.cie.2025.110856_b204) 2020 Yan (10.1016/j.cie.2025.110856_b211) 2022; 10 Abbasi (10.1016/j.cie.2025.110856_b1) 2024; ahead-of-print McSweeney (10.1016/j.cie.2025.110856_b113) 2020 Pan (10.1016/j.cie.2025.110856_b125) 2021 Su (10.1016/j.cie.2025.110856_b161) 2022 Ni (10.1016/j.cie.2025.110856_b122) 2021 Arulkumaran (10.1016/j.cie.2025.110856_b5) 2017; 34 Altenmüller (10.1016/j.cie.2025.110856_b4) 2020; 14 Hwangbo (10.1016/j.cie.2025.110856_b65) 2024; 186 Li (10.1016/j.cie.2025.110856_b94) 2024; vol. 38 Wang (10.1016/j.cie.2025.110856_b189) 2024 Bellman (10.1016/j.cie.2025.110856_b10) 2015 Yue (10.1016/j.cie.2025.110856_b217) 2024; 90 Kotary (10.1016/j.cie.2025.110856_b74) 2021 Wagle (10.1016/j.cie.2025.110856_b182) 2020 Waschneck (10.1016/j.cie.2025.110856_b196) 2018 Yingying (10.1016/j.cie.2025.110856_b216) 2022; 34 Zhao (10.1016/j.cie.2025.110856_b235) 2024 Sun (10.1016/j.cie.2025.110856_b164) 2022; 4 Brucker (10.1016/j.cie.2025.110856_b16) 1998; 1 Yang (10.1016/j.cie.2025.110856_b213) 2021 Lei (10.1016/j.cie.2025.110856_b84) 2023; 20 Zhou (10.1016/j.cie.2025.110856_b238) 2021; 72 Xu (10.1016/j.cie.2025.110856_b209) 2021 Li (10.1016/j.cie.2025.110856_b90) 2023 Wang (10.1016/j.cie.2025.110856_b187) 2021; 190 Rangel-Martinez (10.1016/j.cie.2025.110856_b140) 2024 Foerster (10.1016/j.cie.2025.110856_b36) 2018 Hamilton (10.1016/j.cie.2025.110856_b53) 2017 Zhang (10.1016/j.cie.2025.110856_b226) 2023; 5 Silver (10.1016/j.cie.2025.110856_b158) 2018; 362 Zhao (10.1016/j.cie.2025.110856_b233) 2021; 9 Peng (10.1016/j.cie.2025.110856_b133) 2022; 15 Zhu (10.1016/j.cie.2025.110856_b240) 2020 Wu (10.1016/j.cie.2025.110856_b205) 2021 Brammer (10.1016/j.cie.2025.110856_b15) 2022; 299 Xie (10.1016/j.cie.2025.110856_b207) 2019; 1 Wan (10.1016/j.cie.2025.110856_b183) 2024; 296 Duan (10.1016/j.cie.2025.110856_b33) 2016 Su (10.1016/j.cie.2025.110856_b163) 2023; 145 Zhao (10.1016/j.cie.2025.110856_b234) 2021; 20 Gabel (10.1016/j.cie.2025.110856_b38) 2006 Magalhaes (10.1016/j.cie.2025.110856_b110) 2021 Li (10.1016/j.cie.2025.110856_b92) 2024; 35 Ding (10.1016/j.cie.2025.110856_b29) 2024; 87 Bello (10.1016/j.cie.2025.110856_b11) 2016 Su (10.1016/j.cie.2025.110856_b162) 2024; 88 Zhang (10.1016/j.cie.2025.110856_b230) 2024; 76 Zhuang (10.1016/j.cie.2025.110856_b241) 2019 Lee (10.1016/j.cie.2025.110856_b81) 2024; 187 Yang (10.1016/j.cie.2025.110856_b212) 2019; 32 Park (10.1016/j.cie.2025.110856_b130) 2019; 17 Wang (10.1016/j.cie.2025.110856_b188) 2016 Moon (10.1016/j.cie.2025.110856_b119) 2021; 21 Zhang (10.1016/j.cie.2025.110856_b220) 1995; 8 Lee (10.1016/j.cie.2025.110856_b82) 2024 Panwalkar (10.1016/j.cie.2025.110856_b126) 1977; 25 Bertsekas (10.1016/j.cie.2025.110856_b13) 2019 Dong (10.1016/j.cie.2025.110856_b31) 2022; 12 Lang (10.1016/j.cie.2025.110856_b79) 2020 Blum (10.1016/j.cie.2025.110856_b14) 2003; 35 Vinyals (10.1016/j.cie.2025.110856_b180) 2015 Wang (10.1016/j.cie.2025.110856_b191) 2020 Li (10.1016/j.cie.2025.110856_b91) 2022; 74 Goodfellow (10.1016/j.cie.2025.110856_b44) 2016 Tata (10.1016/j.cie.2025.110856_b170) 2021 Yan (10.1016/j.cie.2025.110856_b210) 2021; 162 Hasselt (10.1016/j.cie.2025.110856_b58) 2016 Chien (10.1016/j.cie.2025.110856_b23) 2021; 162 Csáji (10.1016/j.cie.2025.110856_b27) 2006; 20 Wang (10.1016/j.cie.2025.110856_b195) 2022; 77 Esmaeilzadeh (10.1016/j.cie.2025.110856_b34) 2019 Liu (10.1016/j.cie.2025.110856_b101) 2020; 8 Wesendrup (10.1016/j.cie.2025.110856_b200) 2023; 179 Graham (10.1016/j.cie.2025.110856_b45) 1979; vol. 5 Gabel (10.1016/j.cie.2025.110856_b39) 2007 Priore (10.1016/j.cie.2025.110856_b137) 2014; 28 Song (10.1016/j.cie.2025.110856_b159) 2022; 19 Wu (10.1016/j.cie.2025.110856_b206) 2020; 97 Mnih (10.1016/j.cie.2025.110856_b116) 2015; 518 Zhou (10.1016/j.cie.2025.110856_b239) 2022; 14 Nazari (10.1016/j.cie.2025.110856_b121) 2018; 2018-Decem Kayhan (10.1016/j.cie.2025.110856_b71) 2021 Zhang (10.1016/j.cie.2025.110856_b219) 2020 Du (10.1016/j.cie.2025.110856_b32) 2022 Nawaz (10.1016/j.cie.2025.110856_b120) 1983; 11 Heger (10.1016/j.cie.2025.110856_b59) 2020 Vaswani (10.1016/j.cie.2025.110856_b176) 2017; 30 Ingimundardottir (10.1016/j.cie.2025.110856_b69) 2018; 21 Silver (10.1016/j.cie.2025.110856_b157) 2016; 529 Zhang (10.1016/j.cie.2025.110856_b222) 2022; 14 Zhao (10.1016/j.cie.2025.110856_b231) 2024; 187 Dittrich (10.1016/j.cie.2025.110856_b30) 2020; 69 Tesauro (10.1016/j.cie.2025.110856_b171) 2003; 16 Julaiti (10.1016/j.cie.2025.110856_b70) 2022; 4 Monaci (10.1016/j.cie.2025.110856_b118) 2024; 312 Luo (10.1016/j.cie.2025.110856_b109) 2021; 19 Sutton (10.1016/j.cie.2025.110856_b169) 1999; 112 Lowe (10.1016/j.cie.2025.110856_b104) 2017; 30 Scarselli (10.1016/j.cie.2025.110856_b151) 2008; 20 Schrittwieser (10.1016/j.cie.2025.110856_b152) 2020; 588 Lin (10.1016/j.cie.2025.110856_b99) 2019; 15 Luo (10.1016/j.cie.2025.110856_b108) 2021; 159 Hameed (10.1016/j.cie.2025.110856_b52) 2020 10.1016/j.cie.2025.110856_b46 Hasselt (10.1016/j.cie.2025.110856_b57) 2010; 23 Lee (10.1016/j.cie.2025.110856_b83) 2022; 191 Li (10.1016/j.cie.2025.110856_b87) 2020; vol. 2020-Novem Pinedo (10.1016/j.cie.2025.110856_b134) 1992 Sutton (10.1016/j.cie.2025.110856_b167) 2018 Riedmiller (10.1016/j.cie.2025.110856_b146) 1999; vol. 2 Zhang (10.1016/j.cie.2025.110856_b221) 2024; 189 Infantes (10.1016/j.cie.2025.110856_b68) 2024 Piot (10.1016/j.cie.2025.110856_b135) 2016; 28 Shahzad (10.1016/j.cie.2025.110856_b155) 2016; 5 Li (10.1016/j.cie.2025.110856_b88) 2022; 168 Cappart (10.1016/j.cie.2025.110856_b18) 2023; 24 Hu (10.1016/j.cie.2025.110856_b63) 2023; 185 Kuhnle (10.1016/j.cie.2025.110856_b76) 2019; 81 Ibrahim (10.1016/j.cie.2025.110856_b66) 2021; 11 Shojaeinasab (10.1016/j.cie.2025.110856_b156) 2022; 62 Beck (10.1016/j.cie.2025.110856_b8) 2023 Panzer (10.1016/j.cie.2025.110856_b127) 2021 Chen (10.1016/j.cie.2025.110856_b20) 2022; XX Wang (10.1016/j.cie.2025.110856_b185) 2022; 55 Watkins (10.1016/j.cie.2025.110856_b197) 1989 Tian (10.1016/j.cie.2025.110856_b |
| References_xml | – start-page: 1 year: 2021 end-page: 12 ident: b125 article-title: Deep reinforcement learning based optimization algorithm for permutation flow-shop scheduling publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 1 start-page: 59 year: 2019 end-page: 68 ident: b207 article-title: Online single machine scheduling based on simulation and reinforcement learning publication-title: Simulation in Produktion und Logistik – volume: 52 start-page: 56 year: 2022 end-page: 68 ident: b96 article-title: Lenovo schedules laptop manufacturing using deep reinforcement learning publication-title: INFORMS Journal on Applied Analytics – reference: (pp. 1135–1144). – year: 2019 ident: b34 article-title: Neural abstractive text summarization and fake news detection – volume: 7 start-page: 1051 year: 2022 end-page: 1064 ident: b174 article-title: Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – year: 2015 ident: b10 publication-title: Applied dynamic programming – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b157 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – year: 2013 ident: b115 article-title: Playing atari with deep reinforcement learning – volume: 145 year: 2023 ident: b163 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Applied Soft Computing – start-page: 4475 year: 2021 end-page: 4482 ident: b74 article-title: End-to-end constrained optimization learning: A survey publication-title: IJCAI international joint conference on artificial intelligence – volume: 2015-Janua start-page: 2692 year: 2015 end-page: 2700 ident: b181 article-title: Pointer networks publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: b53 article-title: Representation learning on graphs: Methods and applications – volume: XX start-page: 1 year: 2022 ident: b20 article-title: A deep reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for the job shop scheduling problem publication-title: IEEE Transactions on Industrial Informatics – year: 2022 ident: b161 article-title: Self-organizing neural scheduler for the flexible job shop problem with periodic maintenance and mandatory outsourcing constraints publication-title: IEEE Transactions on Cybernetics – volume: 3 start-page: 9 year: 1988 end-page: 44 ident: b166 article-title: Learning to predict by the methods of temporal differences publication-title: Machine Learning – year: 2015 ident: b98 article-title: Continuous control with deep reinforcement learning – volume: 12 start-page: 2366 year: 2022 ident: b31 article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach publication-title: Applied Sciences – volume: 35 start-page: 268 year: 2003 end-page: 308 ident: b14 article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison publication-title: ACM Computing Surveys (CSUR) – volume: 91 year: 2020 ident: b105 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing – volume: 185 year: 2023 ident: b64 article-title: A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals publication-title: Computers & Industrial Engineering – volume: 11 start-page: 91 year: 1983 end-page: 95 ident: b120 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega – volume: 10 start-page: 210 year: 2022 ident: b211 article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance publication-title: Machines – volume: 35 start-page: 1107 year: 2024 end-page: 1140 ident: b92 article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups publication-title: Journal of Intelligent Manufacturing – volume: 27 start-page: 610 year: 2022 end-page: 620 ident: b89 article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time publication-title: IEEE Transactions on Evolutionary Computation – year: 2023 ident: b194 article-title: Flexible job shop scheduling via dual attention network-based reinforcement learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 1608 year: 2020 end-page: 1618 ident: b59 article-title: Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences publication-title: 2020 winter simulation conference – year: 2021 ident: b127 article-title: Deep reinforcement learning in production systems: a systematic literature review publication-title: International Journal of Production Research – reference: Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In – reference: Welling, M., & Kipf, T. N. (2016). Semi-supervised classification with graph convolutional networks. In – year: 2021 ident: b209 article-title: Safely bridging offline and online reinforcement learning – volume: 71 start-page: 70 year: 2023 end-page: 81 ident: b223 article-title: Counterfactual-attention multi-agent reinforcement learning for joint condition-based maintenance and production scheduling publication-title: Journal of Manufacturing Systems – year: 2018 ident: b167 article-title: Reinforcement learning: An introduction – volume: 313 year: 2022 ident: b61 article-title: Neural large neighborhood search for routing problems publication-title: Artificial Intelligence – year: 2018 ident: b208 article-title: How powerful are graph neural networks? – start-page: 766 year: 2020 end-page: 772 ident: b154 article-title: Production scheduling based on deep reinforcement learning using graph convolutional neural network publication-title: ICAART (2) – start-page: 3441 year: 2021 end-page: 3451 ident: b122 article-title: A multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling problem publication-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining – year: 2014 ident: b26 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – start-page: 3 year: 2020 end-page: 16 ident: b113 article-title: An efficient new static scheduling heuristic for accelerated architectures publication-title: International conference on computational science – reference: Russell, S. (1998). Learning agents for uncertain environments. In – year: 2018 ident: b36 article-title: Counterfactual multi-agent policy gradients publication-title: Proceedings of the thirty-second AAAI conference on artificial intelligence and thirtieth innovative applications of artificial intelligence conference and eighth AAAI symposium on educational advances in artificial intelligence – year: 1997 ident: b60 article-title: Long Short-term Memory – year: 2000 ident: b168 article-title: Policy gradient methods for reinforcement learning with function approximation. NIPS-12 – start-page: 1 year: 2019 end-page: 17 ident: b241 article-title: Scalability of multiagent reinforcement learning publication-title: Interactions in multiagent systems – volume: 185 year: 2023 ident: b63 article-title: Knowledge-enhanced reinforcement learning for multi-machine integrated production and maintenance scheduling publication-title: Computers & Industrial Engineering – year: 2021 ident: b110 article-title: Encoder-decoder neural network architecture for solving job shop scheduling problems using reinforcement learning publication-title: 2021 IEEE symposium series on computational intelligence, SSCI 2021 - proceedings – start-page: 3899 year: 2017 end-page: 3907 ident: b227 article-title: Real-time job shop scheduling based on simulation and Markov decision processes publication-title: 2017 winter simulation conference – start-page: 1 year: 2024 end-page: 19 ident: b189 article-title: Design patterns of deep reinforcement learning models for job shop scheduling problems publication-title: Journal of Intelligent Manufacturing – volume: 186 year: 2023 ident: b225 article-title: Dynamic scheduling for flexible job shop with insufficient transportation resources via graph neural network and deep reinforcement learning publication-title: Computers & Industrial Engineering – volume: 62 start-page: 705 year: 2024 end-page: 719 ident: b150 article-title: Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness publication-title: International Journal of Production Research – year: 2015 ident: b180 article-title: Order matters: Sequence to sequence for sets – year: 2020 ident: b240 article-title: Transfer learning in deep reinforcement learning: A survey – volume: 33 start-page: 1621 year: 2020 end-page: 1632 ident: b224 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 38 start-page: 58 year: 1995 end-page: 68 ident: b172 article-title: Temporal difference learning and TD-gammon publication-title: Communications of the ACM – volume: 24 start-page: 14 year: 2008 end-page: 18 ident: b40 article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents publication-title: International Journal of Information Technology and Intelligent Computing – volume: 336 year: 2022 ident: b72 article-title: Reinforcement learning approach to scheduling of precast concrete production publication-title: Journal of Cleaner Production – volume: 34 start-page: 26 year: 2017 end-page: 38 ident: b5 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Processing Magazine – volume: 12 start-page: 417 year: 2009 end-page: 431 ident: b123 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: Journal of Scheduling – year: 2023 ident: b90 article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 189 year: 2024 ident: b221 article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV publication-title: Computers & Industrial Engineering – volume: 14 start-page: 5177 year: 2022 ident: b222 article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization publication-title: Sustainability – volume: 20 start-page: 410 year: 2021 end-page: 421 ident: b234 article-title: Application of machine learning and rule scheduling in a job-shop production control system publication-title: International Journal of Simulation Modelling – reference: Davis, L., et al. (1985). Job shop scheduling with genetic algorithms. – volume: 168 year: 2022 ident: b88 article-title: Bilevel learning for large-scale flexible flow shop scheduling publication-title: Computers & Industrial Engineering – start-page: 655 year: 2019 end-page: 671 ident: b236 article-title: Manufacturing dispatching using reinforcement and transfer learning publication-title: Joint European conference on machine learning and knowledge discovery in databases – volume: 296 year: 2024 ident: b183 article-title: Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network publication-title: Knowledge-Based Systems – volume: 19 start-page: 157 year: 2020 end-page: 168 ident: b143 article-title: A novel solution to JSPs based on long short-term memory and policy gradient algorithm publication-title: International Journal of Simulation Modelling – volume: 32 year: 2019 ident: b22 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Advances in Neural Information Processing Systems – start-page: 3277 year: 2020 end-page: 3282 ident: b191 article-title: Parallel machine workshop scheduling using the integration of proximal policy optimization training and Monte Carlo tree search publication-title: 2020 Chinese automation congress – volume: 2 year: 2021 ident: b203 article-title: Measuring and characterizing generalization in deep reinforcement learning publication-title: Applied AI Letters – volume: 60 start-page: 5937 year: 2022 end-page: 5955 ident: b107 article-title: Multi-resource constrained dynamic workshop scheduling based on proximal policy optimisation publication-title: International Journal of Production Research – volume: 9 start-page: 2633 year: 2021 ident: b139 article-title: Nature-inspired metaheuristic techniques for combinatorial optimization problems: overview and recent advances publication-title: Mathematics – start-page: 653 year: 2006 end-page: 658 ident: b38 article-title: Reducing policy degradation in neuro-dynamic programming publication-title: ESANN – year: 2016 ident: b44 article-title: Deep learning – volume: 188 year: 2024 ident: b232 article-title: Data-driven optimization for energy-constrained dietary supplement scheduling: A bounded cut MP-DQN approach publication-title: Computers & Industrial Engineering – year: 2020 ident: b41 article-title: Integrated maintenance and production scheduling – volume: 2018-Decem start-page: 9839 year: 2018 end-page: 9849 ident: b121 article-title: Reinforcement learning for solving the vehicle routing problem publication-title: Advances in Neural Information Processing Systems – year: 1989 ident: b197 article-title: Learning from delayed rewards – volume: 290 start-page: 405 year: 2021 end-page: 421 ident: b12 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research – volume: 21 start-page: 413 year: 2018 end-page: 428 ident: b69 article-title: Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem publication-title: Journal of Scheduling – volume: 74 year: 2022 ident: b91 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Robotics and Computer-Integrated Manufacturing – volume: 9 start-page: 51 year: 2022 end-page: 67 ident: b24 article-title: Minimize makespan of permutation flowshop using pointer network publication-title: Journal of Computational Design and Engineering – volume: 12 start-page: 1491 year: 2022 ident: b128 article-title: Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives publication-title: Applied Sciences – start-page: 1 year: 2022 end-page: 18 ident: b35 article-title: Reinforcement learning applied to production planning and control publication-title: International Journal of Production Research – volume: 5 start-page: 3 year: 2016 ident: b155 article-title: Learning dispatching rules for scheduling: A synergistic view comprising decision trees, tabu search and simulation publication-title: Computers – volume: 187 year: 2024 ident: b81 article-title: Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling publication-title: Computers & Chemical Engineering – reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In – volume: vol. 2 start-page: 764 year: 1999 end-page: 769 ident: b146 article-title: A neural reinforcement learning approach to learn local dispatching policies in production scheduling publication-title: IJCAI International Joint Conference on Artificial Intelligence – volume: 189 year: 2024 ident: b100 article-title: Reentrant hybrid flow shop scheduling with stockers in automated material handling systems using deep reinforcement learning publication-title: Computers & Industrial Engineering – volume: 134 year: 2021 ident: b112 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Computers & Operations Research – volume: 32 year: 2019 ident: b212 article-title: A generalized algorithm for multi-objective reinforcement learning and policy adaptation publication-title: Advances in Neural Information Processing Systems – volume: 59 start-page: 3360 year: 2021 end-page: 3377 ident: b129 article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning publication-title: International Journal of Production Research – reference: (p. 1). – start-page: 1 year: 2021 end-page: 8 ident: b170 article-title: Investigation of maximization bias in sarsa variants publication-title: 2021 IEEE symposium series on computational intelligence – start-page: 1 year: 2021 end-page: 25 ident: b71 article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review publication-title: Journal of Intelligent Manufacturing – volume: 97 year: 2020 ident: b206 article-title: Real-time neural network scheduling of emergency medical mask production during COVID-19 publication-title: Applied Soft Computing – volume: 186 year: 2024 ident: b65 article-title: Production rescheduling via explorative reinforcement learning while considering nervousness publication-title: Computers & Chemical Engineering – start-page: 35 year: 1992 end-page: 42 ident: b134 article-title: Scheduling: theory, algorithms and systems development publication-title: Operations research proceedings 1991 – volume: 22 start-page: 5413 year: 2022 ident: b3 article-title: Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified CGAN publication-title: Sensors – year: 2021 ident: b75 article-title: Explainable reinforcement learning in production control of job shop manufacturing system publication-title: International Journal of Production Research – volume: 20 start-page: 375 year: 2021 end-page: 386 ident: b56 article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem publication-title: International Journal of Simulation Modelling – year: 2020 ident: b204 article-title: Integer programming – volume: 23 year: 2010 ident: b57 article-title: Double Q-learning publication-title: Advances in Neural Information Processing Systems – volume: 60 start-page: 2787 year: 2021 end-page: 2800 ident: b144 article-title: Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network publication-title: Alexandria Engineering Journal – reference: Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In – start-page: 884 year: 2022 end-page: 890 ident: b218 article-title: A deep reinforcement learning approach to flexible job shop scheduling publication-title: 2022 IEEE international conference on systems, man, and cybernetics – start-page: 679 year: 1957 end-page: 684 ident: b9 article-title: A Markovian decision process publication-title: Journal of Mathematics and Mechanics – volume: 77 year: 2022 ident: b195 article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning publication-title: Robotics and Computer-Integrated Manufacturing – volume: 19 start-page: 3020 year: 2021 end-page: 3038 ident: b109 article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning publication-title: IEEE Transactions on Automation Science and Engineering – volume: 233 year: 2021 ident: b193 article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey publication-title: Knowledge-Based Systems – volume: 24 start-page: 1 year: 2023 end-page: 61 ident: b18 article-title: Combinatorial optimization and reasoning with graph neural networks publication-title: Journal of Machine Learning Research – volume: 9 start-page: 122995 year: 2021 end-page: 123011 ident: b233 article-title: Dynamic jobshop scheduling algorithm based on deep Q network publication-title: IEEE Access – volume: 14 start-page: 319 year: 2020 end-page: 328 ident: b4 article-title: Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints publication-title: Production Engineering – reference: . – volume: 21 start-page: 1726 year: 2020 end-page: 1744 ident: b190 article-title: Deep reinforcement learning: a survey publication-title: Frontiers of Information Technology & Electronic Engineering – year: 2017 ident: b201 article-title: Recurrent neural network unfold – volume: 2020 year: 2020 ident: b215 article-title: Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm publication-title: Mathematical Problems in Engineering – start-page: 3057 year: 2020 end-page: 3068 ident: b79 article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production publication-title: 2020 winter simulation conference – volume: 28 start-page: 1814 year: 2016 end-page: 1826 ident: b135 article-title: Bridging the gap between imitation learning and inverse reinforcement learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 1 year: 2024 end-page: 34 ident: b93 article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups publication-title: Journal of Intelligent Manufacturing – volume: 588 start-page: 604 year: 2020 end-page: 609 ident: b152 article-title: Mastering atari, go, chess and shogi by planning with a learned model publication-title: Nature – volume: 8 start-page: 120388 year: 2020 end-page: 120416 ident: b178 article-title: Learning combinatorial optimization on graphs: A survey with applications to networking publication-title: IEEE Access – start-page: 3540 year: 2017 end-page: 3549 ident: b179 article-title: Feudal networks for hierarchical reinforcement learning publication-title: International conference on machine learning – volume: 33 start-page: 911 year: 2022 end-page: 927 ident: b198 article-title: On reliability of reinforcement learning based production scheduling systems: a comparative survey publication-title: Journal of Intelligent Manufacturing – volume: 1 start-page: 31 year: 1998 end-page: 54 ident: b16 article-title: Scheduling a batching machine publication-title: Journal of Scheduling – start-page: 1 year: 2021 end-page: 12 ident: b106 article-title: Graph convolutional network-based interpretable machine learning scheme in smart grids publication-title: IEEE Transactions on Automation Science and Engineering – year: 2019 ident: b13 article-title: Reinforcement learning and optimal control – volume: 112 start-page: 181 year: 1999 end-page: 211 ident: b169 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artificial intelligence – volume: 151 year: 2023 ident: b184 article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach publication-title: Computers & Operations Research – reference: (pp. 101–103). – start-page: 1 year: 2021 end-page: 18 ident: b213 article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing publication-title: International Journal of Production Research – volume: 10 start-page: 760 year: 2022 ident: b19 article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival publication-title: Processes – volume: 180 year: 2023 ident: b50 article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach publication-title: Computers & Industrial Engineering – start-page: 1146 year: 2017 end-page: 1155 ident: b37 article-title: Stabilising experience replay for deep multi-agent reinforcement learning publication-title: International conference on machine learning – start-page: 1551 year: 2020 end-page: 1559 ident: b175 article-title: Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation publication-title: 2020 winter simulation conference – volume: 8 start-page: 71752 year: 2020 end-page: 71762 ident: b101 article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems publication-title: Ieee Access – volume: 162 year: 2021 ident: b23 article-title: Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for industry 3.5 smart production publication-title: Computers & Industrial Engineering – year: 2024 ident: b82 article-title: Graph-based imitation learning for real-time job shop dispatcher publication-title: IEEE Transactions on Automation Science and Engineering – volume: 4 start-page: 166 year: 2022 end-page: 180 ident: b164 article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions publication-title: IET Collaborative Intelligent Manufacturing – volume: 30 year: 2017 ident: b176 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 34 year: 2022 ident: b216 article-title: Quantum-behaved RS-PSO-LSSVM method for quality prediction in parts production processes publication-title: Concurrency Computations: Practice and Experience – start-page: 1 year: 2024 end-page: 32 ident: b235 article-title: Large-scale dynamic surgical scheduling under uncertainty by hierarchical reinforcement learning publication-title: International Journal of Production Research – reference: Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In – start-page: 1 year: 2024 end-page: 24 ident: b17 article-title: Resilience-oriented approach of dynamic production and maintenance scheduling optimisation considering operational uncertainty publication-title: International Journal of Production Research – start-page: 2094 year: 2016 end-page: 2100 ident: b58 article-title: Deep reinforcement learning with double Q-learning publication-title: Proceedings of the thirtieth AAAI conference on artificial intelligence – volume: 87 year: 2024 ident: b214 article-title: A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs publication-title: Swarm and Evolutionary Computation – volume: 90 year: 2024 ident: b217 article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems publication-title: Swarm and Evolutionary Computation – volume: 81 start-page: 234 year: 2019 end-page: 239 ident: b76 article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems publication-title: Procedia CIRP – volume: 35 start-page: 8760 year: 2022 end-page: 8772 ident: b25 article-title: Simulation-guided beam search for neural combinatorial optimization publication-title: Advances in Neural Information Processing Systems – volume: 191 year: 2022 ident: b83 article-title: Deep reinforcement learning based scheduling within production plan in semiconductor fabrication publication-title: Expert Systems with Applications – volume: 19 start-page: 1600 year: 2022 end-page: 1610 ident: b159 article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning publication-title: IEEE Transactions on Industrial Informatics – volume: 53 start-page: 18925 year: 2023 end-page: 18958 ident: b48 article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – reference: Hou, Q., Yang, J., Su, Y., Wang, X., & Deng, Y. (2023). Generalize learned heuristics to solve large-scale vehicle routing problems in real-time. In – volume: ahead-of-print year: 2024 ident: b1 article-title: A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches) publication-title: Business Process Management Journal – volume: 8 start-page: 345 year: 2000 end-page: 383 ident: b160 article-title: Multiagent systems: A survey from a machine learning perspective publication-title: Autonomous Robots – year: 2021 ident: b205 article-title: Graph neural networks for natural language processing: A survey – volume: 29 start-page: 1266 year: 2024 end-page: 1282 ident: b186 article-title: Solving combinatorial optimization problems with deep neural network: A survey publication-title: Tsinghua Science and Technology – volume: 4 year: 2022 ident: b70 article-title: Stochastic parallel machine scheduling using reinforcement learning publication-title: Journal of Advanced Manufacturing and Processing – start-page: 572 year: 2020 end-page: 583 ident: b182 article-title: Use of simulation-aided reinforcement learning for optimal scheduling of operations in industrial plants publication-title: 2020 winter simulation conference – start-page: 1263 year: 2017 end-page: 1272 ident: b43 article-title: Neural message passing for quantum chemistry publication-title: International conference on machine learning – volume: 28 start-page: 83 year: 2014 end-page: 97 ident: b137 article-title: Dynamic scheduling of manufacturing systems using machine learning: An updated review publication-title: Ai Edam – start-page: 515 year: 2021 end-page: 526 ident: b136 article-title: Global reward design for cooperative agents to achieve flexible production control under real-time constraints publication-title: ICEIS (1) – volume: 84 year: 2023 ident: b102 article-title: Integration of deep reinforcement learning and multi-agent system for dynamic scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels publication-title: Robotics and Computer-Integrated Manufacturing – year: 2018 ident: b73 article-title: Attention, learn to solve routing problems! – start-page: 1 year: 2012 end-page: 8 ident: b80 article-title: Autonomous reinforcement learning on raw visual input data in a real world application publication-title: The 2012 international joint conference on neural networks – volume: 11 start-page: 10870 year: 2021 ident: b66 article-title: Applications of multi-agent deep reinforcement learning: Models and algorithms publication-title: Applied Sciences – year: 2018 ident: b67 article-title: A closer look at deep policy gradients – year: 2016 ident: b11 article-title: Neural combinatorial optimization with reinforcement learning – volume: 17 start-page: 343 year: 2024 ident: b117 article-title: A review on reinforcement learning in production scheduling: An inferential perspective publication-title: Algorithms – volume: 20 start-page: 61 year: 2008 end-page: 80 ident: b151 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks – start-page: 1928 year: 2016 end-page: 1937 ident: b114 article-title: Asynchronous methods for deep reinforcement learning publication-title: International conference on machine learning – volume: 11 start-page: 2977 year: 2021 ident: b131 article-title: Digital twin and reinforcement learning-based resilient production control for micro smart factory publication-title: Applied Sciences – volume: 8 year: 1995 ident: b220 article-title: High-performance job-shop scheduling with a time-delay TD ( publication-title: Advances in Neural Information Processing Systems – volume: 40 start-page: 75 year: 2023 end-page: 101 ident: b95 article-title: Deep reinforcement learning in smart manufacturing: A review and prospects publication-title: CIRP Journal of Manufacturing Science and Technology – start-page: 1 year: 2024 end-page: 32 ident: b54 article-title: Design and calibration of a DRL algorithm for solving the job shop scheduling problem under unexpected job arrivals publication-title: Flexible Services and Manufacturing Journal – volume: 205 year: 2022 ident: b85 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Systems with Applications – volume: 4 start-page: 3104 year: 2014 end-page: 3112 ident: b165 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural Information Processing Systems – year: 2023 ident: b8 article-title: A survey of meta-reinforcement learning – volume: 62 start-page: 421 year: 2024 end-page: 443 ident: b192 article-title: Scheduling a multi-agent flow shop with two scenarios and release dates publication-title: International Journal of Production Research – volume: 33 start-page: 1179 year: 2020 end-page: 1191 ident: b77 article-title: Conservative q-learning for offline reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 21188 year: 2020 end-page: 21198 ident: b78 article-title: Pomo: Policy optimization with multiple optima for reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 17 start-page: 1420 year: 2019 end-page: 1431 ident: b130 article-title: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities publication-title: IEEE Transactions on Automation Science and Engineering – year: 2016 ident: b188 article-title: Learning to reinforcement learn – volume: 162 year: 2021 ident: b210 article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities publication-title: SSRN Electronic Journal – volume: 69 start-page: 389 year: 2020 end-page: 392 ident: b30 article-title: Cooperative multi-agent system for production control using reinforcement learning publication-title: CIRP Annals – volume: 25 start-page: 45 year: 1977 end-page: 61 ident: b126 article-title: A survey of scheduling rules publication-title: Operations Research – reference: Baer, S., Turner, D., Mohanty, P., Samsonov, V., Bakakeu, R., & Meisen, T. (2020). Multi agent deep q-network approach for online job shop scheduling in flexible manufacturing. – volume: 74 start-page: 329 year: 2024 end-page: 345 ident: b229 article-title: A novel collaborative agent reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem publication-title: Journal of Manufacturing Systems – volume: 9 start-page: 752 year: 2021 end-page: 766 ident: b237 article-title: Reinforcement learning with composite rewards for production scheduling in a smart factory publication-title: IEEE Access – year: 2016 ident: b33 article-title: Rl2: Fast reinforcement learning via slow reinforcement learning – volume: 190 year: 2021 ident: b187 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks – start-page: 1 year: 2022 end-page: 21 ident: b103 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research – volume: 20 start-page: 279 year: 2006 end-page: 288 ident: b27 article-title: Reinforcement learning in a distributed market-based production control system publication-title: Advanced Engineering Informatics – volume: 249 year: 2024 ident: b97 article-title: Dynamic constrained evolutionary optimization based on deep Q-network publication-title: Expert Systems with Applications – volume: 8 start-page: 229 year: 1992 end-page: 256 ident: b202 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning – reference: (pp. 855–864). – volume: 62 start-page: 503 year: 2022 end-page: 522 ident: b156 article-title: Intelligent manufacturing execution systems: A systematic review publication-title: Journal of Manufacturing Systems – year: 2022 ident: b32 article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – year: 2017 ident: b177 article-title: Graph attention networks – start-page: 4295 year: 2018 end-page: 4304 ident: b141 article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning publication-title: International conference on machine learning – volume: vol. 2018-Septe start-page: 433 year: 2018 end-page: 440 ident: b138 article-title: Dynamic scheduling in large-scale stochastic processing networks for demand-driven manufacturing using distributed reinforcement learning publication-title: IEEE international conference on emerging technologies and factory automation, ETFA – volume: 159 year: 2021 ident: b108 article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning publication-title: Computers & Industrial Engineering – volume: vol. 5 start-page: 287 year: 1979 end-page: 326 ident: b45 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey publication-title: Annals of discrete mathematics – volume: 35 start-page: 667 year: 2024 end-page: 686 ident: b47 article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning publication-title: Journal of Intelligent Manufacturing – start-page: 301 year: 2018 end-page: 306 ident: b196 article-title: Deep reinforcement learning for semiconductor production scheduling publication-title: 2018 29th annual SEMI advanced semiconductor manufacturing conference – volume: 179 year: 2023 ident: b200 article-title: Post-prognostics demand management, production, spare parts and maintenance planning for a single-machine system using Reinforcement Learning publication-title: Computers & Industrial Engineering – volume: 299 start-page: 75 year: 2022 end-page: 86 ident: b15 article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning publication-title: European Journal of Operational Research – start-page: 68 year: 2007 end-page: 75 ident: b39 article-title: On a successful application of multi-agent reinforcement learning to operations research benchmarks publication-title: 2007 IEEE international symposium on approximate dynamic programming and reinforcement learning – volume: 54 start-page: 1 year: 2021 end-page: 35 ident: b132 article-title: Hierarchical reinforcement learning: A comprehensive survey publication-title: ACM Computing Surveys – volume: 5 year: 2023 ident: b226 article-title: A review on learning to solve combinatorial optimisation problems in manufacturing publication-title: IET Collaborative Intelligent Manufacturing – volume: 362 start-page: 1140 year: 2018 end-page: 1144 ident: b158 article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play publication-title: Science – volume: 20 start-page: 1007 year: 2023 end-page: 1018 ident: b84 article-title: Large-scale dynamic scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement learning publication-title: IEEE Transactions on Industrial Informatics – year: 2017 ident: b153 article-title: Proximal policy optimization algorithms – volume: 76 start-page: 614 year: 2024 end-page: 626 ident: b230 article-title: A novel soft Actor–Critic framework with disjunctive graph embedding and autoencoder mechanism for Job Shop Scheduling Problems publication-title: Journal of Manufacturing Systems – volume: 191 year: 2024 ident: b49 article-title: Dynamic scheduling mechanism for intelligent workshop with deep reinforcement learning method based on multi-agent system architecture publication-title: Computers & Industrial Engineering – volume: 55 start-page: 2144 year: 2022 end-page: 2149 ident: b185 article-title: Dynamic selection of priority rules based on deep reinforcement learning for rescheduling of RCPSP publication-title: IFAC-PapersOnLine – volume: vol. 2018-Decem start-page: 3331 year: 2019 end-page: 3339 ident: b228 article-title: Real-time batching in job shops based on simulation and reinforcement learning publication-title: Proceedings - Winter simulation conference – volume: 14 year: 2022 ident: b239 article-title: Reinforcement learning for online optimization of job-shop scheduling in a smart manufacturing factory publication-title: Advances in Mechanical Engineering – year: 1994 ident: b148 publication-title: On-line Q-learning using connectionist systems – volume: 312 start-page: 910 year: 2024 end-page: 926 ident: b118 article-title: An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents publication-title: European Journal of Operational Research – volume: 88 year: 2024 ident: b162 article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning publication-title: Swarm and Evolutionary Computation – volume: vol. 2020-Novem start-page: 277 year: 2020 end-page: 284 ident: b87 article-title: Solving open shop scheduling problem via graph attention neural network publication-title: Proceedings - International conference on tools with artificial intelligence, ICTAI – year: 2024 ident: b140 article-title: A recurrent reinforcement learning strategy for optimal scheduling of partially observable job-shop and flow-shop batch chemical plants under uncertainty publication-title: Computers & Chemical Engineering – volume: 193 year: 2024 ident: b147 article-title: Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective publication-title: Computers & Industrial Engineering – volume: 30 year: 2017 ident: b104 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Advances in neural information processing systems – volume: 21 year: 2021 ident: b119 article-title: A novel approach to the job shop scheduling problem based on the deep Q-network in a cooperative multi-access edge computing ecosystem publication-title: Sensors – reference: (pp. 1–15). – volume: 16 start-page: 269 year: 2021 end-page: 284 ident: b142 article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-learning publication-title: Advances in Production Engineering & Management – start-page: 152 year: 2021 end-page: 160 ident: b111 article-title: Dynamic scheduling in a flow shop using deep reinforcement learning publication-title: IFIP international conference on advances in production management systems – volume: 8 start-page: 186474 year: 2020 end-page: 186495 ident: b55 article-title: Research on adaptive job shop scheduling problems based on dueling double DQN publication-title: IEEE Access – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b116 article-title: Human-level control through deep reinforcement learning publication-title: Nature – year: 2020 ident: b219 article-title: Deep learning on graphs: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 129 year: 2018 end-page: 136 ident: b173 article-title: Minerva: A reinforcement learning-based technique for optimal scheduling and bottleneck detection in distributed factory operations publication-title: 2018 10th international conference on communication systems & networks – start-page: 1 year: 2023 end-page: 20 ident: b86 article-title: A multi-objective reinforcement learning approach for resequencing scheduling problems in automotive manufacturing systems publication-title: International Journal of Production Research – start-page: 1 year: 2024 end-page: 20 ident: b21 article-title: Real-time stochastic flexible flow shop scheduling in a credit factory with model-based reinforcement learning publication-title: International Journal of Production Research – volume: 15 start-page: 1626 year: 2022 ident: b133 article-title: Automatic verification flow shop scheduling of electric energy meters based on an improved Q-learning algorithm publication-title: Energies – volume: 187 year: 2024 ident: b231 article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem publication-title: Computers & Industrial Engineering – start-page: 329 year: 2024 end-page: 345 ident: b68 article-title: Learning to solve job shop scheduling under uncertainty publication-title: International conference on the integration of constraint programming, artificial intelligence, and operations research – volume: vol. 38 start-page: 20185 year: 2024 end-page: 20193 ident: b94 article-title: Learning to optimize permutation flow shop scheduling via graph-based imitation learning publication-title: Proceedings of the AAAI conference on artificial intelligence – start-page: 1 year: 2020 end-page: 8 ident: b52 article-title: Reinforcement learning on job shop scheduling problems using graph networks – reference: , In – volume: 24 start-page: 175 year: 2021 end-page: 196 ident: b51 article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation publication-title: Journal of Scheduling – volume: 15 start-page: 4276 year: 2019 end-page: 4284 ident: b99 article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network publication-title: IEEE Transactions on Industrial Informatics – volume: 87 year: 2024 ident: b29 article-title: Multi-policy deep reinforcement learning for multi-objective multiplicity flexible job shop scheduling publication-title: Swarm and Evolutionary Computation – volume: 72 year: 2021 ident: b238 article-title: Multi-agent reinforcement learning for online scheduling in smart factories publication-title: Robotics and Computer-Integrated Manufacturing – volume: 12 start-page: 9332 year: 2022 ident: b42 article-title: Deep reinforcement learning approach for material scheduling considering high-dimensional environment of hybrid flow-shop problem publication-title: Applied Sciences – volume: 9 start-page: 101390 year: 2021 end-page: 101401 ident: b124 article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups publication-title: IEEE Access – volume: 16 year: 2003 ident: b171 article-title: Extending Q-learning to general adaptive multi-agent systems publication-title: Advances in Neural Information Processing Systems – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b21 article-title: Real-time stochastic flexible flow shop scheduling in a credit factory with model-based reinforcement learning publication-title: International Journal of Production Research – year: 2024 ident: 10.1016/j.cie.2025.110856_b82 article-title: Graph-based imitation learning for real-time job shop dispatcher publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2024.3486919 – start-page: 1 year: 2012 ident: 10.1016/j.cie.2025.110856_b80 article-title: Autonomous reinforcement learning on raw visual input data in a real world application – volume: 29 start-page: 1266 issue: 5 year: 2024 ident: 10.1016/j.cie.2025.110856_b186 article-title: Solving combinatorial optimization problems with deep neural network: A survey publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2023.9010076 – start-page: 1 year: 2022 ident: 10.1016/j.cie.2025.110856_b103 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research – ident: 10.1016/j.cie.2025.110856_b199 – ident: 10.1016/j.cie.2025.110856_b145 doi: 10.1145/2939672.2939778 – volume: 62 start-page: 503 year: 2022 ident: 10.1016/j.cie.2025.110856_b156 article-title: Intelligent manufacturing execution systems: A systematic review publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2022.01.004 – volume: 16 year: 2003 ident: 10.1016/j.cie.2025.110856_b171 article-title: Extending Q-learning to general adaptive multi-agent systems publication-title: Advances in Neural Information Processing Systems – year: 2021 ident: 10.1016/j.cie.2025.110856_b110 article-title: Encoder-decoder neural network architecture for solving job shop scheduling problems using reinforcement learning – start-page: 129 year: 2018 ident: 10.1016/j.cie.2025.110856_b173 article-title: Minerva: A reinforcement learning-based technique for optimal scheduling and bottleneck detection in distributed factory operations – volume: 8 start-page: 345 issue: 3 year: 2000 ident: 10.1016/j.cie.2025.110856_b160 article-title: Multiagent systems: A survey from a machine learning perspective publication-title: Autonomous Robots doi: 10.1023/A:1008942012299 – volume: vol. 2020-Novem start-page: 277 issn: 10823409 year: 2020 ident: 10.1016/j.cie.2025.110856_b87 article-title: Solving open shop scheduling problem via graph attention neural network – volume: 20 start-page: 279 issue: 3 year: 2006 ident: 10.1016/j.cie.2025.110856_b27 article-title: Reinforcement learning in a distributed market-based production control system publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2006.01.001 – ident: 10.1016/j.cie.2025.110856_b149 doi: 10.1145/279943.279964 – volume: vol. 2018-Decem start-page: 3331 year: 2019 ident: 10.1016/j.cie.2025.110856_b228 article-title: Real-time batching in job shops based on simulation and reinforcement learning – year: 1989 ident: 10.1016/j.cie.2025.110856_b197 – volume: 186 year: 2023 ident: 10.1016/j.cie.2025.110856_b225 article-title: Dynamic scheduling for flexible job shop with insufficient transportation resources via graph neural network and deep reinforcement learning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109718 – volume: 14 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.110856_b239 article-title: Reinforcement learning for online optimization of job-shop scheduling in a smart manufacturing factory publication-title: Advances in Mechanical Engineering doi: 10.1177/16878132221086120 – volume: 186 year: 2024 ident: 10.1016/j.cie.2025.110856_b65 article-title: Production rescheduling via explorative reinforcement learning while considering nervousness publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2024.108700 – volume: 185 year: 2023 ident: 10.1016/j.cie.2025.110856_b64 article-title: A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109650 – volume: vol. 2018-Septe start-page: 433 year: 2018 ident: 10.1016/j.cie.2025.110856_b138 article-title: Dynamic scheduling in large-scale stochastic processing networks for demand-driven manufacturing using distributed reinforcement learning – year: 2024 ident: 10.1016/j.cie.2025.110856_b140 article-title: A recurrent reinforcement learning strategy for optimal scheduling of partially observable job-shop and flow-shop batch chemical plants under uncertainty publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2024.108748 – volume: 87 year: 2024 ident: 10.1016/j.cie.2025.110856_b214 article-title: A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101544 – start-page: 3057 year: 2020 ident: 10.1016/j.cie.2025.110856_b79 article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production – start-page: 655 year: 2019 ident: 10.1016/j.cie.2025.110856_b236 article-title: Manufacturing dispatching using reinforcement and transfer learning – volume: 185 year: 2023 ident: 10.1016/j.cie.2025.110856_b63 article-title: Knowledge-enhanced reinforcement learning for multi-machine integrated production and maintenance scheduling publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109631 – volume: 22 start-page: 5413 issue: 14 year: 2022 ident: 10.1016/j.cie.2025.110856_b3 article-title: Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified CGAN publication-title: Sensors doi: 10.3390/s22145413 – year: 2022 ident: 10.1016/j.cie.2025.110856_b161 article-title: Self-organizing neural scheduler for the flexible job shop problem with periodic maintenance and mandatory outsourcing constraints publication-title: IEEE Transactions on Cybernetics – ident: 10.1016/j.cie.2025.110856_b6 – volume: 24 start-page: 175 issue: 2 year: 2021 ident: 10.1016/j.cie.2025.110856_b51 article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation publication-title: Journal of Scheduling doi: 10.1007/s10951-020-00664-5 – year: 2017 ident: 10.1016/j.cie.2025.110856_b153 – volume: 179 year: 2023 ident: 10.1016/j.cie.2025.110856_b200 article-title: Post-prognostics demand management, production, spare parts and maintenance planning for a single-machine system using Reinforcement Learning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109216 – volume: 588 start-page: 604 issue: 7839 year: 2020 ident: 10.1016/j.cie.2025.110856_b152 article-title: Mastering atari, go, chess and shogi by planning with a learned model publication-title: Nature doi: 10.1038/s41586-020-03051-4 – year: 2020 ident: 10.1016/j.cie.2025.110856_b41 – volume: 74 start-page: 329 year: 2024 ident: 10.1016/j.cie.2025.110856_b229 article-title: A novel collaborative agent reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2024.03.012 – start-page: 515 year: 2021 ident: 10.1016/j.cie.2025.110856_b136 article-title: Global reward design for cooperative agents to achieve flexible production control under real-time constraints – volume: 8 start-page: 229 issue: 3 year: 1992 ident: 10.1016/j.cie.2025.110856_b202 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Machine Learning doi: 10.1007/BF00992696 – volume: 38 start-page: 58 issue: 3 year: 1995 ident: 10.1016/j.cie.2025.110856_b172 article-title: Temporal difference learning and TD-gammon publication-title: Communications of the ACM doi: 10.1145/203330.203343 – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b54 article-title: Design and calibration of a DRL algorithm for solving the job shop scheduling problem under unexpected job arrivals publication-title: Flexible Services and Manufacturing Journal – year: 2018 ident: 10.1016/j.cie.2025.110856_b36 article-title: Counterfactual multi-agent policy gradients – start-page: 1 year: 2019 ident: 10.1016/j.cie.2025.110856_b241 article-title: Scalability of multiagent reinforcement learning – volume: 134 year: 2021 ident: 10.1016/j.cie.2025.110856_b112 article-title: Reinforcement learning for combinatorial optimization: A survey publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105400 – volume: 8 year: 1995 ident: 10.1016/j.cie.2025.110856_b220 article-title: High-performance job-shop scheduling with a time-delay TD (λ) network publication-title: Advances in Neural Information Processing Systems – start-page: 766 year: 2020 ident: 10.1016/j.cie.2025.110856_b154 article-title: Production scheduling based on deep reinforcement learning using graph convolutional neural network – start-page: 3277 year: 2020 ident: 10.1016/j.cie.2025.110856_b191 article-title: Parallel machine workshop scheduling using the integration of proximal policy optimization training and Monte Carlo tree search – year: 2019 ident: 10.1016/j.cie.2025.110856_b34 – volume: 33 start-page: 1621 year: 2020 ident: 10.1016/j.cie.2025.110856_b224 article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 27 start-page: 610 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.110856_b89 article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3175832 – year: 2014 ident: 10.1016/j.cie.2025.110856_b26 – volume: 3 start-page: 9 issue: 1 year: 1988 ident: 10.1016/j.cie.2025.110856_b166 article-title: Learning to predict by the methods of temporal differences publication-title: Machine Learning doi: 10.1007/BF00115009 – volume: 72 year: 2021 ident: 10.1016/j.cie.2025.110856_b238 article-title: Multi-agent reinforcement learning for online scheduling in smart factories publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2021.102202 – volume: 16 start-page: 269 issue: 3 year: 2021 ident: 10.1016/j.cie.2025.110856_b142 article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-learning publication-title: Advances in Production Engineering & Management doi: 10.14743/apem2021.3.399 – volume: 17 start-page: 343 issue: 8 year: 2024 ident: 10.1016/j.cie.2025.110856_b117 article-title: A review on reinforcement learning in production scheduling: An inferential perspective publication-title: Algorithms doi: 10.3390/a17080343 – volume: 74 issn: 07365845 issue: August 2021 year: 2022 ident: 10.1016/j.cie.2025.110856_b91 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Robotics and Computer-Integrated Manufacturing – volume: 35 start-page: 667 issue: 2 year: 2024 ident: 10.1016/j.cie.2025.110856_b47 article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-02069-x – volume: 19 start-page: 3020 issue: 4 year: 2021 ident: 10.1016/j.cie.2025.110856_b109 article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2021.3104716 – volume: 40 start-page: 75 year: 2023 ident: 10.1016/j.cie.2025.110856_b95 article-title: Deep reinforcement learning in smart manufacturing: A review and prospects publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2022.11.003 – volume: 11 start-page: 2977 issue: 7 year: 2021 ident: 10.1016/j.cie.2025.110856_b131 article-title: Digital twin and reinforcement learning-based resilient production control for micro smart factory publication-title: Applied Sciences doi: 10.3390/app11072977 – volume: 336 year: 2022 ident: 10.1016/j.cie.2025.110856_b72 article-title: Reinforcement learning approach to scheduling of precast concrete production publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2022.130419 – volume: 23 year: 2010 ident: 10.1016/j.cie.2025.110856_b57 article-title: Double Q-learning publication-title: Advances in Neural Information Processing Systems – start-page: 1551 year: 2020 ident: 10.1016/j.cie.2025.110856_b175 article-title: Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b189 article-title: Design patterns of deep reinforcement learning models for job shop scheduling problems publication-title: Journal of Intelligent Manufacturing – start-page: 3 year: 2020 ident: 10.1016/j.cie.2025.110856_b113 article-title: An efficient new static scheduling heuristic for accelerated architectures – volume: 12 start-page: 1491 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.110856_b128 article-title: Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives publication-title: Applied Sciences doi: 10.3390/app12031491 – volume: 24 start-page: 14 issue: 4 year: 2008 ident: 10.1016/j.cie.2025.110856_b40 article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents publication-title: International Journal of Information Technology and Intelligent Computing – year: 2000 ident: 10.1016/j.cie.2025.110856_b168 – volume: 7 start-page: 1051 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.110856_b174 article-title: Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2022.3146882 – volume: 33 start-page: 21188 year: 2020 ident: 10.1016/j.cie.2025.110856_b78 article-title: Pomo: Policy optimization with multiple optima for reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 191 year: 2022 ident: 10.1016/j.cie.2025.110856_b83 article-title: Deep reinforcement learning based scheduling within production plan in semiconductor fabrication publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116222 – volume: 20 start-page: 1007 issue: 1 year: 2023 ident: 10.1016/j.cie.2025.110856_b84 article-title: Large-scale dynamic scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3272661 – volume: 2020 year: 2020 ident: 10.1016/j.cie.2025.110856_b215 article-title: Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm publication-title: Mathematical Problems in Engineering doi: 10.1155/2020/9462048 – year: 2018 ident: 10.1016/j.cie.2025.110856_b167 – volume: 35 start-page: 268 issue: 3 year: 2003 ident: 10.1016/j.cie.2025.110856_b14 article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/937503.937505 – volume: 20 start-page: 410 issn: 19968566 issue: 2 year: 2021 ident: 10.1016/j.cie.2025.110856_b234 article-title: Application of machine learning and rule scheduling in a job-shop production control system publication-title: International Journal of Simulation Modelling doi: 10.2507/IJSIMM20-2-CO10 – volume: 12 start-page: 9332 issue: 18 year: 2022 ident: 10.1016/j.cie.2025.110856_b42 article-title: Deep reinforcement learning approach for material scheduling considering high-dimensional environment of hybrid flow-shop problem publication-title: Applied Sciences doi: 10.3390/app12189332 – volume: 21 start-page: 413 issue: 4 year: 2018 ident: 10.1016/j.cie.2025.110856_b69 article-title: Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem publication-title: Journal of Scheduling doi: 10.1007/s10951-017-0534-0 – start-page: 1 year: 2021 ident: 10.1016/j.cie.2025.110856_b170 article-title: Investigation of maximization bias in sarsa variants – volume: 10 start-page: 210 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.110856_b211 article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance publication-title: Machines doi: 10.3390/machines10030210 – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b17 article-title: Resilience-oriented approach of dynamic production and maintenance scheduling optimisation considering operational uncertainty publication-title: International Journal of Production Research – start-page: 653 year: 2006 ident: 10.1016/j.cie.2025.110856_b38 article-title: Reducing policy degradation in neuro-dynamic programming – year: 2021 ident: 10.1016/j.cie.2025.110856_b209 – start-page: 3899 year: 2017 ident: 10.1016/j.cie.2025.110856_b227 article-title: Real-time job shop scheduling based on simulation and Markov decision processes – volume: 189 year: 2024 ident: 10.1016/j.cie.2025.110856_b100 article-title: Reentrant hybrid flow shop scheduling with stockers in automated material handling systems using deep reinforcement learning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.109995 – volume: 91 issn: 15684946 year: 2020 ident: 10.1016/j.cie.2025.110856_b105 article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106208 – volume: 62 start-page: 421 issue: 1–2 year: 2024 ident: 10.1016/j.cie.2025.110856_b192 article-title: Scheduling a multi-agent flow shop with two scenarios and release dates publication-title: International Journal of Production Research doi: 10.1080/00207543.2023.2188646 – volume: 162 year: 2021 ident: 10.1016/j.cie.2025.110856_b23 article-title: Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for industry 3.5 smart production publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107782 – volume: 62 start-page: 705 issue: 3 year: 2024 ident: 10.1016/j.cie.2025.110856_b150 article-title: Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness publication-title: International Journal of Production Research doi: 10.1080/00207543.2023.2172472 – volume: 189 year: 2024 ident: 10.1016/j.cie.2025.110856_b221 article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.109917 – volume: 5 issue: 1 year: 2023 ident: 10.1016/j.cie.2025.110856_b226 article-title: A review on learning to solve combinatorial optimisation problems in manufacturing publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/cim2.12072 – ident: 10.1016/j.cie.2025.110856_b2 doi: 10.1145/1015330.1015430 – ident: 10.1016/j.cie.2025.110856_b46 doi: 10.1145/2939672.2939754 – volume: 1 start-page: 59 year: 2019 ident: 10.1016/j.cie.2025.110856_b207 article-title: Online single machine scheduling based on simulation and reinforcement learning publication-title: Simulation in Produktion und Logistik – year: 2016 ident: 10.1016/j.cie.2025.110856_b11 – volume: 233 year: 2021 ident: 10.1016/j.cie.2025.110856_b193 article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107526 – start-page: 68 year: 2007 ident: 10.1016/j.cie.2025.110856_b39 article-title: On a successful application of multi-agent reinforcement learning to operations research benchmarks – year: 2016 ident: 10.1016/j.cie.2025.110856_b44 – volume: 193 year: 2024 ident: 10.1016/j.cie.2025.110856_b147 article-title: Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110325 – volume: 8 start-page: 71752 year: 2020 ident: 10.1016/j.cie.2025.110856_b101 article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems publication-title: Ieee Access doi: 10.1109/ACCESS.2020.2987820 – volume: 190 year: 2021 ident: 10.1016/j.cie.2025.110856_b187 article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning publication-title: Computer Networks doi: 10.1016/j.comnet.2021.107969 – start-page: 2094 year: 2016 ident: 10.1016/j.cie.2025.110856_b58 article-title: Deep reinforcement learning with double Q-learning – volume: 14 start-page: 319 issn: 18637353 issue: 3 year: 2020 ident: 10.1016/j.cie.2025.110856_b4 article-title: Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints publication-title: Production Engineering doi: 10.1007/s11740-020-00967-8 – year: 2022 ident: 10.1016/j.cie.2025.110856_b32 article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 25 start-page: 45 issue: 1 year: 1977 ident: 10.1016/j.cie.2025.110856_b126 article-title: A survey of scheduling rules publication-title: Operations Research doi: 10.1287/opre.25.1.45 – start-page: 4295 year: 2018 ident: 10.1016/j.cie.2025.110856_b141 article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning – volume: 9 start-page: 2633 issue: 20 year: 2021 ident: 10.1016/j.cie.2025.110856_b139 article-title: Nature-inspired metaheuristic techniques for combinatorial optimization problems: overview and recent advances publication-title: Mathematics doi: 10.3390/math9202633 – start-page: 1928 year: 2016 ident: 10.1016/j.cie.2025.110856_b114 article-title: Asynchronous methods for deep reinforcement learning – start-page: 152 year: 2021 ident: 10.1016/j.cie.2025.110856_b111 article-title: Dynamic scheduling in a flow shop using deep reinforcement learning – ident: 10.1016/j.cie.2025.110856_b7 – start-page: 1 year: 2021 ident: 10.1016/j.cie.2025.110856_b213 article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing publication-title: International Journal of Production Research – volume: 20 start-page: 375 issn: 19968566 issue: 2 year: 2021 ident: 10.1016/j.cie.2025.110856_b56 article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem publication-title: International Journal of Simulation Modelling doi: 10.2507/IJSIMM20-2-CO7 – volume: 188 year: 2024 ident: 10.1016/j.cie.2025.110856_b232 article-title: Data-driven optimization for energy-constrained dietary supplement scheduling: A bounded cut MP-DQN approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.109894 – year: 2018 ident: 10.1016/j.cie.2025.110856_b73 – volume: 168 issn: 03608352 issue: 2 year: 2022 ident: 10.1016/j.cie.2025.110856_b88 article-title: Bilevel learning for large-scale flexible flow shop scheduling publication-title: Computers & Industrial Engineering – year: 2017 ident: 10.1016/j.cie.2025.110856_b201 – volume: 24 start-page: 1 issue: 130 year: 2023 ident: 10.1016/j.cie.2025.110856_b18 article-title: Combinatorial optimization and reasoning with graph neural networks publication-title: Journal of Machine Learning Research – year: 2023 ident: 10.1016/j.cie.2025.110856_b8 – year: 2021 ident: 10.1016/j.cie.2025.110856_b205 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.cie.2025.110856_b157 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 21 issn: 14248220 issue: 13 year: 2021 ident: 10.1016/j.cie.2025.110856_b119 article-title: A novel approach to the job shop scheduling problem based on the deep Q-network in a cooperative multi-access edge computing ecosystem publication-title: Sensors doi: 10.3390/s21134553 – volume: 4 start-page: 3104 issn: 10495258 issue: January year: 2014 ident: 10.1016/j.cie.2025.110856_b165 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural Information Processing Systems – volume: 296 year: 2024 ident: 10.1016/j.cie.2025.110856_b183 article-title: Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2024.111940 – volume: 28 start-page: 1814 issue: 8 year: 2016 ident: 10.1016/j.cie.2025.110856_b135 article-title: Bridging the gap between imitation learning and inverse reinforcement learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2543000 – year: 2017 ident: 10.1016/j.cie.2025.110856_b177 – volume: 162 issue: March year: 2021 ident: 10.1016/j.cie.2025.110856_b210 article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities publication-title: SSRN Electronic Journal – start-page: 572 year: 2020 ident: 10.1016/j.cie.2025.110856_b182 article-title: Use of simulation-aided reinforcement learning for optimal scheduling of operations in industrial plants – volume: 187 year: 2024 ident: 10.1016/j.cie.2025.110856_b231 article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109802 – year: 2015 ident: 10.1016/j.cie.2025.110856_b10 – volume: vol. 5 start-page: 287 year: 1979 ident: 10.1016/j.cie.2025.110856_b45 article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey doi: 10.1016/S0167-5060(08)70356-X – start-page: 1 year: 2023 ident: 10.1016/j.cie.2025.110856_b86 article-title: A multi-objective reinforcement learning approach for resequencing scheduling problems in automotive manufacturing systems publication-title: International Journal of Production Research – volume: 69 start-page: 389 issn: 17260604 issue: 1 year: 2020 ident: 10.1016/j.cie.2025.110856_b30 article-title: Cooperative multi-agent system for production control using reinforcement learning publication-title: CIRP Annals doi: 10.1016/j.cirp.2020.04.005 – volume: 81 start-page: 234 issn: 22128271 year: 2019 ident: 10.1016/j.cie.2025.110856_b76 article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.041 – volume: 33 start-page: 911 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.110856_b198 article-title: On reliability of reinforcement learning based production scheduling systems: a comparative survey publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-022-01915-2 – volume: 299 start-page: 75 issue: 1 year: 2022 ident: 10.1016/j.cie.2025.110856_b15 article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2021.08.007 – volume: 35 start-page: 1107 issue: 3 year: 2024 ident: 10.1016/j.cie.2025.110856_b92 article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-023-02094-4 – volume: 30 year: 2017 ident: 10.1016/j.cie.2025.110856_b176 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – volume: 205 year: 2022 ident: 10.1016/j.cie.2025.110856_b85 article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117796 – volume: 15 start-page: 1626 issue: 5 year: 2022 ident: 10.1016/j.cie.2025.110856_b133 article-title: Automatic verification flow shop scheduling of electric energy meters based on an improved Q-learning algorithm publication-title: Energies doi: 10.3390/en15051626 – volume: 8 start-page: 120388 year: 2020 ident: 10.1016/j.cie.2025.110856_b178 article-title: Learning combinatorial optimization on graphs: A survey with applications to networking publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004964 – year: 1997 ident: 10.1016/j.cie.2025.110856_b60 – year: 2023 ident: 10.1016/j.cie.2025.110856_b194 article-title: Flexible job shop scheduling via dual attention network-based reinforcement learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 21 start-page: 1726 issue: 12 year: 2020 ident: 10.1016/j.cie.2025.110856_b190 article-title: Deep reinforcement learning: a survey publication-title: Frontiers of Information Technology & Electronic Engineering doi: 10.1631/FITEE.1900533 – volume: 9 start-page: 752 issn: 21693536 year: 2021 ident: 10.1016/j.cie.2025.110856_b237 article-title: Reinforcement learning with composite rewards for production scheduling in a smart factory publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3046784 – volume: 145 year: 2023 ident: 10.1016/j.cie.2025.110856_b163 article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110596 – volume: 34 issue: 7 year: 2022 ident: 10.1016/j.cie.2025.110856_b216 article-title: Quantum-behaved RS-PSO-LSSVM method for quality prediction in parts production processes publication-title: Concurrency Computations: Practice and Experience – start-page: 3540 year: 2017 ident: 10.1016/j.cie.2025.110856_b179 article-title: Feudal networks for hierarchical reinforcement learning – ident: 10.1016/j.cie.2025.110856_b28 – year: 2020 ident: 10.1016/j.cie.2025.110856_b240 – volume: 191 year: 2024 ident: 10.1016/j.cie.2025.110856_b49 article-title: Dynamic scheduling mechanism for intelligent workshop with deep reinforcement learning method based on multi-agent system architecture publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110155 – start-page: 1608 year: 2020 ident: 10.1016/j.cie.2025.110856_b59 article-title: Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences – year: 2017 ident: 10.1016/j.cie.2025.110856_b53 – volume: 2018-Decem start-page: 9839 issn: 10495258 year: 2018 ident: 10.1016/j.cie.2025.110856_b121 article-title: Reinforcement learning for solving the vehicle routing problem publication-title: Advances in Neural Information Processing Systems – year: 2023 ident: 10.1016/j.cie.2025.110856_b90 article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.cie.2025.110856_b116 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b93 article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups publication-title: Journal of Intelligent Manufacturing – volume: 77 year: 2022 ident: 10.1016/j.cie.2025.110856_b195 article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2022.102324 – volume: 54 start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.cie.2025.110856_b132 article-title: Hierarchical reinforcement learning: A comprehensive survey publication-title: ACM Computing Surveys doi: 10.1145/3453160 – year: 2015 ident: 10.1016/j.cie.2025.110856_b180 – volume: 313 year: 2022 ident: 10.1016/j.cie.2025.110856_b61 article-title: Neural large neighborhood search for routing problems publication-title: Artificial Intelligence doi: 10.1016/j.artint.2022.103786 – volume: 112 start-page: 181 issue: 1–2 year: 1999 ident: 10.1016/j.cie.2025.110856_b169 article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning publication-title: Artificial intelligence doi: 10.1016/S0004-3702(99)00052-1 – issn: 1366588X year: 2021 ident: 10.1016/j.cie.2025.110856_b127 article-title: Deep reinforcement learning in production systems: a systematic literature review publication-title: International Journal of Production Research – volume: 60 start-page: 2787 issue: 3 year: 2021 ident: 10.1016/j.cie.2025.110856_b144 article-title: Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.01.030 – volume: 151 year: 2023 ident: 10.1016/j.cie.2025.110856_b184 article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach publication-title: Computers & Operations Research doi: 10.1016/j.cor.2022.106095 – volume: 32 issn: 10495258 issue: NeurIPS year: 2019 ident: 10.1016/j.cie.2025.110856_b22 article-title: Learning to perform local rewriting for combinatorial optimization publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 91 issue: 1 year: 1983 ident: 10.1016/j.cie.2025.110856_b120 article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem publication-title: Omega doi: 10.1016/0305-0483(83)90088-9 – issn: 1366588X year: 2021 ident: 10.1016/j.cie.2025.110856_b75 article-title: Explainable reinforcement learning in production control of job shop manufacturing system publication-title: International Journal of Production Research – volume: vol. 38 start-page: 20185 year: 2024 ident: 10.1016/j.cie.2025.110856_b94 article-title: Learning to optimize permutation flow shop scheduling via graph-based imitation learning – volume: 34 start-page: 26 issue: 6 year: 2017 ident: 10.1016/j.cie.2025.110856_b5 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2017.2743240 – start-page: 3441 year: 2021 ident: 10.1016/j.cie.2025.110856_b122 article-title: A multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling problem – volume: 10 start-page: 760 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.110856_b19 article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival publication-title: Processes doi: 10.3390/pr10040760 – volume: 33 start-page: 1179 year: 2020 ident: 10.1016/j.cie.2025.110856_b77 article-title: Conservative q-learning for offline reinforcement learning publication-title: Advances in Neural Information Processing Systems – volume: 1 start-page: 31 issue: 1 year: 1998 ident: 10.1016/j.cie.2025.110856_b16 article-title: Scheduling a batching machine publication-title: Journal of Scheduling doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R – volume: 90 year: 2024 ident: 10.1016/j.cie.2025.110856_b217 article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101660 – year: 2016 ident: 10.1016/j.cie.2025.110856_b33 – volume: 59 start-page: 3360 issn: 1366588X issue: 11 year: 2021 ident: 10.1016/j.cie.2025.110856_b129 article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning publication-title: International Journal of Production Research doi: 10.1080/00207543.2020.1870013 – volume: 76 start-page: 614 year: 2024 ident: 10.1016/j.cie.2025.110856_b230 article-title: A novel soft Actor–Critic framework with disjunctive graph embedding and autoencoder mechanism for Job Shop Scheduling Problems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2024.08.015 – volume: 8 start-page: 186474 issn: 21693536 year: 2020 ident: 10.1016/j.cie.2025.110856_b55 article-title: Research on adaptive job shop scheduling problems based on dueling double DQN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029868 – year: 2020 ident: 10.1016/j.cie.2025.110856_b219 article-title: Deep learning on graphs: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 249 year: 2024 ident: 10.1016/j.cie.2025.110856_b97 article-title: Dynamic constrained evolutionary optimization based on deep Q-network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123592 – start-page: 1 issn: 15583783 year: 2021 ident: 10.1016/j.cie.2025.110856_b106 article-title: Graph convolutional network-based interpretable machine learning scheme in smart grids publication-title: IEEE Transactions on Automation Science and Engineering – volume: 32 year: 2019 ident: 10.1016/j.cie.2025.110856_b212 article-title: A generalized algorithm for multi-objective reinforcement learning and policy adaptation publication-title: Advances in Neural Information Processing Systems – year: 1994 ident: 10.1016/j.cie.2025.110856_b148 – start-page: 679 year: 1957 ident: 10.1016/j.cie.2025.110856_b9 article-title: A Markovian decision process publication-title: Journal of Mathematics and Mechanics – start-page: 4475 year: 2021 ident: 10.1016/j.cie.2025.110856_b74 article-title: End-to-end constrained optimization learning: A survey – volume: XX start-page: 1 issn: 1551-3203 issue: XX year: 2022 ident: 10.1016/j.cie.2025.110856_b20 article-title: A deep reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for the job shop scheduling problem publication-title: IEEE Transactions on Industrial Informatics – start-page: 1146 year: 2017 ident: 10.1016/j.cie.2025.110856_b37 article-title: Stabilising experience replay for deep multi-agent reinforcement learning – volume: 53 start-page: 18925 issue: 15 year: 2023 ident: 10.1016/j.cie.2025.110856_b48 article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-023-04479-7 – volume: 2 issue: 4 year: 2021 ident: 10.1016/j.cie.2025.110856_b203 article-title: Measuring and characterizing generalization in deep reinforcement learning publication-title: Applied AI Letters doi: 10.1002/ail2.45 – volume: 35 start-page: 8760 year: 2022 ident: 10.1016/j.cie.2025.110856_b25 article-title: Simulation-guided beam search for neural combinatorial optimization publication-title: Advances in Neural Information Processing Systems – volume: 60 start-page: 5937 issue: 19 year: 2022 ident: 10.1016/j.cie.2025.110856_b107 article-title: Multi-resource constrained dynamic workshop scheduling based on proximal policy optimisation publication-title: International Journal of Production Research doi: 10.1080/00207543.2021.1975057 – year: 2013 ident: 10.1016/j.cie.2025.110856_b115 – volume: 4 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.110856_b70 article-title: Stochastic parallel machine scheduling using reinforcement learning publication-title: Journal of Advanced Manufacturing and Processing doi: 10.1002/amp2.10119 – volume: 312 start-page: 910 issue: 3 year: 2024 ident: 10.1016/j.cie.2025.110856_b118 article-title: An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2023.07.037 – volume: 14 start-page: 5177 issue: 9 year: 2022 ident: 10.1016/j.cie.2025.110856_b222 article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization publication-title: Sustainability doi: 10.3390/su14095177 – volume: 17 start-page: 1420 issue: 3 year: 2019 ident: 10.1016/j.cie.2025.110856_b130 article-title: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities publication-title: IEEE Transactions on Automation Science and Engineering – volume: 19 start-page: 1600 issue: 2 year: 2022 ident: 10.1016/j.cie.2025.110856_b159 article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2022.3189725 – volume: 180 year: 2023 ident: 10.1016/j.cie.2025.110856_b50 article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2023.109255 – volume: 5 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.cie.2025.110856_b155 article-title: Learning dispatching rules for scheduling: A synergistic view comprising decision trees, tabu search and simulation publication-title: Computers doi: 10.3390/computers5010003 – volume: 84 year: 2023 ident: 10.1016/j.cie.2025.110856_b102 article-title: Integration of deep reinforcement learning and multi-agent system for dynamic scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2023.102605 – volume: 159 issn: 03608352 issue: May year: 2021 ident: 10.1016/j.cie.2025.110856_b108 article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning publication-title: Computers & Industrial Engineering – year: 2020 ident: 10.1016/j.cie.2025.110856_b204 – volume: ahead-of-print issue: ahead-of-print year: 2024 ident: 10.1016/j.cie.2025.110856_b1 article-title: A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches) publication-title: Business Process Management Journal – start-page: 1 year: 2021 ident: 10.1016/j.cie.2025.110856_b71 article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review publication-title: Journal of Intelligent Manufacturing – volume: 19 start-page: 157 issn: 19968566 issue: 1 year: 2020 ident: 10.1016/j.cie.2025.110856_b143 article-title: A novel solution to JSPs based on long short-term memory and policy gradient algorithm publication-title: International Journal of Simulation Modelling doi: 10.2507/IJSIMM19-1-CO4 – volume: vol. 2 start-page: 764 year: 1999 ident: 10.1016/j.cie.2025.110856_b146 article-title: A neural reinforcement learning approach to learn local dispatching policies in production scheduling – volume: 88 year: 2024 ident: 10.1016/j.cie.2025.110856_b162 article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101605 – volume: 9 start-page: 122995 issn: 21693536 year: 2021 ident: 10.1016/j.cie.2025.110856_b233 article-title: Dynamic jobshop scheduling algorithm based on deep Q network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110242 – start-page: 1263 year: 2017 ident: 10.1016/j.cie.2025.110856_b43 article-title: Neural message passing for quantum chemistry – ident: 10.1016/j.cie.2025.110856_b62 – year: 2015 ident: 10.1016/j.cie.2025.110856_b98 – volume: 2015-Janua start-page: 2692 issn: 10495258 year: 2015 ident: 10.1016/j.cie.2025.110856_b181 article-title: Pointer networks publication-title: Advances in Neural Information Processing Systems – volume: 30 year: 2017 ident: 10.1016/j.cie.2025.110856_b104 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Advances in neural information processing systems – volume: 290 start-page: 405 issn: 03772217 issue: 2 year: 2021 ident: 10.1016/j.cie.2025.110856_b12 article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2020.07.063 – start-page: 1 year: 2022 ident: 10.1016/j.cie.2025.110856_b35 article-title: Reinforcement learning applied to production planning and control publication-title: International Journal of Production Research – volume: 15 start-page: 4276 issue: 7 year: 2019 ident: 10.1016/j.cie.2025.110856_b99 article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2908210 – start-page: 1 year: 2024 ident: 10.1016/j.cie.2025.110856_b235 article-title: Large-scale dynamic surgical scheduling under uncertainty by hierarchical reinforcement learning publication-title: International Journal of Production Research – start-page: 1 issn: 2471285X year: 2021 ident: 10.1016/j.cie.2025.110856_b125 article-title: Deep reinforcement learning based optimization algorithm for permutation flow-shop scheduling publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – start-page: 884 year: 2022 ident: 10.1016/j.cie.2025.110856_b218 article-title: A deep reinforcement learning approach to flexible job shop scheduling – year: 2018 ident: 10.1016/j.cie.2025.110856_b67 – year: 2019 ident: 10.1016/j.cie.2025.110856_b13 – volume: 52 start-page: 56 issn: 2644-0865 issue: 1 year: 2022 ident: 10.1016/j.cie.2025.110856_b96 article-title: Lenovo schedules laptop manufacturing using deep reinforcement learning publication-title: INFORMS Journal on Applied Analytics doi: 10.1287/inte.2021.1109 – volume: 20 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.cie.2025.110856_b151 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2005605 – start-page: 301 year: 2018 ident: 10.1016/j.cie.2025.110856_b196 article-title: Deep reinforcement learning for semiconductor production scheduling – volume: 28 start-page: 83 issue: 1 year: 2014 ident: 10.1016/j.cie.2025.110856_b137 article-title: Dynamic scheduling of manufacturing systems using machine learning: An updated review publication-title: Ai Edam – volume: 97 year: 2020 ident: 10.1016/j.cie.2025.110856_b206 article-title: Real-time neural network scheduling of emergency medical mask production during COVID-19 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106790 – volume: 9 start-page: 101390 issn: 21693536 year: 2021 ident: 10.1016/j.cie.2025.110856_b124 article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3097254 – volume: 71 start-page: 70 year: 2023 ident: 10.1016/j.cie.2025.110856_b223 article-title: Counterfactual-attention multi-agent reinforcement learning for joint condition-based maintenance and production scheduling publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2023.08.011 – year: 2016 ident: 10.1016/j.cie.2025.110856_b188 – volume: 55 start-page: 2144 issue: 10 year: 2022 ident: 10.1016/j.cie.2025.110856_b185 article-title: Dynamic selection of priority rules based on deep reinforcement learning for rescheduling of RCPSP publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.10.025 – volume: 187 year: 2024 ident: 10.1016/j.cie.2025.110856_b81 article-title: Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2024.108745 – volume: 87 year: 2024 ident: 10.1016/j.cie.2025.110856_b29 article-title: Multi-policy deep reinforcement learning for multi-objective multiplicity flexible job shop scheduling publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2024.101550 – volume: 11 start-page: 10870 issue: 22 year: 2021 ident: 10.1016/j.cie.2025.110856_b66 article-title: Applications of multi-agent deep reinforcement learning: Models and algorithms publication-title: Applied Sciences doi: 10.3390/app112210870 – volume: 362 start-page: 1140 issue: 6419 year: 2018 ident: 10.1016/j.cie.2025.110856_b158 article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play publication-title: Science doi: 10.1126/science.aar6404 – start-page: 35 year: 1992 ident: 10.1016/j.cie.2025.110856_b134 article-title: Scheduling: theory, algorithms and systems development – volume: 9 start-page: 51 issue: 1 year: 2022 ident: 10.1016/j.cie.2025.110856_b24 article-title: Minimize makespan of permutation flowshop using pointer network publication-title: Journal of Computational Design and Engineering doi: 10.1093/jcde/qwab068 – volume: 12 start-page: 417 issue: 4 year: 2009 ident: 10.1016/j.cie.2025.110856_b123 article-title: A survey of dynamic scheduling in manufacturing systems publication-title: Journal of Scheduling doi: 10.1007/s10951-008-0090-8 – volume: 4 start-page: 166 issue: 3 year: 2022 ident: 10.1016/j.cie.2025.110856_b164 article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/cim2.12060 – volume: 12 start-page: 2366 issue: 5 year: 2022 ident: 10.1016/j.cie.2025.110856_b31 article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach publication-title: Applied Sciences doi: 10.3390/app12052366 – start-page: 329 year: 2024 ident: 10.1016/j.cie.2025.110856_b68 article-title: Learning to solve job shop scheduling under uncertainty – year: 2018 ident: 10.1016/j.cie.2025.110856_b208 – start-page: 1 year: 2020 ident: 10.1016/j.cie.2025.110856_b52 |
| SSID | ssj0004591 |
| Score | 2.513689 |
| Snippet | Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110856 |
| SubjectTerms | Artificial intelligence Deep reinforcement learning Graph neural networks Machine scheduling Neural combinatorial optimization Production scheduling |
| Title | Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions |
| URI | https://dx.doi.org/10.1016/j.cie.2025.110856 |
| Volume | 200 |
| WOSCitedRecordID | wos001398511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG0NCQc4sAQQYVMfODFx5KXdtrlFEASREiExSHOzejOZkbFHs0QJd_6b6s02wyJA4mLNtFxeup6qq8v1qhB6TnjERSSygEtKA8KlCjjNeRBJgEcUs5hWuWk2kZ2d5dNp8X40-uq5MBd11jT55WWx-K-qhjFQtqbO_oW6u4vCAPwGpcMR1A7HP1L8a6UW46UyFVGFCf751hA2ZfKzSZ9UY9jWwjJTO8Lzqekk3VFXtDtquEZBWwXwRyfQ-URPW4ZkbBfDLtznqx24LhErg6lZ3xhE9YUPOyN_zjQbzFKGvsyuWJcorJMAXMeQSStlZ5rYp_N2w53Ect4j-4TV7MoKnLJVu5HDaEac-gRoH2LzNJs-p8lSu8JAu4pDs20rnP64BNhoxPwQTOOhvoMhOqRb5bbNAv5BX9d4oKn5yEGuod04SwswjrtH746nJ4Oy87b1on8O_3ncJApu3ejnDs7AaZncQbfcbgMfWZTcRSPV7KHbbueBnV1f7aGbg7KU91CtIYS_gxD2EMIwhB2EcA-hl3gAoAMMiMHb8DnAAB5swYN78NxHH98cT169DVxXjkDERbYOEllkIVNFUlCSVgWnRV5REStJqlxQWbFMENiVU5YppnIeRpIXKleMsjCLY6mSB2inaRv1EGEieSjSJK1ECo5skuSShpwrTdemigiyj0I_laVwJet155S69LmJcxhXpZ790s7-PnrRiSxsvZbfnUy8fkrncNrXLwFMvxZ79G9ij9GNHvFP0M56uVFP0XVxsZ6tls8c5L4BFnun8g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+for+machine+scheduling%3A+Methodology%2C+the+state-of-the-art%2C+and+future+directions&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Khadivi%2C+Maziyar&rft.au=Charter%2C+Todd&rft.au=Yaghoubi%2C+Marjan&rft.au=Jalayer%2C+Masoud&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=200&rft_id=info:doi/10.1016%2Fj.cie.2025.110856&rft.externalDocID=S0360835225000014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |