A new theory of regular functions of a quaternionic variable

In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in mathematics (New York. 1965) Ročník 216; číslo 1; s. 279 - 301
Hlavní autoři: Gentili, Graziano, Struppa, Daniele C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2007
Témata:
ISSN:0001-8708, 1090-2082
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theory allows us to extend some important results for polynomials in the quaternionic variable to the case of power series.
AbstractList In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theory allows us to extend some important results for polynomials in the quaternionic variable to the case of power series.
Author Gentili, Graziano
Struppa, Daniele C.
Author_xml – sequence: 1
  givenname: Graziano
  surname: Gentili
  fullname: Gentili, Graziano
  email: gentili@math.unifi.it
  organization: Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni, 67 A, Firenze, Italy
– sequence: 2
  givenname: Daniele C.
  surname: Struppa
  fullname: Struppa, Daniele C.
  email: struppa@chapman.edu
  organization: Department of Mathematics and Computer Science, Chapman University, Orange, CA 92866, USA
BookMark eNp9kMFOwzAMhiM0JLbBA3DrC7TY6dqkgss0wUCaxAXOkZukkKlrIemG9vakGicOO1n-rc-yvxmbdH1nGbtFyBCwvNtm5HYZBxAZFBkgXLApQgUpB8knbAoAmEoB8orNQtjGtlpgNWUPy6SzP8nwaXt_TPom8fZj35JPmn2nB9d3YQwp-d7TYH0XA6eTA3lHdWuv2WVDbbA3f3XO3p8e31bP6eZ1_bJablLNKzGkuW5kaUwNEhpsiC-00IURptbWAJKseW10TpCXQhSI3HAsc4rTQttaCsrnTJz2at-H4G2jtBtovG7w5FqFoEYJaquiBDVKUFCoKCGS-I_88m5H_niWuT8xNr50cNaroJ3t4rHOWz0o07sz9C814He6
CitedBy_id crossref_primary_10_1007_s00006_022_01250_y
crossref_primary_10_1016_j_jmaa_2023_127458
crossref_primary_10_1016_j_jmaa_2024_128383
crossref_primary_10_1142_S0219498815500693
crossref_primary_10_1080_17476933_2021_1903452
crossref_primary_10_1016_j_jmaa_2014_07_028
crossref_primary_10_1007_s40574_025_00494_3
crossref_primary_10_1515_crelle_2010_060
crossref_primary_10_1016_j_aim_2016_10_009
crossref_primary_10_1007_s00006_015_0636_8
crossref_primary_10_1007_s00006_024_01338_7
crossref_primary_10_1007_s00020_020_2574_7
crossref_primary_10_1007_s43036_024_00329_6
crossref_primary_10_1016_j_geomphys_2010_05_014
crossref_primary_10_1016_j_geomphys_2009_09_011
crossref_primary_10_1016_S0019_3577_09_00011_1
crossref_primary_10_1007_s00006_016_0739_x
crossref_primary_10_1007_s11856_009_0055_4
crossref_primary_10_1007_s00025_023_02047_6
crossref_primary_10_1007_s40819_025_01937_3
crossref_primary_10_1007_s00006_024_01343_w
crossref_primary_10_1007_s11785_016_0543_6
crossref_primary_10_1007_s11785_020_00996_2
crossref_primary_10_1007_s10231_022_01195_w
crossref_primary_10_1007_s11854_013_0028_8
crossref_primary_10_1016_j_geomphys_2024_105219
crossref_primary_10_1088_1751_8121_aa70ba
crossref_primary_10_1007_s12220_020_00551_7
crossref_primary_10_1007_s13398_023_01501_y
crossref_primary_10_1016_j_crma_2014_05_008
crossref_primary_10_1515_advgeom_2017_0044
crossref_primary_10_3842_umzh_v77i5_8927
crossref_primary_10_1016_j_aim_2025_110485
crossref_primary_10_1007_s00006_021_01170_3
crossref_primary_10_1007_s00006_020_01078_4
crossref_primary_10_1016_j_laa_2022_08_010
crossref_primary_10_1007_s40065_020_00283_0
crossref_primary_10_1007_s10817_010_9198_6
crossref_primary_10_1515_anly_2024_0069
crossref_primary_10_1007_s12220_014_9503_4
crossref_primary_10_1007_s12220_012_9358_5
crossref_primary_10_1007_s00006_019_0997_5
crossref_primary_10_1016_j_crma_2015_02_004
crossref_primary_10_1007_s12220_017_9784_5
crossref_primary_10_1007_s11785_018_0779_4
crossref_primary_10_1007_s10231_025_01572_1
crossref_primary_10_1007_s12220_021_00709_x
crossref_primary_10_1016_j_aim_2025_110498
crossref_primary_10_1134_S1063454124700213
crossref_primary_10_1007_s10455_010_9238_9
crossref_primary_10_1007_s00006_020_1041_5
crossref_primary_10_1007_s12220_024_01896_z
crossref_primary_10_1002_mana_201100082
crossref_primary_10_1002_mma_5988
crossref_primary_10_1007_s43037_023_00252_7
crossref_primary_10_1002_mma_5506
crossref_primary_10_1017_prm_2020_74
crossref_primary_10_1007_s11785_011_0213_7
crossref_primary_10_1007_s00006_016_0737_z
crossref_primary_10_1007_s00020_011_1935_7
crossref_primary_10_1007_s00006_024_01344_9
crossref_primary_10_1007_s00025_021_01477_4
crossref_primary_10_1016_j_aim_2014_09_026
crossref_primary_10_1098_rsos_150255
crossref_primary_10_1007_s10958_018_4085_5
crossref_primary_10_5802_crmath_467
crossref_primary_10_1007_s11785_014_0432_9
crossref_primary_10_1080_17476933_2012_709851
crossref_primary_10_1007_s11785_016_0609_5
crossref_primary_10_1007_s12220_017_9979_9
crossref_primary_10_1080_00927872_2016_1172609
crossref_primary_10_52737_18291163_2025_17_4_1_10
crossref_primary_10_1007_s11785_019_00919_w
crossref_primary_10_1080_17476933_2020_1755967
crossref_primary_10_1007_s10473_021_0512_7
crossref_primary_10_1007_s11040_020_9332_6
crossref_primary_10_1515_forum_2024_0049
crossref_primary_10_1016_j_jat_2019_105325
crossref_primary_10_1016_j_jmaa_2010_08_016
crossref_primary_10_1007_s00006_025_01376_9
crossref_primary_10_1007_s00020_014_2173_6
crossref_primary_10_1007_s11785_023_01410_3
crossref_primary_10_1007_s10231_025_01586_9
crossref_primary_10_1016_j_laa_2024_01_005
crossref_primary_10_1007_s10231_022_01208_8
crossref_primary_10_1016_j_cam_2016_05_037
crossref_primary_10_1216_rmj_2025_55_1037
crossref_primary_10_1007_s10231_018_0724_1
crossref_primary_10_1080_17476933_2011_627441
crossref_primary_10_1631_FITEE_1500334
crossref_primary_10_1016_j_jmaa_2022_126905
crossref_primary_10_1016_j_aim_2009_06_015
crossref_primary_10_1016_j_aim_2011_04_001
crossref_primary_10_2298_FIL2427453M
crossref_primary_10_1007_s00006_014_0474_0
crossref_primary_10_1007_s00006_023_01292_w
crossref_primary_10_1016_j_jmaa_2022_126480
crossref_primary_10_1186_s13662_018_1906_2
crossref_primary_10_1007_s00006_020_01064_w
crossref_primary_10_1007_s00209_024_03434_7
crossref_primary_10_1007_s00208_010_0631_2
crossref_primary_10_1007_s10476_018_0109_0
crossref_primary_10_1002_mana_201900259
crossref_primary_10_1016_j_aim_2022_108747
crossref_primary_10_1007_s00009_023_02362_w
crossref_primary_10_1002_mma_7684
crossref_primary_10_1007_s10455_011_9266_0
crossref_primary_10_1002_mana_201000149
crossref_primary_10_1080_17476933_2015_1113270
crossref_primary_10_1016_j_jde_2009_06_015
crossref_primary_10_1007_s11785_024_01529_x
crossref_primary_10_1080_17476933_2015_1024670
crossref_primary_10_1007_s10231_022_01209_7
crossref_primary_10_1080_17476930903275938
crossref_primary_10_1007_s00006_025_01391_w
crossref_primary_10_1007_s00006_015_0534_0
crossref_primary_10_1007_s00209_007_0254_9
crossref_primary_10_1080_17476933_2017_1380000
crossref_primary_10_1007_s13324_022_00712_7
crossref_primary_10_1002_mma_6344
crossref_primary_10_1007_s00009_022_02112_4
crossref_primary_10_1007_s00009_022_02151_x
crossref_primary_10_1007_s11785_009_0015_3
crossref_primary_10_1007_s11785_024_01517_1
crossref_primary_10_1080_00927872_2022_2081332
crossref_primary_10_3103_S1068362324601770
crossref_primary_10_1007_s00006_021_01148_1
crossref_primary_10_1142_S0129167X17500173
crossref_primary_10_1007_s10231_016_0598_z
crossref_primary_10_1007_s11785_014_0393_z
crossref_primary_10_55225_sti_441
crossref_primary_10_1007_s00208_015_1182_3
crossref_primary_10_1134_S1063454125700384
crossref_primary_10_1186_s13662_017_1131_4
crossref_primary_10_1002_mma_1447
crossref_primary_10_1002_mana_201500489
crossref_primary_10_1016_j_aim_2010_08_015
crossref_primary_10_1007_s11785_019_00977_0
crossref_primary_10_1007_s11785_024_01504_6
crossref_primary_10_1007_s11565_024_00568_8
crossref_primary_10_1007_s40315_024_00551_6
crossref_primary_10_1007_s10455_009_9191_7
crossref_primary_10_1007_s12220_021_00682_5
crossref_primary_10_5269_bspm_67719
crossref_primary_10_1007_s10231_020_01034_w
crossref_primary_10_1007_s10473_022_0222_9
crossref_primary_10_1007_s00209_018_2225_8
crossref_primary_10_1007_s00006_019_1018_4
crossref_primary_10_1017_S0013091516000626
crossref_primary_10_1016_j_jsc_2009_06_003
crossref_primary_10_1007_s11785_025_01751_1
crossref_primary_10_1002_mma_1315
crossref_primary_10_1007_s11785_020_01054_7
crossref_primary_10_1007_s10231_010_0162_1
crossref_primary_10_1080_17476933_2020_1738410
crossref_primary_10_1307_mmj_1231770366
crossref_primary_10_1016_j_jmaa_2025_129480
crossref_primary_10_1007_s10231_023_01325_y
crossref_primary_10_1007_s12220_009_9075_x
crossref_primary_10_1109_TSP_2015_2399865
crossref_primary_10_1007_s11785_022_01292_x
crossref_primary_10_1016_j_camwa_2009_08_034
crossref_primary_10_1016_j_jsc_2024_102388
crossref_primary_10_1007_s12220_025_01900_0
crossref_primary_10_1016_j_aim_2012_05_023
crossref_primary_10_1007_s12220_024_01563_3
crossref_primary_10_1007_s13324_020_00394_z
crossref_primary_10_1016_j_jmaa_2020_124780
crossref_primary_10_1017_S0013091518000226
crossref_primary_10_1002_mana_201100232
crossref_primary_10_1080_17476933_2015_1015530
crossref_primary_10_1007_s13398_023_01546_z
crossref_primary_10_1016_j_geomphys_2024_105240
crossref_primary_10_1007_s43037_020_00087_6
crossref_primary_10_1007_s12220_020_00356_8
crossref_primary_10_1080_17476933_2020_1818731
crossref_primary_10_1007_s00209_022_03066_9
crossref_primary_10_1007_s00006_015_0578_1
crossref_primary_10_1007_s12220_018_0064_9
crossref_primary_10_1007_s00020_016_2318_x
crossref_primary_10_1007_s10231_022_01291_x
crossref_primary_10_1007_s11785_024_01630_1
crossref_primary_10_1016_j_geomphys_2023_105098
crossref_primary_10_1080_17476933_2021_1980877
crossref_primary_10_1007_s11785_018_0856_8
crossref_primary_10_1088_1742_6596_597_1_012011
crossref_primary_10_1080_17476930701778869
crossref_primary_10_3390_physics4010023
crossref_primary_10_1016_j_geomphys_2018_12_007
crossref_primary_10_1515_advgeom_2017_0007
crossref_primary_10_1080_17476933_2014_889691
crossref_primary_10_1080_03081087_2022_2047876
crossref_primary_10_1307_mmj_1301586304
crossref_primary_10_1186_s13662_021_03581_9
crossref_primary_10_1007_s40315_023_00485_5
crossref_primary_10_1080_17476933_2013_868448
crossref_primary_10_1007_s00025_018_0942_2
crossref_primary_10_3390_axioms14090651
crossref_primary_10_1017_prm_2019_13
crossref_primary_10_1307_mmj_1301586309
crossref_primary_10_1002_mana_201200318
crossref_primary_10_1007_s13398_021_01126_z
crossref_primary_10_1016_j_crma_2014_10_011
crossref_primary_10_1016_j_jmaa_2020_124764
crossref_primary_10_1016_j_geomphys_2017_09_007
crossref_primary_10_1007_s00006_019_1005_9
crossref_primary_10_3390_math13060994
crossref_primary_10_1080_17476933_2012_674521
Cites_doi 10.1080/0278107042000220276
10.1007/BF01620640
10.1215/S0012-7094-60-02701-0
10.1017/S0305004100055638
10.1007/BF01292723
10.1215/S0012-7094-65-03212-6
10.1080/17476939208814584
10.1007/BF03043103
10.1080/17476930108815384
10.1016/j.crma.2006.03.015
ContentType Journal Article
Copyright 2007 Elsevier Inc.
Copyright_xml – notice: 2007 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aim.2007.05.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
EndPage 301
ExternalDocumentID 10_1016_j_aim_2007_05_010
S0001870807001600
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABCQX
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFDAS
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
XOL
XPP
ZCG
ZKB
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-3cf86ddb080f1fa24c7c5d7dbced01a8b2bdc3a036775112d2163abce5ceb87a3
ISICitedReferencesCount 306
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250413100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8708
IngestDate Sat Nov 29 06:33:30 EST 2025
Tue Nov 18 22:37:48 EST 2025
Fri Feb 23 02:21:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quaternions
Functions of hypercomplex variables
Functions of complex variables
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3cf86ddb080f1fa24c7c5d7dbced01a8b2bdc3a036775112d2163abce5ceb87a3
OpenAccessLink https://dx.doi.org/10.1016/j.aim.2007.05.010
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_aim_2007_05_010
crossref_primary_10_1016_j_aim_2007_05_010
elsevier_sciencedirect_doi_10_1016_j_aim_2007_05_010
PublicationCentury 2000
PublicationDate 2007-12-01
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2007
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gentili, Struppa (bib006) 2006; 342
Rinehart (bib012) 1960; 27
Sudbery (bib013) 1979; 85
Fueter (bib004) 1934; 7
Leutwiler (bib010) 1992; 20
Pogorui, Shapiro (bib011) 2004; 49
Kravchenko, Shapiro (bib007) 1996; vol. 351
Colombo, Sabadini, Sommen, Struppa (bib002) 2004
Fueter (bib005) 1939; 12
Laville, Ramadanoff (bib008) 1998; 8
Laville, Ramadanoff (bib009) 2001; 45
Ahlfors (bib001) 1966
Cullen (bib003) 1965; 32
Ahlfors (10.1016/j.aim.2007.05.010_bib001) 1966
Colombo (10.1016/j.aim.2007.05.010_bib002) 2004
Leutwiler (10.1016/j.aim.2007.05.010_bib010) 1992; 20
Rinehart (10.1016/j.aim.2007.05.010_bib012) 1960; 27
Laville (10.1016/j.aim.2007.05.010_bib008) 1998; 8
Sudbery (10.1016/j.aim.2007.05.010_bib013) 1979; 85
Cullen (10.1016/j.aim.2007.05.010_bib003) 1965; 32
Fueter (10.1016/j.aim.2007.05.010_bib004) 1934; 7
Gentili (10.1016/j.aim.2007.05.010_bib006) 2006; 342
Kravchenko (10.1016/j.aim.2007.05.010_bib007) 1996; vol. 351
Fueter (10.1016/j.aim.2007.05.010_bib005) 1939; 12
Pogorui (10.1016/j.aim.2007.05.010_bib011) 2004; 49
Laville (10.1016/j.aim.2007.05.010_bib009) 2001; 45
References_xml – volume: 32
  start-page: 139
  year: 1965
  end-page: 148
  ident: bib003
  article-title: An integral theorem for analytic intrinsic functions on quaternions
  publication-title: Duke Math. J.
– volume: 20
  start-page: 19
  year: 1992
  end-page: 51
  ident: bib010
  article-title: Modified quaternionic analysis in
  publication-title: Complex Var. Theory Appl.
– volume: 27
  start-page: 1
  year: 1960
  end-page: 19
  ident: bib012
  article-title: Elements of a theory of intrinsic functions on algebras
  publication-title: Duke Math. J.
– volume: 342
  start-page: 741
  year: 2006
  end-page: 744
  ident: bib006
  article-title: A new approach to Cullen-regular functions of a quaternionic variable
  publication-title: C. R. Acad. Sci. Paris Ser. I
– volume: 12
  start-page: 75
  year: 1939
  end-page: 80
  ident: bib005
  article-title: Über Hartogs'schen Satz
  publication-title: Comment. Math. Helv.
– volume: 7
  start-page: 307
  year: 1934
  end-page: 330
  ident: bib004
  article-title: Die Funktionentheorie der Differentialgleichungen
  publication-title: Comment. Math. Helv.
– volume: 49
  start-page: 379
  year: 2004
  end-page: 389
  ident: bib011
  article-title: On the structure of the set of zeros of quaternionic polynomials
  publication-title: Complex Variables
– year: 1966
  ident: bib001
  article-title: Complex Analysis
– volume: 8
  start-page: 323
  year: 1998
  end-page: 340
  ident: bib008
  article-title: Holomorphic Cliffordian functions
  publication-title: Adv. Appl. Clifford Algebras
– year: 2004
  ident: bib002
  article-title: Analysis of Dirac Systems and Computational Algebra
– volume: vol. 351
  year: 1996
  ident: bib007
  article-title: Integral Representations for Spatial Models of Mathematical Physics
  publication-title: Pitman Res. Notes Math.
– volume: 45
  start-page: 297
  year: 2001
  end-page: 318
  ident: bib009
  article-title: Elliptic Cliffordian functions
  publication-title: Complex Var. Theory Appl.
– volume: 85
  start-page: 199
  year: 1979
  end-page: 225
  ident: bib013
  article-title: Quaternionic analysis
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 49
  start-page: 379
  issue: 6
  year: 2004
  ident: 10.1016/j.aim.2007.05.010_bib011
  article-title: On the structure of the set of zeros of quaternionic polynomials
  publication-title: Complex Variables
  doi: 10.1080/0278107042000220276
– volume: 12
  start-page: 75
  year: 1939
  ident: 10.1016/j.aim.2007.05.010_bib005
  article-title: Über Hartogs'schen Satz
  publication-title: Comment. Math. Helv.
  doi: 10.1007/BF01620640
– volume: 27
  start-page: 1
  year: 1960
  ident: 10.1016/j.aim.2007.05.010_bib012
  article-title: Elements of a theory of intrinsic functions on algebras
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-60-02701-0
– volume: 85
  start-page: 199
  year: 1979
  ident: 10.1016/j.aim.2007.05.010_bib013
  article-title: Quaternionic analysis
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100055638
– volume: 7
  start-page: 307
  year: 1934
  ident: 10.1016/j.aim.2007.05.010_bib004
  article-title: Die Funktionentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reellen Variablen
  publication-title: Comment. Math. Helv.
  doi: 10.1007/BF01292723
– volume: 32
  start-page: 139
  year: 1965
  ident: 10.1016/j.aim.2007.05.010_bib003
  article-title: An integral theorem for analytic intrinsic functions on quaternions
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-65-03212-6
– volume: 20
  start-page: 19
  year: 1992
  ident: 10.1016/j.aim.2007.05.010_bib010
  article-title: Modified quaternionic analysis in R3
  publication-title: Complex Var. Theory Appl.
  doi: 10.1080/17476939208814584
– year: 1966
  ident: 10.1016/j.aim.2007.05.010_bib001
– volume: vol. 351
  year: 1996
  ident: 10.1016/j.aim.2007.05.010_bib007
  article-title: Integral Representations for Spatial Models of Mathematical Physics
– volume: 8
  start-page: 323
  year: 1998
  ident: 10.1016/j.aim.2007.05.010_bib008
  article-title: Holomorphic Cliffordian functions
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/BF03043103
– volume: 45
  start-page: 297
  year: 2001
  ident: 10.1016/j.aim.2007.05.010_bib009
  article-title: Elliptic Cliffordian functions
  publication-title: Complex Var. Theory Appl.
  doi: 10.1080/17476930108815384
– year: 2004
  ident: 10.1016/j.aim.2007.05.010_bib002
– volume: 342
  start-page: 741
  year: 2006
  ident: 10.1016/j.aim.2007.05.010_bib006
  article-title: A new approach to Cullen-regular functions of a quaternionic variable
  publication-title: C. R. Acad. Sci. Paris Ser. I
  doi: 10.1016/j.crma.2006.03.015
SSID ssj0009419
Score 2.3918743
Snippet In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Functions of complex variables
Functions of hypercomplex variables
Quaternions
Title A new theory of regular functions of a quaternionic variable
URI https://dx.doi.org/10.1016/j.aim.2007.05.010
Volume 216
WOSCitedRecordID wos000250413100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20171215
  omitProxy: false
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5ap4fmUNq0JUkf7KGnGpn1aq1dQS8ipGkCDYWm4JvYl8AhkY3shtBfn9mHZDltShvIRRjJa6Gdz7Ozo2_mQ-gDzVmmNK2S1ORZwphhiaDKscxtxYjgNLXMi03w01MxnebfYip76eUEeF2L6-t88aCmhnNgbFc6-x_m7n4UTsBnMDocwexw_CfDF04lPBQo-rfnjVebb4ZuBetob9JVU7pc4Mwr4FzBjtnVUPVD1SKwAzxf9rJr7rrsy_eMhq5TYC-ZcOS4R6Hg-qiRvwB68y6Fs2p-LhayV9Y-PBht5Bz4Lf5GVwyzwdV04SI4VxLcqQ3-lOQErCM2HC4N1ZUbyIruMwjLxJU4Dbf8zcmHfMP5SM4uYw9K13qVrFe0jmf4nXjRQYiKuRfUJo_RFuWTXAzQVnF8OD1Z92dm47hTCs_QvgD3VMBbN_pzCNMLS86eo2dxP4GLgIMX6JGtd9D217W9XqJPBQZE4IAIPK9wRATuEOFOStxHBG4R8Qr9-Hx4dvAliaIZiaY5XyWprkRmjIJnrsaVpExzPTHcKG0NGUuhqDI6lRC4cO6CbQPWSCVcnWirBJfpazSo57XdRVjLyvWxN4wyywhc5rnKMpVmhGlGOdtDpJ2HUseO8k7Y5KJsqYPnJUydUzrlJZmUMHV76GM3ZBHaqfzty6yd3DLGgyHOKwEJdw_bv9-wN-jpGupv0QD-FfYdeqKvVrNl8z7i5QaPAoDG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+theory+of+regular+functions+of+a+quaternionic+variable&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Gentili%2C+Graziano&rft.au=Struppa%2C+Daniele+C.&rft.date=2007-12-01&rft.pub=Elsevier+Inc&rft.issn=0001-8708&rft.eissn=1090-2082&rft.volume=216&rft.issue=1&rft.spage=279&rft.epage=301&rft_id=info:doi/10.1016%2Fj.aim.2007.05.010&rft.externalDocID=S0001870807001600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon