Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions

Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & industrial engineering Ročník 200; s. 110856
Hlavní autori: Khadivi, Maziyar, Charter, Todd, Yaghoubi, Marjan, Jalayer, Masoud, Ahang, Maryam, Shojaeinasab, Ardeshir, Najjaran, Homayoun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2025
Predmet:
ISSN:0360-8352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency. Despite its benefits for the industry, machine scheduling remains a challenging combinatorial optimization problem to be solved, inherently due to its Non-deterministic Polynomial-time (NP) hard nature. Deep Reinforcement Learning (DRL) has been regarded as a foundation for “artificial general intelligence” with promising results in tasks such as gaming and robotics. Researchers have also aimed to leverage the application of DRL, attributed to extraction of knowledge from data, across variety of machine scheduling problems since 1995. This paper presents a comprehensive review and comparison of the methodology, application, and the advantages and limitations of different DRL-based approaches. Further, the study categorizes the DRL methods based on the integrated computational components including conventional neural networks, encoder–decoder architectures, graph neural networks and metaheuristic algorithms. Our literature review concludes that the DRL-based approaches surpass the performance of exact solvers, heuristics, and tabular reinforcement learning algorithms in either computation speed, generating near-global optimal solutions, or both. They have been applied to static or dynamic scheduling of different machine environments, which consist of single machine, parallel machine, flow shop, job shop, and open shop, with different job characteristics. Nonetheless, the existing DRL-based schedulers face limitations not only in considering complex operational constraints, and configurable multi-objective optimization but also in dealing with generalization, scalability, intepretability, and robustness. Therefore, addressing these challenges shapes future work in this field. This paper serves the researchers to establish a proper investigation of state of the art and research gaps in DRL-based machine scheduling and can help the experts and practitioners choose the proper approach to implement DRL for production scheduling. •A comprehensive literature review on DRL-based machine scheduling is conducted.•The basics of MDP, DRL, encoder–decoders, and graph neural networks are provided.•DRL-based scheduling models are reviewed based on the integrated computational component.•The advantages and limitations of DRL-based scheduling approaches are discussed.•Future directions to address the current limitations are provided.
AbstractList Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing the machine schedules leads to significant reduction in operational costs, adherence to customer demand, and rise in production efficiency. Despite its benefits for the industry, machine scheduling remains a challenging combinatorial optimization problem to be solved, inherently due to its Non-deterministic Polynomial-time (NP) hard nature. Deep Reinforcement Learning (DRL) has been regarded as a foundation for “artificial general intelligence” with promising results in tasks such as gaming and robotics. Researchers have also aimed to leverage the application of DRL, attributed to extraction of knowledge from data, across variety of machine scheduling problems since 1995. This paper presents a comprehensive review and comparison of the methodology, application, and the advantages and limitations of different DRL-based approaches. Further, the study categorizes the DRL methods based on the integrated computational components including conventional neural networks, encoder–decoder architectures, graph neural networks and metaheuristic algorithms. Our literature review concludes that the DRL-based approaches surpass the performance of exact solvers, heuristics, and tabular reinforcement learning algorithms in either computation speed, generating near-global optimal solutions, or both. They have been applied to static or dynamic scheduling of different machine environments, which consist of single machine, parallel machine, flow shop, job shop, and open shop, with different job characteristics. Nonetheless, the existing DRL-based schedulers face limitations not only in considering complex operational constraints, and configurable multi-objective optimization but also in dealing with generalization, scalability, intepretability, and robustness. Therefore, addressing these challenges shapes future work in this field. This paper serves the researchers to establish a proper investigation of state of the art and research gaps in DRL-based machine scheduling and can help the experts and practitioners choose the proper approach to implement DRL for production scheduling. •A comprehensive literature review on DRL-based machine scheduling is conducted.•The basics of MDP, DRL, encoder–decoders, and graph neural networks are provided.•DRL-based scheduling models are reviewed based on the integrated computational component.•The advantages and limitations of DRL-based scheduling approaches are discussed.•Future directions to address the current limitations are provided.
ArticleNumber 110856
Author Khadivi, Maziyar
Najjaran, Homayoun
Yaghoubi, Marjan
Ahang, Maryam
Jalayer, Masoud
Shojaeinasab, Ardeshir
Charter, Todd
Author_xml – sequence: 1
  givenname: Maziyar
  surname: Khadivi
  fullname: Khadivi, Maziyar
  email: mazy1996@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 2
  givenname: Todd
  orcidid: 0000-0001-5982-255X
  surname: Charter
  fullname: Charter, Todd
  email: toddch@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 3
  givenname: Marjan
  orcidid: 0000-0002-8585-5854
  surname: Yaghoubi
  fullname: Yaghoubi, Marjan
  email: marjanyaghoubi@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 4
  givenname: Masoud
  orcidid: 0000-0001-8013-8613
  surname: Jalayer
  fullname: Jalayer, Masoud
  email: mjalayer@ualberta.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 5
  givenname: Maryam
  orcidid: 0000-0001-5580-3693
  surname: Ahang
  fullname: Ahang, Maryam
  email: maryamahang@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 6
  givenname: Ardeshir
  surname: Shojaeinasab
  fullname: Shojaeinasab, Ardeshir
  email: ardeshir@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
– sequence: 7
  givenname: Homayoun
  orcidid: 0000-0002-3550-225X
  surname: Najjaran
  fullname: Najjaran, Homayoun
  email: najjaran@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria BC, V8P 5C2, Canada
BookMark eNp9kE1PAyEQhjnUxLb6A7zxA7oV9oNd9GTqZ1LjRc-EwtCl2UID1KT_Xsx68tDTZN6ZZzLvO0MT5x0gdEPJkhLKbndLZWFZkrJZUkq6hk3QlFSMFF3VlJdoFuOOEFI3nE7R8AhwwAGsMz4o2INLeAAZnHVbnCW8l6q3DnBUPejjkOU7_A6p99oPfnta4NTnYZIJCm-K3BQypAWWTmNzTMcAWNsAKlnv4hW6MHKIcP1X5-jr-elz9VqsP17eVg_rQpW8TUWleUsk8IqzujF8w3hnmCpB16ZTTBvZqppRzmQLEroNoXrDoQPJJGnLUkM1R3S8q4KPMYARh2D3MpwEJeI3IrETOSLxG5EYI8pM-49RNrvKb6cg7XCWvB9JyJa-LQQR84pTMBoX2tsz9A-PHIc6
CitedBy_id crossref_primary_10_1002_cpe_70218
crossref_primary_10_23919_cje_2024_00_014
crossref_primary_10_1016_j_tre_2025_104341
crossref_primary_10_1016_j_future_2025_108145
crossref_primary_10_1109_ACCESS_2025_3589064
crossref_primary_10_1007_s44196_025_00924_2
Cites_doi 10.1109/TASE.2024.3486919
10.26599/TST.2023.9010076
10.1145/2939672.2939778
10.1016/j.jmsy.2022.01.004
10.1023/A:1008942012299
10.1016/j.aei.2006.01.001
10.1145/279943.279964
10.1016/j.cie.2023.109718
10.1177/16878132221086120
10.1016/j.compchemeng.2024.108700
10.1016/j.cie.2023.109650
10.1016/j.compchemeng.2024.108748
10.1016/j.swevo.2024.101544
10.1016/j.cie.2023.109631
10.3390/s22145413
10.1007/s10951-020-00664-5
10.1016/j.cie.2023.109216
10.1038/s41586-020-03051-4
10.1016/j.jmsy.2024.03.012
10.1007/BF00992696
10.1145/203330.203343
10.1016/j.cor.2021.105400
10.1109/TEVC.2022.3175832
10.1007/BF00115009
10.1016/j.rcim.2021.102202
10.14743/apem2021.3.399
10.3390/a17080343
10.1007/s10845-022-02069-x
10.1109/TASE.2021.3104716
10.1016/j.cirpj.2022.11.003
10.3390/app11072977
10.1016/j.jclepro.2022.130419
10.3390/app12031491
10.1109/TETCI.2022.3146882
10.1016/j.eswa.2021.116222
10.1109/TII.2023.3272661
10.1155/2020/9462048
10.1145/937503.937505
10.2507/IJSIMM20-2-CO10
10.3390/app12189332
10.1007/s10951-017-0534-0
10.3390/machines10030210
10.1016/j.cie.2024.109995
10.1016/j.asoc.2020.106208
10.1080/00207543.2023.2188646
10.1016/j.cie.2021.107782
10.1080/00207543.2023.2172472
10.1016/j.cie.2024.109917
10.1049/cim2.12072
10.1145/1015330.1015430
10.1145/2939672.2939754
10.1016/j.knosys.2021.107526
10.1016/j.cie.2024.110325
10.1109/ACCESS.2020.2987820
10.1016/j.comnet.2021.107969
10.1007/s11740-020-00967-8
10.1287/opre.25.1.45
10.3390/math9202633
10.2507/IJSIMM20-2-CO7
10.1016/j.cie.2024.109894
10.1038/nature16961
10.3390/s21134553
10.1016/j.knosys.2024.111940
10.1109/TNNLS.2016.2543000
10.1016/j.cie.2023.109802
10.1016/S0167-5060(08)70356-X
10.1016/j.cirp.2020.04.005
10.1016/j.procir.2019.03.041
10.1007/s10845-022-01915-2
10.1016/j.ejor.2021.08.007
10.1007/s10845-023-02094-4
10.1016/j.eswa.2022.117796
10.3390/en15051626
10.1109/ACCESS.2020.3004964
10.1631/FITEE.1900533
10.1109/ACCESS.2020.3046784
10.1016/j.asoc.2023.110596
10.1016/j.cie.2024.110155
10.1038/nature14236
10.1016/j.rcim.2022.102324
10.1145/3453160
10.1016/j.artint.2022.103786
10.1016/S0004-3702(99)00052-1
10.1016/j.aej.2021.01.030
10.1016/j.cor.2022.106095
10.1016/0305-0483(83)90088-9
10.1109/MSP.2017.2743240
10.3390/pr10040760
10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
10.1016/j.swevo.2024.101660
10.1080/00207543.2020.1870013
10.1016/j.jmsy.2024.08.015
10.1109/ACCESS.2020.3029868
10.1016/j.eswa.2024.123592
10.1007/s10489-023-04479-7
10.1002/ail2.45
10.1080/00207543.2021.1975057
10.1002/amp2.10119
10.1016/j.ejor.2023.07.037
10.3390/su14095177
10.1109/TII.2022.3189725
10.1016/j.cie.2023.109255
10.3390/computers5010003
10.1016/j.rcim.2023.102605
10.2507/IJSIMM19-1-CO4
10.1016/j.swevo.2024.101605
10.1109/ACCESS.2021.3110242
10.1016/j.ejor.2020.07.063
10.1109/TII.2019.2908210
10.1287/inte.2021.1109
10.1109/TNN.2008.2005605
10.1016/j.asoc.2020.106790
10.1109/ACCESS.2021.3097254
10.1016/j.jmsy.2023.08.011
10.1016/j.ifacol.2022.10.025
10.1016/j.compchemeng.2024.108745
10.1016/j.swevo.2024.101550
10.3390/app112210870
10.1126/science.aar6404
10.1093/jcde/qwab068
10.1007/s10951-008-0090-8
10.1049/cim2.12060
10.3390/app12052366
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.110856
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_110856
S0360835225000014
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC) Canada
  grantid: ALLRP 555220 – 20
– fundername: NTWIST Inc.
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-3d970ae939645f9b698f6c2ed4f8c6dfa7c46196a7eae8b01db9e8ea6a0722de3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001398511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 08:18:25 EST 2025
Tue Nov 18 21:06:24 EST 2025
Sat Feb 08 15:52:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Neural combinatorial optimization
Deep reinforcement learning
Machine scheduling
Graph neural networks
Production scheduling
Artificial intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3d970ae939645f9b698f6c2ed4f8c6dfa7c46196a7eae8b01db9e8ea6a0722de3
ORCID 0000-0002-8585-5854
0000-0001-5580-3693
0000-0001-5982-255X
0000-0001-8013-8613
0000-0002-3550-225X
ParticipantIDs crossref_primary_10_1016_j_cie_2025_110856
crossref_citationtrail_10_1016_j_cie_2025_110856
elsevier_sciencedirect_doi_10_1016_j_cie_2025_110856
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Magalhaes, Martins, Vieira, Santos, Sousa (b110) 2021
Bellman, Dreyfus (b10) 2015
Zhao, Zhu, Zhang, Tang, Wang (b235) 2024
Schulman, Wolski, Dhariwal, Radford, Klimov (b153) 2017
Zhang, Li, Gong (b221) 2024; 189
Li, Lang, Hong, Reggelin (b92) 2024; 35
Luo, Zhang, Fan (b109) 2021; 19
Wang, Zhang, Lin, Zhao, Wang, Chen (b195) 2022; 77
Brucker, Gladky, Hoogeveen, Kovalyov, Potts, Tautenhahn (b16) 1998; 1
(pp. 101–103).
Sutton, Barto (b167) 2018
Graham, Lawler, Lenstra, Kan (b45) 1979; vol. 5
Pinedo, Hadavi (b134) 1992
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche (b157) 2016; 529
Stone, Veloso (b160) 2000; 8
Zhu, Lin, Zhou (b240) 2020
Park, Chun, Kim, Kim, Park (b129) 2021; 59
Bellman (b9) 1957
Dittrich, Fohlmeister (b30) 2020; 69
Cho, Nam, Cho, Yoon, Woo (b24) 2022; 9
.
Gabel, Riedmiller (b39) 2007
Gu, Chen, Wang (b48) 2023; 53
Yang, Sun, Narasimhan (b212) 2019; 32
Su, Zhang, Xia, Han, Wang, Chen (b163) 2023; 145
Vezhnevets, Osindero, Schaul, Heess, Jaderberg, Silver (b179) 2017
Zhang, Zhao, Yang, Du, Feng, Zhang (b230) 2024; 76
Zhao, Ma, Mo, Xu (b232) 2024; 188
Witty, Lee, Tosch, Atrey, Clary, Littman (b203) 2021; 2
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (b176) 2017; 30
(pp. 855–864).
Chung, Gulcehre, Cho (b26) 2014
Thomas, Koo, Chaterji, Bagchi (b173) 2018
Tian, Li, Ma, Zhang, Tan, Jin (b174) 2022; 7
Paeng, Park, Park (b124) 2021; 9
Mazyavkina, Sviridov, Ivanov, Burnaev (b112) 2021; 134
Wang, Cheng, Zhang, Hu (b185) 2022; 55
Wolsey (b204) 2020
Liu, Piplani, Toro (b103) 2022
Xu, Xu, Bastani, Bastani (b209) 2021
Liang, Yang, Wang, Liu, Ma, Zhu (b97) 2024; 249
McSweeney, Walton, Zounon (b113) 2020
Williams (b202) 1992; 8
Nazari, Oroojlooy, Takáč, Snyder (b121) 2018; 2018-Decem
Julaiti, Oh, Das, Kumara (b70) 2022; 4
Panwalkar, Iskander (b126) 1977; 25
(p. 1).
Seito, Munakata (b154) 2020
Geurtsen, Adan, Adan (b41) 2020
Wagle, Paranjape (b182) 2020
Park, Huh, Kim, Park (b130) 2019; 17
Esmaeilzadeh, Peh, Xu (b34) 2019
Kumar, Zhou, Tucker, Levine (b77) 2020; 33
Hammami, Lardeux, Hadj-Alouane, Jridi (b54) 2024
Monaci, Agasucci, Grani (b118) 2024; 312
Nawaz, Enscore Jr, Ham (b120) 1983; 11
Sutton, Precup, Singh (b169) 1999; 112
Csáji, Monostori, Kádár (b27) 2006; 20
Gil, Lee (b42) 2022; 12
Wu, Liao, Karatas, Chen, Zheng (b206) 2020; 97
Wang, Tang (b193) 2021; 233
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra (b115) 2013
Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez (b158) 2018; 362
Zhang, Shen, Du, Chen, Zhang (b223) 2023; 71
Li, Liang, Zhu, Ding, Zha, Wu (b94) 2024; vol. 38
Wang, Li, Jiao, Ma (b189) 2024
Li, Fu, Zhen, Yuan, Wang, Lu (b88) 2022; 168
Gabel, Riedmiller (b38) 2006
Wesendrup, Hellingrath (b200) 2023; 179
Lee, Huang, Chen (b81) 2024; 187
Ouelhadj, Petrovic (b123) 2009; 12
Li, Zheng, Yin, Wang, Wang (b95) 2023; 40
Piot, Geist, Pietquin (b135) 2016; 28
Ding, Guan, Rauf, Yue (b29) 2024; 87
Wang, Ren, Bai, Chu, Yu, Meng (b192) 2024; 62
Hou, Q., Yang, J., Su, Y., Wang, X., & Deng, Y. (2023). Generalize learned heuristics to solve large-scale vehicle routing problems in real-time. In
Rui, Zhang, Liu, Ling, Wang, Liu (b147) 2024; 193
Moon, Yang, Jeong (b119) 2021; 21
Bello, Pham, Le, Norouzi, Bengio (b11) 2016
Waubert de Puiseau, Meyes, Meisen (b198) 2022; 33
Zhang, Wu, Ma, Song, Le, Cao (b226) 2023; 5
Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In
Zhou, Tang, Zhu, Wang (b237) 2021; 9
Du, Li, Chen, Duan, Pan (b32) 2022
Kim, Kim, Lee, Kim (b72) 2022; 336
Rummery, Niranjan (b148) 1994
Li, Gong, Wang, Lu, Dong (b90) 2023
Zeng, Li, Bai (b218) 2022
Wu, Chen, Shen, Guo, Gao, Li (b205) 2021
Zhou, Tang, Zhu, Zhang (b238) 2021; 72
Russell, S. (1998). Learning agents for uncertain environments. In
Yin, Zhuang, Jia, Wang (b215) 2020; 2020
Zhang, Lu, Hu, Amaitik (b222) 2022; 14
Zhao, Luo, Zhang (b231) 2024; 187
Wang, Hu, Wang, Xu, Ma, Yang (b187) 2021; 190
Xu, Hu, Leskovec, Jegelka (b208) 2018
Zhou, Zhu, Tang, Liu, Cai, Shi (b239) 2022; 14
Yao, Li, Gao (b214) 2024; 87
Pol, Baer, Turner, Samsonov, Meisen (b136) 2021
Ren, Ye, Yang (b144) 2021; 60
Cappart, Chételat, Khalil, Lodi, Morris, Veličković (b18) 2023; 24
Infantes, Roussel, Pereira, Jacquet, Benazera (b68) 2024
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare (b116) 2015; 518
Peng, Li, Zhao, Dang, Kong, Ding (b133) 2022; 15
Pan, Wang, Wang, Lu (b125) 2021
Gabel, Riedmiller (b40) 2008; 24
Luo (b105) 2020; 91
Tata, Austin (b170) 2021
Lillicrap (b98) 2015
Chen, Li, Yang (b20) 2022; XX
Ahang, Jalayer, Shojaeinasab, Ogunfowora, Charter, Najjaran (b3) 2022; 22
Hu, Wang, Tang, Kanazawa, Gupta, Farahat (b63) 2023; 185
Zheng, Gupta, Serita (b236) 2019
Hasselt (b57) 2010; 23
Habib Zahmani, Atmani (b51) 2021; 24
Qu, Wang, Jasperneite (b138) 2018; vol. 2018-Septe
Zhang, Dietterich (b220) 1995; 8
Luo, Zhang, Fan (b108) 2021; 159
Rahman, Sokkalingam, Othman, Biswas, Abdullah, Abdul Kadir (b139) 2021; 9
Zhao, Wang, Tan, Zhang, Yu (b233) 2021; 9
Choo, Kwon, Kim, Jae, Hottung, Tierney (b25) 2022; 35
Foerster, Farquhar, Afouras, Nardelli, Whiteson (b36) 2018
Wikimedia Commons (b201) 2017
Su, Huang, Li, Li, Hao (b161) 2022
Veličković, Cucurull, Casanova, Romero, Lio, Bengio (b177) 2017
Schrittwieser, Antonoglou, Hubert, Simonyan, Sifre, Schmitt (b152) 2020; 588
Heger, Voß (b59) 2020
Zhang, Xie, Rose (b227) 2017
Bertsekas (b13) 2019
Rangel-Martinez, Ricardez-Sandoval (b140) 2024
(pp. 1–15).
Wang, Luo, Xiong, Zhang, Peng (b191) 2020
Pateria, Subagdja, Tan, Quek (b132) 2021; 54
Zhuang, Hu, Wang (b241) 2019
Kayhan, Yildiz (b71) 2021
Grumbach, Müller, Reusch, Trojahn (b47) 2024; 35
Lee, Lee (b83) 2022; 191
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b151) 2008; 20
(pp. 1135–1144).
Riedmiller, Riedmiller (b146) 1999; vol. 2
Tesauro (b172) 1995; 38
Song, Chen, Li, Cao (b159) 2022; 19
Sabri, Allaoui, Souissi (b150) 2024; 62
Lin, Deng, Chih, Chiu (b99) 2019; 15
Li, Lang, Tian, Hong, Rolf, Noortwyck (b93) 2024
Turgut, Bozdag (b175) 2020
Beck, Vuorio, Liu, Xiong, Zintgraf, Finn (b8) 2023
Ren, Ye, Yang (b143) 2020; 19
Hamilton, Ying, Leskovec (b53) 2017
In
Wang, Cai, Li, Yang, Zhao, Xie (b184) 2023; 151
Yan, Wu, Wang (b211) 2022; 10
Zhang, Cui, Zhu (b219) 2020
Luo, Xiong, Zhang, Peng, Xiong (b107) 2022; 60
Zhang, Song, Cao, Zhang, Tan, Chi (b224) 2020; 33
Zhang, Wang, Qiu, Liu (b225) 2023; 186
Zhang, Xie, Rose (b228) 2019; vol. 2018-Decem
Hottung, Tierney (b61) 2022; 313
Yan, Chow, Ho, Kuo, Wu, Ying (b210) 2021; 162
Davis, L., et al. (1985). Job shop scheduling with genetic algorithms.
Vesselinova, Steinert, Perez-Ramirez, Boman (b178) 2020; 8
Bengio, Lodi, Prouvost (b12) 2021; 290
Ilyas, Engstrom, Santurkar, Tsipras, Janoos, Rudolph (b67) 2018
Yingying, Lianjuan, Jianan, Huimin (b216) 2022; 34
Kotary, Fioretto, van Hentenryck, Wilder (b74) 2021
Gilmer, Schoenholz, Riley, Vinyals, Dahl (b43) 2017
Li, Gu, Yuan, Tang (b91) 2022; 74
Han, Yang (b55) 2020; 8
Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Gui, Tang, Zhu, Zhang, Zhang (b50) 2023; 180
Waschneck, Reichstaller, Belzner, Altenmüller, Bauernhansl, Knapp (b196) 2018
Para, Del Ser, Nebro (b128) 2022; 12
Chen, Liu, Jia, Ren, Cui, Wei (b21) 2024
Marchesano, Guizzi, Santillo, Vespoli (b111) 2021
Vinyals, Bengio, Kudlur (b180) 2015
Han, Yang (b56) 2021; 20
Leng, Wang, Wu, Jin, Tang, Liu (b86) 2023
Mnih, Badia, Mirza, Graves, Lillicrap, Harley (b114) 2016
Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In
Liu, Chang, Tseng (b101) 2020; 8
Dong, Ren, Weng, Qi, Wang (b31) 2022; 12
Liang, Sun, Song, Chou, Fan, Fan (b96) 2022; 52
Wang, Wang, Sun, Deng, Chen (b194) 2023
Chien, Lan (b23) 2021; 162
Cai, He, Shi, Feng, Li (b17) 2024
Hwangbo, Liu, Ryu, Lee, Na (b65) 2024; 186
Vinyals, Fortunato, Jaitly (b181) 2015; 2015-Janua
Zhang, Zhao, Li, Du, Feng, Mei (b229) 2024; 74
Luo, Lu, Zhu, Song (b106) 2021
Altenmüller, Stüker, Waschneck, Kuhnle, Lanza (b4) 2020; 14
Chen, Tian (b22) 2019; 32
Chang, Yu, Hu, He, Yu (b19) 2022; 10
Su, Zhang, Wang, Cen, Chen, Xie (b162) 2024; 88
Goodfellow, Bengio, Courville (b44) 2016
Foerster, Nardelli, Farquhar, Afouras, Torr, Kohli (b37) 2017
Lowe, Wu, Tamar, Harb, Pieter Abbeel, Mordatch (b104) 2017; 30
Yue, Peng, Ding, Mumtaz, Lin, Zou (b217) 2024; 90
Brammer, Lutz, Neumann (b15) 2022; 299
Tesauro (b171) 2003; 16
Li, Dong, Zhang, Han (b87) 2020; vol. 2020-Novem
Liu, Fan, Zhao, Shen, Zhang (b102) 2023; 84
Xie, Zhang, Rose (b207) 2019; 1
Watkins (b197) 1989
Esteso, Peidro, Mula, Díaz-Madroñero (b35) 2022
Lang, Behrendt, Lanzerath, Reggelin, Müller (b79) 2020
Panzer, Bender (b127) 2021
Kuhnle, May, Schäfer, Lanza (b75) 2021
Sutskever, Vinyals, Le (b165) 2014; 4
Hasselt, Guez, Silver (b58) 2016
Lange, Riedmiller, Voigtländer (b80) 2012
Abbasi, Nishat, Bond, Graham-Knight, Lasserre, Lucet (b1) 2024; ahead-of-print
Baer, S., Turner, D., Mohanty, P., Samsonov, V., Bakakeu, R., & Meisen, T. (2020). Multi agent deep q-network approach for online job shop scheduling in flexible manufacturing.
Ni, Hao, Lu, Tong, Yuan, Duan (b122) 2021
Shahzad, Mebarki (b155) 2016; 5
Ren, Ye, Li (b142) 2021; 16
Wang, He, Li (b186) 2024; 29
Hameed, Schwung (b52) 2020
Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos (b188) 2016
Kuhnle, Schäfer, Stricker, Lanza (b76) 2019; 81
Park, Son, Ko, Noh (b131) 2021; 11
Priore, Gomez, Pino, Rosillo (b137) 2014; 28
Ingimundardottir, Runarsson (b69) 2018; 21
Sutton, McAllester, Singh, Mansour (b168) 2000
Gu, Liu, Guo, Yuan, Pei (b49) 2024; 191
Lin, Peng, Chang, Chang (b100) 2024; 189
Lei, Guo, Wang, Zhang, Meng, Qian (b84) 2023; 20
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In
Zhao, Zhang (b234) 2021; 20
Blum, Roli (b14) 2003; 35
Sun, Vogel-Heuser, Bi, Shen (b164) 2022; 4
Hochreiter (b60) 1997
Modrak, Sudhakarapandian, Balamurugan, Soltysova (b117) 2024; 17
Li, Gong, Lu, Wang (b89) 2022; 27
Wan, Fu, Li, Li (b183) 2024; 296
Yang, Xu (b213) 2021
Wang, Liu, Zhang, Feng, Huang, Li (b190) 2020; 21
Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel (b33) 2016
Huang, Gao, Li, Zhang (b64) 2023; 185
Lee, Kim (b82) 2024
Kwon, Choo, Kim, Yoon, Gwon, Min (b78) 2020; 33
Arulkumaran, Deisenroth, B
Gui (10.1016/j.cie.2025.110856_b50) 2023; 180
Yin (10.1016/j.cie.2025.110856_b215) 2020; 2020
Liu (10.1016/j.cie.2025.110856_b102) 2023; 84
Para (10.1016/j.cie.2025.110856_b128) 2022; 12
Hottung (10.1016/j.cie.2025.110856_b61) 2022; 313
Chen (10.1016/j.cie.2025.110856_b22) 2019; 32
Sutskever (10.1016/j.cie.2025.110856_b165) 2014; 4
Zhang (10.1016/j.cie.2025.110856_b225) 2023; 186
Ren (10.1016/j.cie.2025.110856_b142) 2021; 16
10.1016/j.cie.2025.110856_b7
Gil (10.1016/j.cie.2025.110856_b42) 2022; 12
Modrak (10.1016/j.cie.2025.110856_b117) 2024; 17
10.1016/j.cie.2025.110856_b145
10.1016/j.cie.2025.110856_b6
10.1016/j.cie.2025.110856_b149
Stone (10.1016/j.cie.2025.110856_b160) 2000; 8
10.1016/j.cie.2025.110856_b2
Kumar (10.1016/j.cie.2025.110856_b77) 2020; 33
Leng (10.1016/j.cie.2025.110856_b86) 2023
Mnih (10.1016/j.cie.2025.110856_b115) 2013
Waubert de Puiseau (10.1016/j.cie.2025.110856_b198) 2022; 33
Ilyas (10.1016/j.cie.2025.110856_b67) 2018
Turgut (10.1016/j.cie.2025.110856_b175) 2020
Zhang (10.1016/j.cie.2025.110856_b228) 2019; vol. 2018-Decem
Kwon (10.1016/j.cie.2025.110856_b78) 2020; 33
Luo (10.1016/j.cie.2025.110856_b107) 2022; 60
Sutton (10.1016/j.cie.2025.110856_b168) 2000
Gu (10.1016/j.cie.2025.110856_b48) 2023; 53
Wang (10.1016/j.cie.2025.110856_b193) 2021; 233
Tesauro (10.1016/j.cie.2025.110856_b172) 1995; 38
Cho (10.1016/j.cie.2025.110856_b24) 2022; 9
Rashid (10.1016/j.cie.2025.110856_b141) 2018
Park (10.1016/j.cie.2025.110856_b131) 2021; 11
Witty (10.1016/j.cie.2025.110856_b203) 2021; 2
Han (10.1016/j.cie.2025.110856_b56) 2021; 20
Williams (10.1016/j.cie.2025.110856_b202) 1992; 8
Li (10.1016/j.cie.2025.110856_b93) 2024
Liu (10.1016/j.cie.2025.110856_b103) 2022
Lillicrap (10.1016/j.cie.2025.110856_b98) 2015
Luo (10.1016/j.cie.2025.110856_b105) 2020; 91
Liang (10.1016/j.cie.2025.110856_b97) 2024; 249
Gabel (10.1016/j.cie.2025.110856_b40) 2008; 24
Bengio (10.1016/j.cie.2025.110856_b12) 2021; 290
Park (10.1016/j.cie.2025.110856_b129) 2021; 59
Rahman (10.1016/j.cie.2025.110856_b139) 2021; 9
Pateria (10.1016/j.cie.2025.110856_b132) 2021; 54
Zhang (10.1016/j.cie.2025.110856_b223) 2023; 71
Kool (10.1016/j.cie.2025.110856_b73) 2018
Marchesano (10.1016/j.cie.2025.110856_b111) 2021
Wang (10.1016/j.cie.2025.110856_b186) 2024; 29
Gu (10.1016/j.cie.2025.110856_b49) 2024; 191
Zhao (10.1016/j.cie.2025.110856_b232) 2024; 188
10.1016/j.cie.2025.110856_b28
Zhou (10.1016/j.cie.2025.110856_b237) 2021; 9
Ahang (10.1016/j.cie.2025.110856_b3) 2022; 22
Wang (10.1016/j.cie.2025.110856_b192) 2024; 62
Wang (10.1016/j.cie.2025.110856_b190) 2020; 21
Paeng (10.1016/j.cie.2025.110856_b124) 2021; 9
Ren (10.1016/j.cie.2025.110856_b144) 2021; 60
Rui (10.1016/j.cie.2025.110856_b147) 2024; 193
Cai (10.1016/j.cie.2025.110856_b17) 2024
Habib Zahmani (10.1016/j.cie.2025.110856_b51) 2021; 24
Han (10.1016/j.cie.2025.110856_b55) 2020; 8
Qu (10.1016/j.cie.2025.110856_b138) 2018; vol. 2018-Septe
Mnih (10.1016/j.cie.2025.110856_b114) 2016
Li (10.1016/j.cie.2025.110856_b89) 2022; 27
Liang (10.1016/j.cie.2025.110856_b96) 2022; 52
Vinyals (10.1016/j.cie.2025.110856_b181) 2015; 2015-Janua
Wikimedia Commons (10.1016/j.cie.2025.110856_b201) 2017
Foerster (10.1016/j.cie.2025.110856_b37) 2017
Wang (10.1016/j.cie.2025.110856_b194) 2023
Kim (10.1016/j.cie.2025.110856_b72) 2022; 336
Lei (10.1016/j.cie.2025.110856_b85) 2022; 205
Seito (10.1016/j.cie.2025.110856_b154) 2020
Zhang (10.1016/j.cie.2025.110856_b227) 2017
Mazyavkina (10.1016/j.cie.2025.110856_b112) 2021; 134
Pol (10.1016/j.cie.2025.110856_b136) 2021
Luo (10.1016/j.cie.2025.110856_b106) 2021
Vesselinova (10.1016/j.cie.2025.110856_b178) 2020; 8
Zeng (10.1016/j.cie.2025.110856_b218) 2022
Lange (10.1016/j.cie.2025.110856_b80) 2012
Vezhnevets (10.1016/j.cie.2025.110856_b179) 2017
Esteso (10.1016/j.cie.2025.110856_b35) 2022
Li (10.1016/j.cie.2025.110856_b95) 2023; 40
Sabri (10.1016/j.cie.2025.110856_b150) 2024; 62
10.1016/j.cie.2025.110856_b199
Geurtsen (10.1016/j.cie.2025.110856_b41) 2020
Lin (10.1016/j.cie.2025.110856_b100) 2024; 189
Ren (10.1016/j.cie.2025.110856_b143) 2020; 19
Rummery (10.1016/j.cie.2025.110856_b148) 1994
Xu (10.1016/j.cie.2025.110856_b208) 2018
Gilmer (10.1016/j.cie.2025.110856_b43) 2017
Zhang (10.1016/j.cie.2025.110856_b229) 2024; 74
Wolsey (10.1016/j.cie.2025.110856_b204) 2020
Yan (10.1016/j.cie.2025.110856_b211) 2022; 10
Abbasi (10.1016/j.cie.2025.110856_b1) 2024; ahead-of-print
McSweeney (10.1016/j.cie.2025.110856_b113) 2020
Pan (10.1016/j.cie.2025.110856_b125) 2021
Su (10.1016/j.cie.2025.110856_b161) 2022
Ni (10.1016/j.cie.2025.110856_b122) 2021
Arulkumaran (10.1016/j.cie.2025.110856_b5) 2017; 34
Altenmüller (10.1016/j.cie.2025.110856_b4) 2020; 14
Hwangbo (10.1016/j.cie.2025.110856_b65) 2024; 186
Li (10.1016/j.cie.2025.110856_b94) 2024; vol. 38
Wang (10.1016/j.cie.2025.110856_b189) 2024
Bellman (10.1016/j.cie.2025.110856_b10) 2015
Yue (10.1016/j.cie.2025.110856_b217) 2024; 90
Kotary (10.1016/j.cie.2025.110856_b74) 2021
Wagle (10.1016/j.cie.2025.110856_b182) 2020
Waschneck (10.1016/j.cie.2025.110856_b196) 2018
Yingying (10.1016/j.cie.2025.110856_b216) 2022; 34
Zhao (10.1016/j.cie.2025.110856_b235) 2024
Sun (10.1016/j.cie.2025.110856_b164) 2022; 4
Brucker (10.1016/j.cie.2025.110856_b16) 1998; 1
Yang (10.1016/j.cie.2025.110856_b213) 2021
Lei (10.1016/j.cie.2025.110856_b84) 2023; 20
Zhou (10.1016/j.cie.2025.110856_b238) 2021; 72
Xu (10.1016/j.cie.2025.110856_b209) 2021
Li (10.1016/j.cie.2025.110856_b90) 2023
Wang (10.1016/j.cie.2025.110856_b187) 2021; 190
Rangel-Martinez (10.1016/j.cie.2025.110856_b140) 2024
Foerster (10.1016/j.cie.2025.110856_b36) 2018
Hamilton (10.1016/j.cie.2025.110856_b53) 2017
Zhang (10.1016/j.cie.2025.110856_b226) 2023; 5
Silver (10.1016/j.cie.2025.110856_b158) 2018; 362
Zhao (10.1016/j.cie.2025.110856_b233) 2021; 9
Peng (10.1016/j.cie.2025.110856_b133) 2022; 15
Zhu (10.1016/j.cie.2025.110856_b240) 2020
Wu (10.1016/j.cie.2025.110856_b205) 2021
Brammer (10.1016/j.cie.2025.110856_b15) 2022; 299
Xie (10.1016/j.cie.2025.110856_b207) 2019; 1
Wan (10.1016/j.cie.2025.110856_b183) 2024; 296
Duan (10.1016/j.cie.2025.110856_b33) 2016
Su (10.1016/j.cie.2025.110856_b163) 2023; 145
Zhao (10.1016/j.cie.2025.110856_b234) 2021; 20
Gabel (10.1016/j.cie.2025.110856_b38) 2006
Magalhaes (10.1016/j.cie.2025.110856_b110) 2021
Li (10.1016/j.cie.2025.110856_b92) 2024; 35
Ding (10.1016/j.cie.2025.110856_b29) 2024; 87
Bello (10.1016/j.cie.2025.110856_b11) 2016
Su (10.1016/j.cie.2025.110856_b162) 2024; 88
Zhang (10.1016/j.cie.2025.110856_b230) 2024; 76
Zhuang (10.1016/j.cie.2025.110856_b241) 2019
Lee (10.1016/j.cie.2025.110856_b81) 2024; 187
Yang (10.1016/j.cie.2025.110856_b212) 2019; 32
Park (10.1016/j.cie.2025.110856_b130) 2019; 17
Wang (10.1016/j.cie.2025.110856_b188) 2016
Moon (10.1016/j.cie.2025.110856_b119) 2021; 21
Zhang (10.1016/j.cie.2025.110856_b220) 1995; 8
Lee (10.1016/j.cie.2025.110856_b82) 2024
Panwalkar (10.1016/j.cie.2025.110856_b126) 1977; 25
Bertsekas (10.1016/j.cie.2025.110856_b13) 2019
Dong (10.1016/j.cie.2025.110856_b31) 2022; 12
Lang (10.1016/j.cie.2025.110856_b79) 2020
Blum (10.1016/j.cie.2025.110856_b14) 2003; 35
Vinyals (10.1016/j.cie.2025.110856_b180) 2015
Wang (10.1016/j.cie.2025.110856_b191) 2020
Li (10.1016/j.cie.2025.110856_b91) 2022; 74
Goodfellow (10.1016/j.cie.2025.110856_b44) 2016
Tata (10.1016/j.cie.2025.110856_b170) 2021
Yan (10.1016/j.cie.2025.110856_b210) 2021; 162
Hasselt (10.1016/j.cie.2025.110856_b58) 2016
Chien (10.1016/j.cie.2025.110856_b23) 2021; 162
Csáji (10.1016/j.cie.2025.110856_b27) 2006; 20
Wang (10.1016/j.cie.2025.110856_b195) 2022; 77
Esmaeilzadeh (10.1016/j.cie.2025.110856_b34) 2019
Liu (10.1016/j.cie.2025.110856_b101) 2020; 8
Wesendrup (10.1016/j.cie.2025.110856_b200) 2023; 179
Graham (10.1016/j.cie.2025.110856_b45) 1979; vol. 5
Gabel (10.1016/j.cie.2025.110856_b39) 2007
Priore (10.1016/j.cie.2025.110856_b137) 2014; 28
Song (10.1016/j.cie.2025.110856_b159) 2022; 19
Wu (10.1016/j.cie.2025.110856_b206) 2020; 97
Mnih (10.1016/j.cie.2025.110856_b116) 2015; 518
Zhou (10.1016/j.cie.2025.110856_b239) 2022; 14
Nazari (10.1016/j.cie.2025.110856_b121) 2018; 2018-Decem
Kayhan (10.1016/j.cie.2025.110856_b71) 2021
Zhang (10.1016/j.cie.2025.110856_b219) 2020
Du (10.1016/j.cie.2025.110856_b32) 2022
Nawaz (10.1016/j.cie.2025.110856_b120) 1983; 11
Heger (10.1016/j.cie.2025.110856_b59) 2020
Vaswani (10.1016/j.cie.2025.110856_b176) 2017; 30
Ingimundardottir (10.1016/j.cie.2025.110856_b69) 2018; 21
Silver (10.1016/j.cie.2025.110856_b157) 2016; 529
Zhang (10.1016/j.cie.2025.110856_b222) 2022; 14
Zhao (10.1016/j.cie.2025.110856_b231) 2024; 187
Dittrich (10.1016/j.cie.2025.110856_b30) 2020; 69
Tesauro (10.1016/j.cie.2025.110856_b171) 2003; 16
Julaiti (10.1016/j.cie.2025.110856_b70) 2022; 4
Monaci (10.1016/j.cie.2025.110856_b118) 2024; 312
Luo (10.1016/j.cie.2025.110856_b109) 2021; 19
Sutton (10.1016/j.cie.2025.110856_b169) 1999; 112
Lowe (10.1016/j.cie.2025.110856_b104) 2017; 30
Scarselli (10.1016/j.cie.2025.110856_b151) 2008; 20
Schrittwieser (10.1016/j.cie.2025.110856_b152) 2020; 588
Lin (10.1016/j.cie.2025.110856_b99) 2019; 15
Luo (10.1016/j.cie.2025.110856_b108) 2021; 159
Hameed (10.1016/j.cie.2025.110856_b52) 2020
10.1016/j.cie.2025.110856_b46
Hasselt (10.1016/j.cie.2025.110856_b57) 2010; 23
Lee (10.1016/j.cie.2025.110856_b83) 2022; 191
Li (10.1016/j.cie.2025.110856_b87) 2020; vol. 2020-Novem
Pinedo (10.1016/j.cie.2025.110856_b134) 1992
Sutton (10.1016/j.cie.2025.110856_b167) 2018
Riedmiller (10.1016/j.cie.2025.110856_b146) 1999; vol. 2
Zhang (10.1016/j.cie.2025.110856_b221) 2024; 189
Infantes (10.1016/j.cie.2025.110856_b68) 2024
Piot (10.1016/j.cie.2025.110856_b135) 2016; 28
Shahzad (10.1016/j.cie.2025.110856_b155) 2016; 5
Li (10.1016/j.cie.2025.110856_b88) 2022; 168
Cappart (10.1016/j.cie.2025.110856_b18) 2023; 24
Hu (10.1016/j.cie.2025.110856_b63) 2023; 185
Kuhnle (10.1016/j.cie.2025.110856_b76) 2019; 81
Ibrahim (10.1016/j.cie.2025.110856_b66) 2021; 11
Shojaeinasab (10.1016/j.cie.2025.110856_b156) 2022; 62
Beck (10.1016/j.cie.2025.110856_b8) 2023
Panzer (10.1016/j.cie.2025.110856_b127) 2021
Chen (10.1016/j.cie.2025.110856_b20) 2022; XX
Wang (10.1016/j.cie.2025.110856_b185) 2022; 55
Watkins (10.1016/j.cie.2025.110856_b197) 1989
Tian (10.1016/j.cie.2025.110856_b
References_xml – start-page: 1
  year: 2021
  end-page: 12
  ident: b125
  article-title: Deep reinforcement learning based optimization algorithm for permutation flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 1
  start-page: 59
  year: 2019
  end-page: 68
  ident: b207
  article-title: Online single machine scheduling based on simulation and reinforcement learning
  publication-title: Simulation in Produktion und Logistik
– volume: 52
  start-page: 56
  year: 2022
  end-page: 68
  ident: b96
  article-title: Lenovo schedules laptop manufacturing using deep reinforcement learning
  publication-title: INFORMS Journal on Applied Analytics
– reference: (pp. 1135–1144).
– year: 2019
  ident: b34
  article-title: Neural abstractive text summarization and fake news detection
– volume: 7
  start-page: 1051
  year: 2022
  end-page: 1064
  ident: b174
  article-title: Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– year: 2015
  ident: b10
  publication-title: Applied dynamic programming
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b157
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– year: 2013
  ident: b115
  article-title: Playing atari with deep reinforcement learning
– volume: 145
  year: 2023
  ident: b163
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Applied Soft Computing
– start-page: 4475
  year: 2021
  end-page: 4482
  ident: b74
  article-title: End-to-end constrained optimization learning: A survey
  publication-title: IJCAI international joint conference on artificial intelligence
– volume: 2015-Janua
  start-page: 2692
  year: 2015
  end-page: 2700
  ident: b181
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: b53
  article-title: Representation learning on graphs: Methods and applications
– volume: XX
  start-page: 1
  year: 2022
  ident: b20
  article-title: A deep reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for the job shop scheduling problem
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2022
  ident: b161
  article-title: Self-organizing neural scheduler for the flexible job shop problem with periodic maintenance and mandatory outsourcing constraints
  publication-title: IEEE Transactions on Cybernetics
– volume: 3
  start-page: 9
  year: 1988
  end-page: 44
  ident: b166
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Machine Learning
– year: 2015
  ident: b98
  article-title: Continuous control with deep reinforcement learning
– volume: 12
  start-page: 2366
  year: 2022
  ident: b31
  article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach
  publication-title: Applied Sciences
– volume: 35
  start-page: 268
  year: 2003
  end-page: 308
  ident: b14
  article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison
  publication-title: ACM Computing Surveys (CSUR)
– volume: 91
  year: 2020
  ident: b105
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
– volume: 185
  year: 2023
  ident: b64
  article-title: A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals
  publication-title: Computers & Industrial Engineering
– volume: 11
  start-page: 91
  year: 1983
  end-page: 95
  ident: b120
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
– volume: 10
  start-page: 210
  year: 2022
  ident: b211
  article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance
  publication-title: Machines
– volume: 35
  start-page: 1107
  year: 2024
  end-page: 1140
  ident: b92
  article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups
  publication-title: Journal of Intelligent Manufacturing
– volume: 27
  start-page: 610
  year: 2022
  end-page: 620
  ident: b89
  article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2023
  ident: b194
  article-title: Flexible job shop scheduling via dual attention network-based reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1608
  year: 2020
  end-page: 1618
  ident: b59
  article-title: Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
  publication-title: 2020 winter simulation conference
– year: 2021
  ident: b127
  article-title: Deep reinforcement learning in production systems: a systematic literature review
  publication-title: International Journal of Production Research
– reference: Bahdanau, D., Cho, K. H., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In
– reference: Welling, M., & Kipf, T. N. (2016). Semi-supervised classification with graph convolutional networks. In
– year: 2021
  ident: b209
  article-title: Safely bridging offline and online reinforcement learning
– volume: 71
  start-page: 70
  year: 2023
  end-page: 81
  ident: b223
  article-title: Counterfactual-attention multi-agent reinforcement learning for joint condition-based maintenance and production scheduling
  publication-title: Journal of Manufacturing Systems
– year: 2018
  ident: b167
  article-title: Reinforcement learning: An introduction
– volume: 313
  year: 2022
  ident: b61
  article-title: Neural large neighborhood search for routing problems
  publication-title: Artificial Intelligence
– year: 2018
  ident: b208
  article-title: How powerful are graph neural networks?
– start-page: 766
  year: 2020
  end-page: 772
  ident: b154
  article-title: Production scheduling based on deep reinforcement learning using graph convolutional neural network
  publication-title: ICAART (2)
– start-page: 3441
  year: 2021
  end-page: 3451
  ident: b122
  article-title: A multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling problem
  publication-title: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining
– year: 2014
  ident: b26
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– start-page: 3
  year: 2020
  end-page: 16
  ident: b113
  article-title: An efficient new static scheduling heuristic for accelerated architectures
  publication-title: International conference on computational science
– reference: Russell, S. (1998). Learning agents for uncertain environments. In
– year: 2018
  ident: b36
  article-title: Counterfactual multi-agent policy gradients
  publication-title: Proceedings of the thirty-second AAAI conference on artificial intelligence and thirtieth innovative applications of artificial intelligence conference and eighth AAAI symposium on educational advances in artificial intelligence
– year: 1997
  ident: b60
  article-title: Long Short-term Memory
– year: 2000
  ident: b168
  article-title: Policy gradient methods for reinforcement learning with function approximation. NIPS-12
– start-page: 1
  year: 2019
  end-page: 17
  ident: b241
  article-title: Scalability of multiagent reinforcement learning
  publication-title: Interactions in multiagent systems
– volume: 185
  year: 2023
  ident: b63
  article-title: Knowledge-enhanced reinforcement learning for multi-machine integrated production and maintenance scheduling
  publication-title: Computers & Industrial Engineering
– year: 2021
  ident: b110
  article-title: Encoder-decoder neural network architecture for solving job shop scheduling problems using reinforcement learning
  publication-title: 2021 IEEE symposium series on computational intelligence, SSCI 2021 - proceedings
– start-page: 3899
  year: 2017
  end-page: 3907
  ident: b227
  article-title: Real-time job shop scheduling based on simulation and Markov decision processes
  publication-title: 2017 winter simulation conference
– start-page: 1
  year: 2024
  end-page: 19
  ident: b189
  article-title: Design patterns of deep reinforcement learning models for job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 186
  year: 2023
  ident: b225
  article-title: Dynamic scheduling for flexible job shop with insufficient transportation resources via graph neural network and deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– volume: 62
  start-page: 705
  year: 2024
  end-page: 719
  ident: b150
  article-title: Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness
  publication-title: International Journal of Production Research
– year: 2015
  ident: b180
  article-title: Order matters: Sequence to sequence for sets
– year: 2020
  ident: b240
  article-title: Transfer learning in deep reinforcement learning: A survey
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
  ident: b224
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 38
  start-page: 58
  year: 1995
  end-page: 68
  ident: b172
  article-title: Temporal difference learning and TD-gammon
  publication-title: Communications of the ACM
– volume: 24
  start-page: 14
  year: 2008
  end-page: 18
  ident: b40
  article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents
  publication-title: International Journal of Information Technology and Intelligent Computing
– volume: 336
  year: 2022
  ident: b72
  article-title: Reinforcement learning approach to scheduling of precast concrete production
  publication-title: Journal of Cleaner Production
– volume: 34
  start-page: 26
  year: 2017
  end-page: 38
  ident: b5
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Processing Magazine
– volume: 12
  start-page: 417
  year: 2009
  end-page: 431
  ident: b123
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: Journal of Scheduling
– year: 2023
  ident: b90
  article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 189
  year: 2024
  ident: b221
  article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV
  publication-title: Computers & Industrial Engineering
– volume: 14
  start-page: 5177
  year: 2022
  ident: b222
  article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization
  publication-title: Sustainability
– volume: 20
  start-page: 410
  year: 2021
  end-page: 421
  ident: b234
  article-title: Application of machine learning and rule scheduling in a job-shop production control system
  publication-title: International Journal of Simulation Modelling
– reference: Davis, L., et al. (1985). Job shop scheduling with genetic algorithms.
– volume: 168
  year: 2022
  ident: b88
  article-title: Bilevel learning for large-scale flexible flow shop scheduling
  publication-title: Computers & Industrial Engineering
– start-page: 655
  year: 2019
  end-page: 671
  ident: b236
  article-title: Manufacturing dispatching using reinforcement and transfer learning
  publication-title: Joint European conference on machine learning and knowledge discovery in databases
– volume: 296
  year: 2024
  ident: b183
  article-title: Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network
  publication-title: Knowledge-Based Systems
– volume: 19
  start-page: 157
  year: 2020
  end-page: 168
  ident: b143
  article-title: A novel solution to JSPs based on long short-term memory and policy gradient algorithm
  publication-title: International Journal of Simulation Modelling
– volume: 32
  year: 2019
  ident: b22
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3277
  year: 2020
  end-page: 3282
  ident: b191
  article-title: Parallel machine workshop scheduling using the integration of proximal policy optimization training and Monte Carlo tree search
  publication-title: 2020 Chinese automation congress
– volume: 2
  year: 2021
  ident: b203
  article-title: Measuring and characterizing generalization in deep reinforcement learning
  publication-title: Applied AI Letters
– volume: 60
  start-page: 5937
  year: 2022
  end-page: 5955
  ident: b107
  article-title: Multi-resource constrained dynamic workshop scheduling based on proximal policy optimisation
  publication-title: International Journal of Production Research
– volume: 9
  start-page: 2633
  year: 2021
  ident: b139
  article-title: Nature-inspired metaheuristic techniques for combinatorial optimization problems: overview and recent advances
  publication-title: Mathematics
– start-page: 653
  year: 2006
  end-page: 658
  ident: b38
  article-title: Reducing policy degradation in neuro-dynamic programming
  publication-title: ESANN
– year: 2016
  ident: b44
  article-title: Deep learning
– volume: 188
  year: 2024
  ident: b232
  article-title: Data-driven optimization for energy-constrained dietary supplement scheduling: A bounded cut MP-DQN approach
  publication-title: Computers & Industrial Engineering
– year: 2020
  ident: b41
  article-title: Integrated maintenance and production scheduling
– volume: 2018-Decem
  start-page: 9839
  year: 2018
  end-page: 9849
  ident: b121
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Advances in Neural Information Processing Systems
– year: 1989
  ident: b197
  article-title: Learning from delayed rewards
– volume: 290
  start-page: 405
  year: 2021
  end-page: 421
  ident: b12
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
– volume: 21
  start-page: 413
  year: 2018
  end-page: 428
  ident: b69
  article-title: Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem
  publication-title: Journal of Scheduling
– volume: 74
  year: 2022
  ident: b91
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 9
  start-page: 51
  year: 2022
  end-page: 67
  ident: b24
  article-title: Minimize makespan of permutation flowshop using pointer network
  publication-title: Journal of Computational Design and Engineering
– volume: 12
  start-page: 1491
  year: 2022
  ident: b128
  article-title: Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives
  publication-title: Applied Sciences
– start-page: 1
  year: 2022
  end-page: 18
  ident: b35
  article-title: Reinforcement learning applied to production planning and control
  publication-title: International Journal of Production Research
– volume: 5
  start-page: 3
  year: 2016
  ident: b155
  article-title: Learning dispatching rules for scheduling: A synergistic view comprising decision trees, tabu search and simulation
  publication-title: Computers
– volume: 187
  year: 2024
  ident: b81
  article-title: Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling
  publication-title: Computers & Chemical Engineering
– reference: Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the predictions of any classifier. In
– volume: vol. 2
  start-page: 764
  year: 1999
  end-page: 769
  ident: b146
  article-title: A neural reinforcement learning approach to learn local dispatching policies in production scheduling
  publication-title: IJCAI International Joint Conference on Artificial Intelligence
– volume: 189
  year: 2024
  ident: b100
  article-title: Reentrant hybrid flow shop scheduling with stockers in automated material handling systems using deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– volume: 134
  year: 2021
  ident: b112
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Computers & Operations Research
– volume: 32
  year: 2019
  ident: b212
  article-title: A generalized algorithm for multi-objective reinforcement learning and policy adaptation
  publication-title: Advances in Neural Information Processing Systems
– volume: 59
  start-page: 3360
  year: 2021
  end-page: 3377
  ident: b129
  article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning
  publication-title: International Journal of Production Research
– reference: (p. 1).
– start-page: 1
  year: 2021
  end-page: 8
  ident: b170
  article-title: Investigation of maximization bias in sarsa variants
  publication-title: 2021 IEEE symposium series on computational intelligence
– start-page: 1
  year: 2021
  end-page: 25
  ident: b71
  article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
  publication-title: Journal of Intelligent Manufacturing
– volume: 97
  year: 2020
  ident: b206
  article-title: Real-time neural network scheduling of emergency medical mask production during COVID-19
  publication-title: Applied Soft Computing
– volume: 186
  year: 2024
  ident: b65
  article-title: Production rescheduling via explorative reinforcement learning while considering nervousness
  publication-title: Computers & Chemical Engineering
– start-page: 35
  year: 1992
  end-page: 42
  ident: b134
  article-title: Scheduling: theory, algorithms and systems development
  publication-title: Operations research proceedings 1991
– volume: 22
  start-page: 5413
  year: 2022
  ident: b3
  article-title: Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified CGAN
  publication-title: Sensors
– year: 2021
  ident: b75
  article-title: Explainable reinforcement learning in production control of job shop manufacturing system
  publication-title: International Journal of Production Research
– volume: 20
  start-page: 375
  year: 2021
  end-page: 386
  ident: b56
  article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem
  publication-title: International Journal of Simulation Modelling
– year: 2020
  ident: b204
  article-title: Integer programming
– volume: 23
  year: 2010
  ident: b57
  article-title: Double Q-learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 60
  start-page: 2787
  year: 2021
  end-page: 2800
  ident: b144
  article-title: Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network
  publication-title: Alexandria Engineering Journal
– reference: Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
– start-page: 884
  year: 2022
  end-page: 890
  ident: b218
  article-title: A deep reinforcement learning approach to flexible job shop scheduling
  publication-title: 2022 IEEE international conference on systems, man, and cybernetics
– start-page: 679
  year: 1957
  end-page: 684
  ident: b9
  article-title: A Markovian decision process
  publication-title: Journal of Mathematics and Mechanics
– volume: 77
  year: 2022
  ident: b195
  article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 19
  start-page: 3020
  year: 2021
  end-page: 3038
  ident: b109
  article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 233
  year: 2021
  ident: b193
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey
  publication-title: Knowledge-Based Systems
– volume: 24
  start-page: 1
  year: 2023
  end-page: 61
  ident: b18
  article-title: Combinatorial optimization and reasoning with graph neural networks
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 122995
  year: 2021
  end-page: 123011
  ident: b233
  article-title: Dynamic jobshop scheduling algorithm based on deep Q network
  publication-title: IEEE Access
– volume: 14
  start-page: 319
  year: 2020
  end-page: 328
  ident: b4
  article-title: Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints
  publication-title: Production Engineering
– reference: .
– volume: 21
  start-page: 1726
  year: 2020
  end-page: 1744
  ident: b190
  article-title: Deep reinforcement learning: a survey
  publication-title: Frontiers of Information Technology & Electronic Engineering
– year: 2017
  ident: b201
  article-title: Recurrent neural network unfold
– volume: 2020
  year: 2020
  ident: b215
  article-title: Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm
  publication-title: Mathematical Problems in Engineering
– start-page: 3057
  year: 2020
  end-page: 3068
  ident: b79
  article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production
  publication-title: 2020 winter simulation conference
– volume: 28
  start-page: 1814
  year: 2016
  end-page: 1826
  ident: b135
  article-title: Bridging the gap between imitation learning and inverse reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 1
  year: 2024
  end-page: 34
  ident: b93
  article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups
  publication-title: Journal of Intelligent Manufacturing
– volume: 588
  start-page: 604
  year: 2020
  end-page: 609
  ident: b152
  article-title: Mastering atari, go, chess and shogi by planning with a learned model
  publication-title: Nature
– volume: 8
  start-page: 120388
  year: 2020
  end-page: 120416
  ident: b178
  article-title: Learning combinatorial optimization on graphs: A survey with applications to networking
  publication-title: IEEE Access
– start-page: 3540
  year: 2017
  end-page: 3549
  ident: b179
  article-title: Feudal networks for hierarchical reinforcement learning
  publication-title: International conference on machine learning
– volume: 33
  start-page: 911
  year: 2022
  end-page: 927
  ident: b198
  article-title: On reliability of reinforcement learning based production scheduling systems: a comparative survey
  publication-title: Journal of Intelligent Manufacturing
– volume: 1
  start-page: 31
  year: 1998
  end-page: 54
  ident: b16
  article-title: Scheduling a batching machine
  publication-title: Journal of Scheduling
– start-page: 1
  year: 2021
  end-page: 12
  ident: b106
  article-title: Graph convolutional network-based interpretable machine learning scheme in smart grids
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 2019
  ident: b13
  article-title: Reinforcement learning and optimal control
– volume: 112
  start-page: 181
  year: 1999
  end-page: 211
  ident: b169
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artificial intelligence
– volume: 151
  year: 2023
  ident: b184
  article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach
  publication-title: Computers & Operations Research
– reference: (pp. 101–103).
– start-page: 1
  year: 2021
  end-page: 18
  ident: b213
  article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing
  publication-title: International Journal of Production Research
– volume: 10
  start-page: 760
  year: 2022
  ident: b19
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
– volume: 180
  year: 2023
  ident: b50
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Computers & Industrial Engineering
– start-page: 1146
  year: 2017
  end-page: 1155
  ident: b37
  article-title: Stabilising experience replay for deep multi-agent reinforcement learning
  publication-title: International conference on machine learning
– start-page: 1551
  year: 2020
  end-page: 1559
  ident: b175
  article-title: Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation
  publication-title: 2020 winter simulation conference
– volume: 8
  start-page: 71752
  year: 2020
  end-page: 71762
  ident: b101
  article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems
  publication-title: Ieee Access
– volume: 162
  year: 2021
  ident: b23
  article-title: Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for industry 3.5 smart production
  publication-title: Computers & Industrial Engineering
– year: 2024
  ident: b82
  article-title: Graph-based imitation learning for real-time job shop dispatcher
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 4
  start-page: 166
  year: 2022
  end-page: 180
  ident: b164
  article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions
  publication-title: IET Collaborative Intelligent Manufacturing
– volume: 30
  year: 2017
  ident: b176
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  year: 2022
  ident: b216
  article-title: Quantum-behaved RS-PSO-LSSVM method for quality prediction in parts production processes
  publication-title: Concurrency Computations: Practice and Experience
– start-page: 1
  year: 2024
  end-page: 32
  ident: b235
  article-title: Large-scale dynamic surgical scheduling under uncertainty by hierarchical reinforcement learning
  publication-title: International Journal of Production Research
– reference: Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In
– start-page: 1
  year: 2024
  end-page: 24
  ident: b17
  article-title: Resilience-oriented approach of dynamic production and maintenance scheduling optimisation considering operational uncertainty
  publication-title: International Journal of Production Research
– start-page: 2094
  year: 2016
  end-page: 2100
  ident: b58
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proceedings of the thirtieth AAAI conference on artificial intelligence
– volume: 87
  year: 2024
  ident: b214
  article-title: A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs
  publication-title: Swarm and Evolutionary Computation
– volume: 90
  year: 2024
  ident: b217
  article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems
  publication-title: Swarm and Evolutionary Computation
– volume: 81
  start-page: 234
  year: 2019
  end-page: 239
  ident: b76
  article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems
  publication-title: Procedia CIRP
– volume: 35
  start-page: 8760
  year: 2022
  end-page: 8772
  ident: b25
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 191
  year: 2022
  ident: b83
  article-title: Deep reinforcement learning based scheduling within production plan in semiconductor fabrication
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 1600
  year: 2022
  end-page: 1610
  ident: b159
  article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 53
  start-page: 18925
  year: 2023
  end-page: 18958
  ident: b48
  article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– reference: Hou, Q., Yang, J., Su, Y., Wang, X., & Deng, Y. (2023). Generalize learned heuristics to solve large-scale vehicle routing problems in real-time. In
– volume: ahead-of-print
  year: 2024
  ident: b1
  article-title: A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches)
  publication-title: Business Process Management Journal
– volume: 8
  start-page: 345
  year: 2000
  end-page: 383
  ident: b160
  article-title: Multiagent systems: A survey from a machine learning perspective
  publication-title: Autonomous Robots
– year: 2021
  ident: b205
  article-title: Graph neural networks for natural language processing: A survey
– volume: 29
  start-page: 1266
  year: 2024
  end-page: 1282
  ident: b186
  article-title: Solving combinatorial optimization problems with deep neural network: A survey
  publication-title: Tsinghua Science and Technology
– volume: 4
  year: 2022
  ident: b70
  article-title: Stochastic parallel machine scheduling using reinforcement learning
  publication-title: Journal of Advanced Manufacturing and Processing
– start-page: 572
  year: 2020
  end-page: 583
  ident: b182
  article-title: Use of simulation-aided reinforcement learning for optimal scheduling of operations in industrial plants
  publication-title: 2020 winter simulation conference
– start-page: 1263
  year: 2017
  end-page: 1272
  ident: b43
  article-title: Neural message passing for quantum chemistry
  publication-title: International conference on machine learning
– volume: 28
  start-page: 83
  year: 2014
  end-page: 97
  ident: b137
  article-title: Dynamic scheduling of manufacturing systems using machine learning: An updated review
  publication-title: Ai Edam
– start-page: 515
  year: 2021
  end-page: 526
  ident: b136
  article-title: Global reward design for cooperative agents to achieve flexible production control under real-time constraints
  publication-title: ICEIS (1)
– volume: 84
  year: 2023
  ident: b102
  article-title: Integration of deep reinforcement learning and multi-agent system for dynamic scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels
  publication-title: Robotics and Computer-Integrated Manufacturing
– year: 2018
  ident: b73
  article-title: Attention, learn to solve routing problems!
– start-page: 1
  year: 2012
  end-page: 8
  ident: b80
  article-title: Autonomous reinforcement learning on raw visual input data in a real world application
  publication-title: The 2012 international joint conference on neural networks
– volume: 11
  start-page: 10870
  year: 2021
  ident: b66
  article-title: Applications of multi-agent deep reinforcement learning: Models and algorithms
  publication-title: Applied Sciences
– year: 2018
  ident: b67
  article-title: A closer look at deep policy gradients
– year: 2016
  ident: b11
  article-title: Neural combinatorial optimization with reinforcement learning
– volume: 17
  start-page: 343
  year: 2024
  ident: b117
  article-title: A review on reinforcement learning in production scheduling: An inferential perspective
  publication-title: Algorithms
– volume: 20
  start-page: 61
  year: 2008
  end-page: 80
  ident: b151
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
– start-page: 1928
  year: 2016
  end-page: 1937
  ident: b114
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: International conference on machine learning
– volume: 11
  start-page: 2977
  year: 2021
  ident: b131
  article-title: Digital twin and reinforcement learning-based resilient production control for micro smart factory
  publication-title: Applied Sciences
– volume: 8
  year: 1995
  ident: b220
  article-title: High-performance job-shop scheduling with a time-delay TD (
  publication-title: Advances in Neural Information Processing Systems
– volume: 40
  start-page: 75
  year: 2023
  end-page: 101
  ident: b95
  article-title: Deep reinforcement learning in smart manufacturing: A review and prospects
  publication-title: CIRP Journal of Manufacturing Science and Technology
– start-page: 1
  year: 2024
  end-page: 32
  ident: b54
  article-title: Design and calibration of a DRL algorithm for solving the job shop scheduling problem under unexpected job arrivals
  publication-title: Flexible Services and Manufacturing Journal
– volume: 205
  year: 2022
  ident: b85
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
– volume: 4
  start-page: 3104
  year: 2014
  end-page: 3112
  ident: b165
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– year: 2023
  ident: b8
  article-title: A survey of meta-reinforcement learning
– volume: 62
  start-page: 421
  year: 2024
  end-page: 443
  ident: b192
  article-title: Scheduling a multi-agent flow shop with two scenarios and release dates
  publication-title: International Journal of Production Research
– volume: 33
  start-page: 1179
  year: 2020
  end-page: 1191
  ident: b77
  article-title: Conservative q-learning for offline reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 21188
  year: 2020
  end-page: 21198
  ident: b78
  article-title: Pomo: Policy optimization with multiple optima for reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 17
  start-page: 1420
  year: 2019
  end-page: 1431
  ident: b130
  article-title: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities
  publication-title: IEEE Transactions on Automation Science and Engineering
– year: 2016
  ident: b188
  article-title: Learning to reinforcement learn
– volume: 162
  year: 2021
  ident: b210
  article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities
  publication-title: SSRN Electronic Journal
– volume: 69
  start-page: 389
  year: 2020
  end-page: 392
  ident: b30
  article-title: Cooperative multi-agent system for production control using reinforcement learning
  publication-title: CIRP Annals
– volume: 25
  start-page: 45
  year: 1977
  end-page: 61
  ident: b126
  article-title: A survey of scheduling rules
  publication-title: Operations Research
– reference: Baer, S., Turner, D., Mohanty, P., Samsonov, V., Bakakeu, R., & Meisen, T. (2020). Multi agent deep q-network approach for online job shop scheduling in flexible manufacturing.
– volume: 74
  start-page: 329
  year: 2024
  end-page: 345
  ident: b229
  article-title: A novel collaborative agent reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem
  publication-title: Journal of Manufacturing Systems
– volume: 9
  start-page: 752
  year: 2021
  end-page: 766
  ident: b237
  article-title: Reinforcement learning with composite rewards for production scheduling in a smart factory
  publication-title: IEEE Access
– year: 2016
  ident: b33
  article-title: Rl2: Fast reinforcement learning via slow reinforcement learning
– volume: 190
  year: 2021
  ident: b187
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
– start-page: 1
  year: 2022
  end-page: 21
  ident: b103
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
– volume: 20
  start-page: 279
  year: 2006
  end-page: 288
  ident: b27
  article-title: Reinforcement learning in a distributed market-based production control system
  publication-title: Advanced Engineering Informatics
– volume: 249
  year: 2024
  ident: b97
  article-title: Dynamic constrained evolutionary optimization based on deep Q-network
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 229
  year: 1992
  end-page: 256
  ident: b202
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
– reference: (pp. 855–864).
– volume: 62
  start-page: 503
  year: 2022
  end-page: 522
  ident: b156
  article-title: Intelligent manufacturing execution systems: A systematic review
  publication-title: Journal of Manufacturing Systems
– year: 2022
  ident: b32
  article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– year: 2017
  ident: b177
  article-title: Graph attention networks
– start-page: 4295
  year: 2018
  end-page: 4304
  ident: b141
  article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning
  publication-title: International conference on machine learning
– volume: vol. 2018-Septe
  start-page: 433
  year: 2018
  end-page: 440
  ident: b138
  article-title: Dynamic scheduling in large-scale stochastic processing networks for demand-driven manufacturing using distributed reinforcement learning
  publication-title: IEEE international conference on emerging technologies and factory automation, ETFA
– volume: 159
  year: 2021
  ident: b108
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– volume: vol. 5
  start-page: 287
  year: 1979
  end-page: 326
  ident: b45
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  publication-title: Annals of discrete mathematics
– volume: 35
  start-page: 667
  year: 2024
  end-page: 686
  ident: b47
  article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
  publication-title: Journal of Intelligent Manufacturing
– start-page: 301
  year: 2018
  end-page: 306
  ident: b196
  article-title: Deep reinforcement learning for semiconductor production scheduling
  publication-title: 2018 29th annual SEMI advanced semiconductor manufacturing conference
– volume: 179
  year: 2023
  ident: b200
  article-title: Post-prognostics demand management, production, spare parts and maintenance planning for a single-machine system using Reinforcement Learning
  publication-title: Computers & Industrial Engineering
– volume: 299
  start-page: 75
  year: 2022
  end-page: 86
  ident: b15
  article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning
  publication-title: European Journal of Operational Research
– start-page: 68
  year: 2007
  end-page: 75
  ident: b39
  article-title: On a successful application of multi-agent reinforcement learning to operations research benchmarks
  publication-title: 2007 IEEE international symposium on approximate dynamic programming and reinforcement learning
– volume: 54
  start-page: 1
  year: 2021
  end-page: 35
  ident: b132
  article-title: Hierarchical reinforcement learning: A comprehensive survey
  publication-title: ACM Computing Surveys
– volume: 5
  year: 2023
  ident: b226
  article-title: A review on learning to solve combinatorial optimisation problems in manufacturing
  publication-title: IET Collaborative Intelligent Manufacturing
– volume: 362
  start-page: 1140
  year: 2018
  end-page: 1144
  ident: b158
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play
  publication-title: Science
– volume: 20
  start-page: 1007
  year: 2023
  end-page: 1018
  ident: b84
  article-title: Large-scale dynamic scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement learning
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2017
  ident: b153
  article-title: Proximal policy optimization algorithms
– volume: 76
  start-page: 614
  year: 2024
  end-page: 626
  ident: b230
  article-title: A novel soft Actor–Critic framework with disjunctive graph embedding and autoencoder mechanism for Job Shop Scheduling Problems
  publication-title: Journal of Manufacturing Systems
– volume: 191
  year: 2024
  ident: b49
  article-title: Dynamic scheduling mechanism for intelligent workshop with deep reinforcement learning method based on multi-agent system architecture
  publication-title: Computers & Industrial Engineering
– volume: 55
  start-page: 2144
  year: 2022
  end-page: 2149
  ident: b185
  article-title: Dynamic selection of priority rules based on deep reinforcement learning for rescheduling of RCPSP
  publication-title: IFAC-PapersOnLine
– volume: vol. 2018-Decem
  start-page: 3331
  year: 2019
  end-page: 3339
  ident: b228
  article-title: Real-time batching in job shops based on simulation and reinforcement learning
  publication-title: Proceedings - Winter simulation conference
– volume: 14
  year: 2022
  ident: b239
  article-title: Reinforcement learning for online optimization of job-shop scheduling in a smart manufacturing factory
  publication-title: Advances in Mechanical Engineering
– year: 1994
  ident: b148
  publication-title: On-line Q-learning using connectionist systems
– volume: 312
  start-page: 910
  year: 2024
  end-page: 926
  ident: b118
  article-title: An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents
  publication-title: European Journal of Operational Research
– volume: 88
  year: 2024
  ident: b162
  article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning
  publication-title: Swarm and Evolutionary Computation
– volume: vol. 2020-Novem
  start-page: 277
  year: 2020
  end-page: 284
  ident: b87
  article-title: Solving open shop scheduling problem via graph attention neural network
  publication-title: Proceedings - International conference on tools with artificial intelligence, ICTAI
– year: 2024
  ident: b140
  article-title: A recurrent reinforcement learning strategy for optimal scheduling of partially observable job-shop and flow-shop batch chemical plants under uncertainty
  publication-title: Computers & Chemical Engineering
– volume: 193
  year: 2024
  ident: b147
  article-title: Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective
  publication-title: Computers & Industrial Engineering
– volume: 30
  year: 2017
  ident: b104
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Advances in neural information processing systems
– volume: 21
  year: 2021
  ident: b119
  article-title: A novel approach to the job shop scheduling problem based on the deep Q-network in a cooperative multi-access edge computing ecosystem
  publication-title: Sensors
– reference: (pp. 1–15).
– volume: 16
  start-page: 269
  year: 2021
  end-page: 284
  ident: b142
  article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-learning
  publication-title: Advances in Production Engineering & Management
– start-page: 152
  year: 2021
  end-page: 160
  ident: b111
  article-title: Dynamic scheduling in a flow shop using deep reinforcement learning
  publication-title: IFIP international conference on advances in production management systems
– volume: 8
  start-page: 186474
  year: 2020
  end-page: 186495
  ident: b55
  article-title: Research on adaptive job shop scheduling problems based on dueling double DQN
  publication-title: IEEE Access
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b116
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– year: 2020
  ident: b219
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 129
  year: 2018
  end-page: 136
  ident: b173
  article-title: Minerva: A reinforcement learning-based technique for optimal scheduling and bottleneck detection in distributed factory operations
  publication-title: 2018 10th international conference on communication systems & networks
– start-page: 1
  year: 2023
  end-page: 20
  ident: b86
  article-title: A multi-objective reinforcement learning approach for resequencing scheduling problems in automotive manufacturing systems
  publication-title: International Journal of Production Research
– start-page: 1
  year: 2024
  end-page: 20
  ident: b21
  article-title: Real-time stochastic flexible flow shop scheduling in a credit factory with model-based reinforcement learning
  publication-title: International Journal of Production Research
– volume: 15
  start-page: 1626
  year: 2022
  ident: b133
  article-title: Automatic verification flow shop scheduling of electric energy meters based on an improved Q-learning algorithm
  publication-title: Energies
– volume: 187
  year: 2024
  ident: b231
  article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem
  publication-title: Computers & Industrial Engineering
– start-page: 329
  year: 2024
  end-page: 345
  ident: b68
  article-title: Learning to solve job shop scheduling under uncertainty
  publication-title: International conference on the integration of constraint programming, artificial intelligence, and operations research
– volume: vol. 38
  start-page: 20185
  year: 2024
  end-page: 20193
  ident: b94
  article-title: Learning to optimize permutation flow shop scheduling via graph-based imitation learning
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– start-page: 1
  year: 2020
  end-page: 8
  ident: b52
  article-title: Reinforcement learning on job shop scheduling problems using graph networks
– reference: , In
– volume: 24
  start-page: 175
  year: 2021
  end-page: 196
  ident: b51
  article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation
  publication-title: Journal of Scheduling
– volume: 15
  start-page: 4276
  year: 2019
  end-page: 4284
  ident: b99
  article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 87
  year: 2024
  ident: b29
  article-title: Multi-policy deep reinforcement learning for multi-objective multiplicity flexible job shop scheduling
  publication-title: Swarm and Evolutionary Computation
– volume: 72
  year: 2021
  ident: b238
  article-title: Multi-agent reinforcement learning for online scheduling in smart factories
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 12
  start-page: 9332
  year: 2022
  ident: b42
  article-title: Deep reinforcement learning approach for material scheduling considering high-dimensional environment of hybrid flow-shop problem
  publication-title: Applied Sciences
– volume: 9
  start-page: 101390
  year: 2021
  end-page: 101401
  ident: b124
  article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups
  publication-title: IEEE Access
– volume: 16
  year: 2003
  ident: b171
  article-title: Extending Q-learning to general adaptive multi-agent systems
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b21
  article-title: Real-time stochastic flexible flow shop scheduling in a credit factory with model-based reinforcement learning
  publication-title: International Journal of Production Research
– year: 2024
  ident: 10.1016/j.cie.2025.110856_b82
  article-title: Graph-based imitation learning for real-time job shop dispatcher
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2024.3486919
– start-page: 1
  year: 2012
  ident: 10.1016/j.cie.2025.110856_b80
  article-title: Autonomous reinforcement learning on raw visual input data in a real world application
– volume: 29
  start-page: 1266
  issue: 5
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b186
  article-title: Solving combinatorial optimization problems with deep neural network: A survey
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2023.9010076
– start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b103
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research
– ident: 10.1016/j.cie.2025.110856_b199
– ident: 10.1016/j.cie.2025.110856_b145
  doi: 10.1145/2939672.2939778
– volume: 62
  start-page: 503
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b156
  article-title: Intelligent manufacturing execution systems: A systematic review
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2022.01.004
– volume: 16
  year: 2003
  ident: 10.1016/j.cie.2025.110856_b171
  article-title: Extending Q-learning to general adaptive multi-agent systems
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.cie.2025.110856_b110
  article-title: Encoder-decoder neural network architecture for solving job shop scheduling problems using reinforcement learning
– start-page: 129
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b173
  article-title: Minerva: A reinforcement learning-based technique for optimal scheduling and bottleneck detection in distributed factory operations
– volume: 8
  start-page: 345
  issue: 3
  year: 2000
  ident: 10.1016/j.cie.2025.110856_b160
  article-title: Multiagent systems: A survey from a machine learning perspective
  publication-title: Autonomous Robots
  doi: 10.1023/A:1008942012299
– volume: vol. 2020-Novem
  start-page: 277
  issn: 10823409
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b87
  article-title: Solving open shop scheduling problem via graph attention neural network
– volume: 20
  start-page: 279
  issue: 3
  year: 2006
  ident: 10.1016/j.cie.2025.110856_b27
  article-title: Reinforcement learning in a distributed market-based production control system
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2006.01.001
– ident: 10.1016/j.cie.2025.110856_b149
  doi: 10.1145/279943.279964
– volume: vol. 2018-Decem
  start-page: 3331
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b228
  article-title: Real-time batching in job shops based on simulation and reinforcement learning
– year: 1989
  ident: 10.1016/j.cie.2025.110856_b197
– volume: 186
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b225
  article-title: Dynamic scheduling for flexible job shop with insufficient transportation resources via graph neural network and deep reinforcement learning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109718
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b239
  article-title: Reinforcement learning for online optimization of job-shop scheduling in a smart manufacturing factory
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/16878132221086120
– volume: 186
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b65
  article-title: Production rescheduling via explorative reinforcement learning while considering nervousness
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2024.108700
– volume: 185
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b64
  article-title: A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109650
– volume: vol. 2018-Septe
  start-page: 433
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b138
  article-title: Dynamic scheduling in large-scale stochastic processing networks for demand-driven manufacturing using distributed reinforcement learning
– year: 2024
  ident: 10.1016/j.cie.2025.110856_b140
  article-title: A recurrent reinforcement learning strategy for optimal scheduling of partially observable job-shop and flow-shop batch chemical plants under uncertainty
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2024.108748
– volume: 87
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b214
  article-title: A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101544
– start-page: 3057
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b79
  article-title: Integration of deep reinforcement learning and discrete-event simulation for real-time scheduling of a flexible job shop production
– start-page: 655
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b236
  article-title: Manufacturing dispatching using reinforcement and transfer learning
– volume: 185
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b63
  article-title: Knowledge-enhanced reinforcement learning for multi-machine integrated production and maintenance scheduling
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109631
– volume: 22
  start-page: 5413
  issue: 14
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b3
  article-title: Synthesizing rolling bearing fault samples in new conditions: A framework based on a modified CGAN
  publication-title: Sensors
  doi: 10.3390/s22145413
– year: 2022
  ident: 10.1016/j.cie.2025.110856_b161
  article-title: Self-organizing neural scheduler for the flexible job shop problem with periodic maintenance and mandatory outsourcing constraints
  publication-title: IEEE Transactions on Cybernetics
– ident: 10.1016/j.cie.2025.110856_b6
– volume: 24
  start-page: 175
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b51
  article-title: Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-020-00664-5
– year: 2017
  ident: 10.1016/j.cie.2025.110856_b153
– volume: 179
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b200
  article-title: Post-prognostics demand management, production, spare parts and maintenance planning for a single-machine system using Reinforcement Learning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109216
– volume: 588
  start-page: 604
  issue: 7839
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b152
  article-title: Mastering atari, go, chess and shogi by planning with a learned model
  publication-title: Nature
  doi: 10.1038/s41586-020-03051-4
– year: 2020
  ident: 10.1016/j.cie.2025.110856_b41
– volume: 74
  start-page: 329
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b229
  article-title: A novel collaborative agent reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2024.03.012
– start-page: 515
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b136
  article-title: Global reward design for cooperative agents to achieve flexible production control under real-time constraints
– volume: 8
  start-page: 229
  issue: 3
  year: 1992
  ident: 10.1016/j.cie.2025.110856_b202
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Machine Learning
  doi: 10.1007/BF00992696
– volume: 38
  start-page: 58
  issue: 3
  year: 1995
  ident: 10.1016/j.cie.2025.110856_b172
  article-title: Temporal difference learning and TD-gammon
  publication-title: Communications of the ACM
  doi: 10.1145/203330.203343
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b54
  article-title: Design and calibration of a DRL algorithm for solving the job shop scheduling problem under unexpected job arrivals
  publication-title: Flexible Services and Manufacturing Journal
– year: 2018
  ident: 10.1016/j.cie.2025.110856_b36
  article-title: Counterfactual multi-agent policy gradients
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b241
  article-title: Scalability of multiagent reinforcement learning
– volume: 134
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b112
  article-title: Reinforcement learning for combinatorial optimization: A survey
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105400
– volume: 8
  year: 1995
  ident: 10.1016/j.cie.2025.110856_b220
  article-title: High-performance job-shop scheduling with a time-delay TD (λ) network
  publication-title: Advances in Neural Information Processing Systems
– start-page: 766
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b154
  article-title: Production scheduling based on deep reinforcement learning using graph convolutional neural network
– start-page: 3277
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b191
  article-title: Parallel machine workshop scheduling using the integration of proximal policy optimization training and Monte Carlo tree search
– year: 2019
  ident: 10.1016/j.cie.2025.110856_b34
– volume: 33
  start-page: 1621
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b224
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  start-page: 610
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b89
  article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3175832
– year: 2014
  ident: 10.1016/j.cie.2025.110856_b26
– volume: 3
  start-page: 9
  issue: 1
  year: 1988
  ident: 10.1016/j.cie.2025.110856_b166
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Machine Learning
  doi: 10.1007/BF00115009
– volume: 72
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b238
  article-title: Multi-agent reinforcement learning for online scheduling in smart factories
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2021.102202
– volume: 16
  start-page: 269
  issue: 3
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b142
  article-title: A new solution to distributed permutation flow shop scheduling problem based on NASH Q-learning
  publication-title: Advances in Production Engineering & Management
  doi: 10.14743/apem2021.3.399
– volume: 17
  start-page: 343
  issue: 8
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b117
  article-title: A review on reinforcement learning in production scheduling: An inferential perspective
  publication-title: Algorithms
  doi: 10.3390/a17080343
– volume: 74
  issn: 07365845
  issue: August 2021
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b91
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 35
  start-page: 667
  issue: 2
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b47
  article-title: Robust-stable scheduling in dynamic flow shops based on deep reinforcement learning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-02069-x
– volume: 19
  start-page: 3020
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b109
  article-title: Real-time scheduling for dynamic partial-no-wait multiobjective flexible job shop by deep reinforcement learning
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2021.3104716
– volume: 40
  start-page: 75
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b95
  article-title: Deep reinforcement learning in smart manufacturing: A review and prospects
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2022.11.003
– volume: 11
  start-page: 2977
  issue: 7
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b131
  article-title: Digital twin and reinforcement learning-based resilient production control for micro smart factory
  publication-title: Applied Sciences
  doi: 10.3390/app11072977
– volume: 336
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b72
  article-title: Reinforcement learning approach to scheduling of precast concrete production
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2022.130419
– volume: 23
  year: 2010
  ident: 10.1016/j.cie.2025.110856_b57
  article-title: Double Q-learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1551
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b175
  article-title: Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b189
  article-title: Design patterns of deep reinforcement learning models for job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– start-page: 3
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b113
  article-title: An efficient new static scheduling heuristic for accelerated architectures
– volume: 12
  start-page: 1491
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b128
  article-title: Energy-aware multi-objective job shop scheduling optimization with metaheuristics in manufacturing industries: A critical survey, results, and perspectives
  publication-title: Applied Sciences
  doi: 10.3390/app12031491
– volume: 24
  start-page: 14
  issue: 4
  year: 2008
  ident: 10.1016/j.cie.2025.110856_b40
  article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents
  publication-title: International Journal of Information Technology and Intelligent Computing
– year: 2000
  ident: 10.1016/j.cie.2025.110856_b168
– volume: 7
  start-page: 1051
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b174
  article-title: Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2022.3146882
– volume: 33
  start-page: 21188
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b78
  article-title: Pomo: Policy optimization with multiple optima for reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 191
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b83
  article-title: Deep reinforcement learning based scheduling within production plan in semiconductor fabrication
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.116222
– volume: 20
  start-page: 1007
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b84
  article-title: Large-scale dynamic scheduling for flexible job-shop with random arrivals of new jobs by hierarchical reinforcement learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3272661
– volume: 2020
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b215
  article-title: Energy saving in flow-shop scheduling management: an improved multiobjective model based on grey wolf optimization algorithm
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2020/9462048
– year: 2018
  ident: 10.1016/j.cie.2025.110856_b167
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 10.1016/j.cie.2025.110856_b14
  article-title: Metaheuristics in combinatorial optimization: Overview and conceptual comparison
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/937503.937505
– volume: 20
  start-page: 410
  issn: 19968566
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b234
  article-title: Application of machine learning and rule scheduling in a job-shop production control system
  publication-title: International Journal of Simulation Modelling
  doi: 10.2507/IJSIMM20-2-CO10
– volume: 12
  start-page: 9332
  issue: 18
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b42
  article-title: Deep reinforcement learning approach for material scheduling considering high-dimensional environment of hybrid flow-shop problem
  publication-title: Applied Sciences
  doi: 10.3390/app12189332
– volume: 21
  start-page: 413
  issue: 4
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b69
  article-title: Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-017-0534-0
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b170
  article-title: Investigation of maximization bias in sarsa variants
– volume: 10
  start-page: 210
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b211
  article-title: Deep reinforcement learning for distributed flow shop scheduling with flexible maintenance
  publication-title: Machines
  doi: 10.3390/machines10030210
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b17
  article-title: Resilience-oriented approach of dynamic production and maintenance scheduling optimisation considering operational uncertainty
  publication-title: International Journal of Production Research
– start-page: 653
  year: 2006
  ident: 10.1016/j.cie.2025.110856_b38
  article-title: Reducing policy degradation in neuro-dynamic programming
– year: 2021
  ident: 10.1016/j.cie.2025.110856_b209
– start-page: 3899
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b227
  article-title: Real-time job shop scheduling based on simulation and Markov decision processes
– volume: 189
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b100
  article-title: Reentrant hybrid flow shop scheduling with stockers in automated material handling systems using deep reinforcement learning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.109995
– volume: 91
  issn: 15684946
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b105
  article-title: Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106208
– volume: 62
  start-page: 421
  issue: 1–2
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b192
  article-title: Scheduling a multi-agent flow shop with two scenarios and release dates
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2023.2188646
– volume: 162
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b23
  article-title: Agent-based approach integrating deep reinforcement learning and hybrid genetic algorithm for dynamic scheduling for industry 3.5 smart production
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107782
– volume: 62
  start-page: 705
  issue: 3
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b150
  article-title: Reinforcement learning and stochastic dynamic programming for jointly scheduling jobs and preventive maintenance on a single machine to minimise earliness-tardiness
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2023.2172472
– volume: 189
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b221
  article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.109917
– volume: 5
  issue: 1
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b226
  article-title: A review on learning to solve combinatorial optimisation problems in manufacturing
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/cim2.12072
– ident: 10.1016/j.cie.2025.110856_b2
  doi: 10.1145/1015330.1015430
– ident: 10.1016/j.cie.2025.110856_b46
  doi: 10.1145/2939672.2939754
– volume: 1
  start-page: 59
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b207
  article-title: Online single machine scheduling based on simulation and reinforcement learning
  publication-title: Simulation in Produktion und Logistik
– year: 2016
  ident: 10.1016/j.cie.2025.110856_b11
– volume: 233
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b193
  article-title: Deep reinforcement learning for transportation network combinatorial optimization: A survey
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107526
– start-page: 68
  year: 2007
  ident: 10.1016/j.cie.2025.110856_b39
  article-title: On a successful application of multi-agent reinforcement learning to operations research benchmarks
– year: 2016
  ident: 10.1016/j.cie.2025.110856_b44
– volume: 193
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b147
  article-title: Graph reinforcement learning for flexible job shop scheduling under industrial demand response: A production and energy nexus perspective
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.110325
– volume: 8
  start-page: 71752
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b101
  article-title: Actor-critic deep reinforcement learning for solving job shop scheduling problems
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2987820
– volume: 190
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b187
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.107969
– start-page: 2094
  year: 2016
  ident: 10.1016/j.cie.2025.110856_b58
  article-title: Deep reinforcement learning with double Q-learning
– volume: 14
  start-page: 319
  issn: 18637353
  issue: 3
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b4
  article-title: Reinforcement learning for an intelligent and autonomous production control of complex job-shops under time constraints
  publication-title: Production Engineering
  doi: 10.1007/s11740-020-00967-8
– year: 2022
  ident: 10.1016/j.cie.2025.110856_b32
  article-title: Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 25
  start-page: 45
  issue: 1
  year: 1977
  ident: 10.1016/j.cie.2025.110856_b126
  article-title: A survey of scheduling rules
  publication-title: Operations Research
  doi: 10.1287/opre.25.1.45
– start-page: 4295
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b141
  article-title: Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning
– volume: 9
  start-page: 2633
  issue: 20
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b139
  article-title: Nature-inspired metaheuristic techniques for combinatorial optimization problems: overview and recent advances
  publication-title: Mathematics
  doi: 10.3390/math9202633
– start-page: 1928
  year: 2016
  ident: 10.1016/j.cie.2025.110856_b114
  article-title: Asynchronous methods for deep reinforcement learning
– start-page: 152
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b111
  article-title: Dynamic scheduling in a flow shop using deep reinforcement learning
– ident: 10.1016/j.cie.2025.110856_b7
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b213
  article-title: Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing
  publication-title: International Journal of Production Research
– volume: 20
  start-page: 375
  issn: 19968566
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b56
  article-title: A deep reinforcement learning based solution for flexible job shop scheduling problem
  publication-title: International Journal of Simulation Modelling
  doi: 10.2507/IJSIMM20-2-CO7
– volume: 188
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b232
  article-title: Data-driven optimization for energy-constrained dietary supplement scheduling: A bounded cut MP-DQN approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.109894
– year: 2018
  ident: 10.1016/j.cie.2025.110856_b73
– volume: 168
  issn: 03608352
  issue: 2
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b88
  article-title: Bilevel learning for large-scale flexible flow shop scheduling
  publication-title: Computers & Industrial Engineering
– year: 2017
  ident: 10.1016/j.cie.2025.110856_b201
– volume: 24
  start-page: 1
  issue: 130
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b18
  article-title: Combinatorial optimization and reasoning with graph neural networks
  publication-title: Journal of Machine Learning Research
– year: 2023
  ident: 10.1016/j.cie.2025.110856_b8
– year: 2021
  ident: 10.1016/j.cie.2025.110856_b205
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.cie.2025.110856_b157
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 21
  issn: 14248220
  issue: 13
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b119
  article-title: A novel approach to the job shop scheduling problem based on the deep Q-network in a cooperative multi-access edge computing ecosystem
  publication-title: Sensors
  doi: 10.3390/s21134553
– volume: 4
  start-page: 3104
  issn: 10495258
  issue: January
  year: 2014
  ident: 10.1016/j.cie.2025.110856_b165
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 296
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b183
  article-title: Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2024.111940
– volume: 28
  start-page: 1814
  issue: 8
  year: 2016
  ident: 10.1016/j.cie.2025.110856_b135
  article-title: Bridging the gap between imitation learning and inverse reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2543000
– year: 2017
  ident: 10.1016/j.cie.2025.110856_b177
– volume: 162
  issue: March
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b210
  article-title: Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities
  publication-title: SSRN Electronic Journal
– start-page: 572
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b182
  article-title: Use of simulation-aided reinforcement learning for optimal scheduling of operations in industrial plants
– volume: 187
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b231
  article-title: The application of heterogeneous graph neural network and deep reinforcement learning in hybrid flow shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109802
– year: 2015
  ident: 10.1016/j.cie.2025.110856_b10
– volume: vol. 5
  start-page: 287
  year: 1979
  ident: 10.1016/j.cie.2025.110856_b45
  article-title: Optimization and approximation in deterministic sequencing and scheduling: a survey
  doi: 10.1016/S0167-5060(08)70356-X
– start-page: 1
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b86
  article-title: A multi-objective reinforcement learning approach for resequencing scheduling problems in automotive manufacturing systems
  publication-title: International Journal of Production Research
– volume: 69
  start-page: 389
  issn: 17260604
  issue: 1
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b30
  article-title: Cooperative multi-agent system for production control using reinforcement learning
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2020.04.005
– volume: 81
  start-page: 234
  issn: 22128271
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b76
  article-title: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.041
– volume: 33
  start-page: 911
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b198
  article-title: On reliability of reinforcement learning based production scheduling systems: a comparative survey
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-022-01915-2
– volume: 299
  start-page: 75
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b15
  article-title: Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2021.08.007
– volume: 35
  start-page: 1107
  issue: 3
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b92
  article-title: A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-023-02094-4
– volume: 30
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b176
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– volume: 205
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b85
  article-title: A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117796
– volume: 15
  start-page: 1626
  issue: 5
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b133
  article-title: Automatic verification flow shop scheduling of electric energy meters based on an improved Q-learning algorithm
  publication-title: Energies
  doi: 10.3390/en15051626
– volume: 8
  start-page: 120388
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b178
  article-title: Learning combinatorial optimization on graphs: A survey with applications to networking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004964
– year: 1997
  ident: 10.1016/j.cie.2025.110856_b60
– year: 2023
  ident: 10.1016/j.cie.2025.110856_b194
  article-title: Flexible job shop scheduling via dual attention network-based reinforcement learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 21
  start-page: 1726
  issue: 12
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b190
  article-title: Deep reinforcement learning: a survey
  publication-title: Frontiers of Information Technology & Electronic Engineering
  doi: 10.1631/FITEE.1900533
– volume: 9
  start-page: 752
  issn: 21693536
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b237
  article-title: Reinforcement learning with composite rewards for production scheduling in a smart factory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046784
– volume: 145
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b163
  article-title: Evolution strategies-based optimized graph reinforcement learning for solving dynamic job shop scheduling problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110596
– volume: 34
  issue: 7
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b216
  article-title: Quantum-behaved RS-PSO-LSSVM method for quality prediction in parts production processes
  publication-title: Concurrency Computations: Practice and Experience
– start-page: 3540
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b179
  article-title: Feudal networks for hierarchical reinforcement learning
– ident: 10.1016/j.cie.2025.110856_b28
– year: 2020
  ident: 10.1016/j.cie.2025.110856_b240
– volume: 191
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b49
  article-title: Dynamic scheduling mechanism for intelligent workshop with deep reinforcement learning method based on multi-agent system architecture
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2024.110155
– start-page: 1608
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b59
  article-title: Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
– year: 2017
  ident: 10.1016/j.cie.2025.110856_b53
– volume: 2018-Decem
  start-page: 9839
  issn: 10495258
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b121
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Advances in Neural Information Processing Systems
– year: 2023
  ident: 10.1016/j.cie.2025.110856_b90
  article-title: Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.cie.2025.110856_b116
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b93
  article-title: A transformer-based deep reinforcement learning approach for dynamic parallel machine scheduling problem with family setups
  publication-title: Journal of Intelligent Manufacturing
– volume: 77
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b195
  article-title: Solving job scheduling problems in a resource preemption environment with multi-agent reinforcement learning
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2022.102324
– volume: 54
  start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b132
  article-title: Hierarchical reinforcement learning: A comprehensive survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/3453160
– year: 2015
  ident: 10.1016/j.cie.2025.110856_b180
– volume: 313
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b61
  article-title: Neural large neighborhood search for routing problems
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2022.103786
– volume: 112
  start-page: 181
  issue: 1–2
  year: 1999
  ident: 10.1016/j.cie.2025.110856_b169
  article-title: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
  publication-title: Artificial intelligence
  doi: 10.1016/S0004-3702(99)00052-1
– issn: 1366588X
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b127
  article-title: Deep reinforcement learning in production systems: a systematic literature review
  publication-title: International Journal of Production Research
– volume: 60
  start-page: 2787
  issue: 3
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b144
  article-title: Solving flow-shop scheduling problem with a reinforcement learning algorithm that generalizes the value function with neural network
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.01.030
– volume: 151
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b184
  article-title: Solving non-permutation flow-shop scheduling problem via a novel deep reinforcement learning approach
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2022.106095
– volume: 32
  issn: 10495258
  issue: NeurIPS
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b22
  article-title: Learning to perform local rewriting for combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 91
  issue: 1
  year: 1983
  ident: 10.1016/j.cie.2025.110856_b120
  article-title: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
  publication-title: Omega
  doi: 10.1016/0305-0483(83)90088-9
– issn: 1366588X
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b75
  article-title: Explainable reinforcement learning in production control of job shop manufacturing system
  publication-title: International Journal of Production Research
– volume: vol. 38
  start-page: 20185
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b94
  article-title: Learning to optimize permutation flow shop scheduling via graph-based imitation learning
– volume: 34
  start-page: 26
  issue: 6
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b5
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2743240
– start-page: 3441
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b122
  article-title: A multi-graph attributed reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling problem
– volume: 10
  start-page: 760
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b19
  article-title: Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival
  publication-title: Processes
  doi: 10.3390/pr10040760
– volume: 33
  start-page: 1179
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b77
  article-title: Conservative q-learning for offline reinforcement learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 1
  start-page: 31
  issue: 1
  year: 1998
  ident: 10.1016/j.cie.2025.110856_b16
  article-title: Scheduling a batching machine
  publication-title: Journal of Scheduling
  doi: 10.1002/(SICI)1099-1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R
– volume: 90
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b217
  article-title: Two-stage double deep Q-network algorithm considering external non-dominant set for multi-objective dynamic flexible job shop scheduling problems
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101660
– year: 2016
  ident: 10.1016/j.cie.2025.110856_b33
– volume: 59
  start-page: 3360
  issn: 1366588X
  issue: 11
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b129
  article-title: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2020.1870013
– volume: 76
  start-page: 614
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b230
  article-title: A novel soft Actor–Critic framework with disjunctive graph embedding and autoencoder mechanism for Job Shop Scheduling Problems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2024.08.015
– volume: 8
  start-page: 186474
  issn: 21693536
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b55
  article-title: Research on adaptive job shop scheduling problems based on dueling double DQN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029868
– year: 2020
  ident: 10.1016/j.cie.2025.110856_b219
  article-title: Deep learning on graphs: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 249
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b97
  article-title: Dynamic constrained evolutionary optimization based on deep Q-network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123592
– start-page: 1
  issn: 15583783
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b106
  article-title: Graph convolutional network-based interpretable machine learning scheme in smart grids
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 32
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b212
  article-title: A generalized algorithm for multi-objective reinforcement learning and policy adaptation
  publication-title: Advances in Neural Information Processing Systems
– year: 1994
  ident: 10.1016/j.cie.2025.110856_b148
– start-page: 679
  year: 1957
  ident: 10.1016/j.cie.2025.110856_b9
  article-title: A Markovian decision process
  publication-title: Journal of Mathematics and Mechanics
– start-page: 4475
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b74
  article-title: End-to-end constrained optimization learning: A survey
– volume: XX
  start-page: 1
  issn: 1551-3203
  issue: XX
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b20
  article-title: A deep reinforcement learning framework based on an attention mechanism and disjunctive graph embedding for the job shop scheduling problem
  publication-title: IEEE Transactions on Industrial Informatics
– start-page: 1146
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b37
  article-title: Stabilising experience replay for deep multi-agent reinforcement learning
– volume: 53
  start-page: 18925
  issue: 15
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b48
  article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
  doi: 10.1007/s10489-023-04479-7
– volume: 2
  issue: 4
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b203
  article-title: Measuring and characterizing generalization in deep reinforcement learning
  publication-title: Applied AI Letters
  doi: 10.1002/ail2.45
– volume: 35
  start-page: 8760
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b25
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 60
  start-page: 5937
  issue: 19
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b107
  article-title: Multi-resource constrained dynamic workshop scheduling based on proximal policy optimisation
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2021.1975057
– year: 2013
  ident: 10.1016/j.cie.2025.110856_b115
– volume: 4
  issue: 4
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b70
  article-title: Stochastic parallel machine scheduling using reinforcement learning
  publication-title: Journal of Advanced Manufacturing and Processing
  doi: 10.1002/amp2.10119
– volume: 312
  start-page: 910
  issue: 3
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b118
  article-title: An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2023.07.037
– volume: 14
  start-page: 5177
  issue: 9
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b222
  article-title: Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization
  publication-title: Sustainability
  doi: 10.3390/su14095177
– volume: 17
  start-page: 1420
  issue: 3
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b130
  article-title: A reinforcement learning approach to robust scheduling of semiconductor manufacturing facilities
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 19
  start-page: 1600
  issue: 2
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b159
  article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3189725
– volume: 180
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b50
  article-title: Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2023.109255
– volume: 5
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.cie.2025.110856_b155
  article-title: Learning dispatching rules for scheduling: A synergistic view comprising decision trees, tabu search and simulation
  publication-title: Computers
  doi: 10.3390/computers5010003
– volume: 84
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b102
  article-title: Integration of deep reinforcement learning and multi-agent system for dynamic scheduling of re-entrant hybrid flow shop considering worker fatigue and skill levels
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2023.102605
– volume: 159
  issn: 03608352
  issue: May
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b108
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– year: 2020
  ident: 10.1016/j.cie.2025.110856_b204
– volume: ahead-of-print
  issue: ahead-of-print
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b1
  article-title: A review of AI and machine learning contribution in business process management (process enhancement and process improvement approaches)
  publication-title: Business Process Management Journal
– start-page: 1
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b71
  article-title: Reinforcement learning applications to machine scheduling problems: a comprehensive literature review
  publication-title: Journal of Intelligent Manufacturing
– volume: 19
  start-page: 157
  issn: 19968566
  issue: 1
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b143
  article-title: A novel solution to JSPs based on long short-term memory and policy gradient algorithm
  publication-title: International Journal of Simulation Modelling
  doi: 10.2507/IJSIMM19-1-CO4
– volume: vol. 2
  start-page: 764
  year: 1999
  ident: 10.1016/j.cie.2025.110856_b146
  article-title: A neural reinforcement learning approach to learn local dispatching policies in production scheduling
– volume: 88
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b162
  article-title: Fast Pareto set approximation for multi-objective flexible job shop scheduling via parallel preference-conditioned graph reinforcement learning
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101605
– volume: 9
  start-page: 122995
  issn: 21693536
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b233
  article-title: Dynamic jobshop scheduling algorithm based on deep Q network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3110242
– start-page: 1263
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b43
  article-title: Neural message passing for quantum chemistry
– ident: 10.1016/j.cie.2025.110856_b62
– year: 2015
  ident: 10.1016/j.cie.2025.110856_b98
– volume: 2015-Janua
  start-page: 2692
  issn: 10495258
  year: 2015
  ident: 10.1016/j.cie.2025.110856_b181
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  year: 2017
  ident: 10.1016/j.cie.2025.110856_b104
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Advances in neural information processing systems
– volume: 290
  start-page: 405
  issn: 03772217
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b12
  article-title: Machine learning for combinatorial optimization: A methodological tour d’horizon
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.07.063
– start-page: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b35
  article-title: Reinforcement learning applied to production planning and control
  publication-title: International Journal of Production Research
– volume: 15
  start-page: 4276
  issue: 7
  year: 2019
  ident: 10.1016/j.cie.2025.110856_b99
  article-title: Smart manufacturing scheduling with edge computing using multiclass deep Q network
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2908210
– start-page: 1
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b235
  article-title: Large-scale dynamic surgical scheduling under uncertainty by hierarchical reinforcement learning
  publication-title: International Journal of Production Research
– start-page: 1
  issn: 2471285X
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b125
  article-title: Deep reinforcement learning based optimization algorithm for permutation flow-shop scheduling
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– start-page: 884
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b218
  article-title: A deep reinforcement learning approach to flexible job shop scheduling
– year: 2018
  ident: 10.1016/j.cie.2025.110856_b67
– year: 2019
  ident: 10.1016/j.cie.2025.110856_b13
– volume: 52
  start-page: 56
  issn: 2644-0865
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b96
  article-title: Lenovo schedules laptop manufacturing using deep reinforcement learning
  publication-title: INFORMS Journal on Applied Analytics
  doi: 10.1287/inte.2021.1109
– volume: 20
  start-page: 61
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2025.110856_b151
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– start-page: 301
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b196
  article-title: Deep reinforcement learning for semiconductor production scheduling
– volume: 28
  start-page: 83
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2025.110856_b137
  article-title: Dynamic scheduling of manufacturing systems using machine learning: An updated review
  publication-title: Ai Edam
– volume: 97
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b206
  article-title: Real-time neural network scheduling of emergency medical mask production during COVID-19
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106790
– volume: 9
  start-page: 101390
  issn: 21693536
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b124
  article-title: Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3097254
– volume: 71
  start-page: 70
  year: 2023
  ident: 10.1016/j.cie.2025.110856_b223
  article-title: Counterfactual-attention multi-agent reinforcement learning for joint condition-based maintenance and production scheduling
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2023.08.011
– year: 2016
  ident: 10.1016/j.cie.2025.110856_b188
– volume: 55
  start-page: 2144
  issue: 10
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b185
  article-title: Dynamic selection of priority rules based on deep reinforcement learning for rescheduling of RCPSP
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.10.025
– volume: 187
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b81
  article-title: Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2024.108745
– volume: 87
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b29
  article-title: Multi-policy deep reinforcement learning for multi-objective multiplicity flexible job shop scheduling
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2024.101550
– volume: 11
  start-page: 10870
  issue: 22
  year: 2021
  ident: 10.1016/j.cie.2025.110856_b66
  article-title: Applications of multi-agent deep reinforcement learning: Models and algorithms
  publication-title: Applied Sciences
  doi: 10.3390/app112210870
– volume: 362
  start-page: 1140
  issue: 6419
  year: 2018
  ident: 10.1016/j.cie.2025.110856_b158
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
– start-page: 35
  year: 1992
  ident: 10.1016/j.cie.2025.110856_b134
  article-title: Scheduling: theory, algorithms and systems development
– volume: 9
  start-page: 51
  issue: 1
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b24
  article-title: Minimize makespan of permutation flowshop using pointer network
  publication-title: Journal of Computational Design and Engineering
  doi: 10.1093/jcde/qwab068
– volume: 12
  start-page: 417
  issue: 4
  year: 2009
  ident: 10.1016/j.cie.2025.110856_b123
  article-title: A survey of dynamic scheduling in manufacturing systems
  publication-title: Journal of Scheduling
  doi: 10.1007/s10951-008-0090-8
– volume: 4
  start-page: 166
  issue: 3
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b164
  article-title: A deep reinforcement learning based approach for dynamic distributed blocking flowshop scheduling with job insertions
  publication-title: IET Collaborative Intelligent Manufacturing
  doi: 10.1049/cim2.12060
– volume: 12
  start-page: 2366
  issue: 5
  year: 2022
  ident: 10.1016/j.cie.2025.110856_b31
  article-title: Minimizing the late work of the flow shop scheduling problem with a deep reinforcement learning based approach
  publication-title: Applied Sciences
  doi: 10.3390/app12052366
– start-page: 329
  year: 2024
  ident: 10.1016/j.cie.2025.110856_b68
  article-title: Learning to solve job shop scheduling under uncertainty
– year: 2018
  ident: 10.1016/j.cie.2025.110856_b208
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2025.110856_b52
SSID ssj0004591
Score 2.513689
Snippet Machine scheduling aims to optimally assign jobs to a single or a group of machines while meeting manufacturing rules as well as job specifications. Optimizing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110856
SubjectTerms Artificial intelligence
Deep reinforcement learning
Graph neural networks
Machine scheduling
Neural combinatorial optimization
Production scheduling
Title Deep reinforcement learning for machine scheduling: Methodology, the state-of-the-art, and future directions
URI https://dx.doi.org/10.1016/j.cie.2025.110856
Volume 200
WOSCitedRecordID wos001398511500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG0NCQc4sAQQYVMfODFx5KXdtrlFEASREiExSHOzejOZkbFHs0QJd_6b6s02wyJA4mLNtFxeup6qq8v1qhB6TnjERSSygEtKA8KlCjjNeRBJgEcUs5hWuWk2kZ2d5dNp8X40-uq5MBd11jT55WWx-K-qhjFQtqbO_oW6u4vCAPwGpcMR1A7HP1L8a6UW46UyFVGFCf751hA2ZfKzSZ9UY9jWwjJTO8Lzqekk3VFXtDtquEZBWwXwRyfQ-URPW4ZkbBfDLtznqx24LhErg6lZ3xhE9YUPOyN_zjQbzFKGvsyuWJcorJMAXMeQSStlZ5rYp_N2w53Ect4j-4TV7MoKnLJVu5HDaEac-gRoH2LzNJs-p8lSu8JAu4pDs20rnP64BNhoxPwQTOOhvoMhOqRb5bbNAv5BX9d4oKn5yEGuod04SwswjrtH746nJ4Oy87b1on8O_3ncJApu3ejnDs7AaZncQbfcbgMfWZTcRSPV7KHbbueBnV1f7aGbg7KU91CtIYS_gxD2EMIwhB2EcA-hl3gAoAMMiMHb8DnAAB5swYN78NxHH98cT169DVxXjkDERbYOEllkIVNFUlCSVgWnRV5REStJqlxQWbFMENiVU5YppnIeRpIXKleMsjCLY6mSB2inaRv1EGEieSjSJK1ECo5skuSShpwrTdemigiyj0I_laVwJet155S69LmJcxhXpZ790s7-PnrRiSxsvZbfnUy8fkrncNrXLwFMvxZ79G9ij9GNHvFP0M56uVFP0XVxsZ6tls8c5L4BFnun8g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+reinforcement+learning+for+machine+scheduling%3A+Methodology%2C+the+state-of-the-art%2C+and+future+directions&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Khadivi%2C+Maziyar&rft.au=Charter%2C+Todd&rft.au=Yaghoubi%2C+Marjan&rft.au=Jalayer%2C+Masoud&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=200&rft_id=info:doi/10.1016%2Fj.cie.2025.110856&rft.externalDocID=S0360835225000014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon