A new theory of regular functions of a quaternionic variable
In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theor...
Saved in:
| Published in: | Advances in mathematics (New York. 1965) Vol. 216; no. 1; pp. 279 - 301 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.12.2007
|
| Subjects: | |
| ISSN: | 0001-8708, 1090-2082 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theory allows us to extend some important results for polynomials in the quaternionic variable to the case of power series. |
|---|---|
| AbstractList | In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows a classical idea of Cullen, but we use a more geometric formulation to show that it is possible to build a rather complete theory. Our theory allows us to extend some important results for polynomials in the quaternionic variable to the case of power series. |
| Author | Gentili, Graziano Struppa, Daniele C. |
| Author_xml | – sequence: 1 givenname: Graziano surname: Gentili fullname: Gentili, Graziano email: gentili@math.unifi.it organization: Dipartimento di Matematica “U. Dini”, Università di Firenze, Viale Morgagni, 67 A, Firenze, Italy – sequence: 2 givenname: Daniele C. surname: Struppa fullname: Struppa, Daniele C. email: struppa@chapman.edu organization: Department of Mathematics and Computer Science, Chapman University, Orange, CA 92866, USA |
| BookMark | eNp9kMFOwzAMhiM0JLbBA3DrC7TY6dqkgss0wUCaxAXOkZukkKlrIemG9vakGicOO1n-rc-yvxmbdH1nGbtFyBCwvNtm5HYZBxAZFBkgXLApQgUpB8knbAoAmEoB8orNQtjGtlpgNWUPy6SzP8nwaXt_TPom8fZj35JPmn2nB9d3YQwp-d7TYH0XA6eTA3lHdWuv2WVDbbA3f3XO3p8e31bP6eZ1_bJablLNKzGkuW5kaUwNEhpsiC-00IURptbWAJKseW10TpCXQhSI3HAsc4rTQttaCsrnTJz2at-H4G2jtBtovG7w5FqFoEYJaquiBDVKUFCoKCGS-I_88m5H_niWuT8xNr50cNaroJ3t4rHOWz0o07sz9C814He6 |
| CitedBy_id | crossref_primary_10_1007_s00006_022_01250_y crossref_primary_10_1016_j_jmaa_2023_127458 crossref_primary_10_1016_j_jmaa_2024_128383 crossref_primary_10_1142_S0219498815500693 crossref_primary_10_1080_17476933_2021_1903452 crossref_primary_10_1016_j_jmaa_2014_07_028 crossref_primary_10_1007_s40574_025_00494_3 crossref_primary_10_1515_crelle_2010_060 crossref_primary_10_1016_j_aim_2016_10_009 crossref_primary_10_1007_s00006_015_0636_8 crossref_primary_10_1007_s00006_024_01338_7 crossref_primary_10_1007_s00020_020_2574_7 crossref_primary_10_1007_s43036_024_00329_6 crossref_primary_10_1016_j_geomphys_2010_05_014 crossref_primary_10_1016_j_geomphys_2009_09_011 crossref_primary_10_1016_S0019_3577_09_00011_1 crossref_primary_10_1007_s00006_016_0739_x crossref_primary_10_1007_s11856_009_0055_4 crossref_primary_10_1007_s00025_023_02047_6 crossref_primary_10_1007_s40819_025_01937_3 crossref_primary_10_1007_s00006_024_01343_w crossref_primary_10_1007_s11785_016_0543_6 crossref_primary_10_1007_s11785_020_00996_2 crossref_primary_10_1007_s10231_022_01195_w crossref_primary_10_1007_s11854_013_0028_8 crossref_primary_10_1016_j_geomphys_2024_105219 crossref_primary_10_1088_1751_8121_aa70ba crossref_primary_10_1007_s12220_020_00551_7 crossref_primary_10_1007_s13398_023_01501_y crossref_primary_10_1016_j_crma_2014_05_008 crossref_primary_10_1515_advgeom_2017_0044 crossref_primary_10_3842_umzh_v77i5_8927 crossref_primary_10_1016_j_aim_2025_110485 crossref_primary_10_1007_s00006_021_01170_3 crossref_primary_10_1007_s00006_020_01078_4 crossref_primary_10_1016_j_laa_2022_08_010 crossref_primary_10_1007_s40065_020_00283_0 crossref_primary_10_1007_s10817_010_9198_6 crossref_primary_10_1515_anly_2024_0069 crossref_primary_10_1007_s12220_014_9503_4 crossref_primary_10_1007_s12220_012_9358_5 crossref_primary_10_1007_s00006_019_0997_5 crossref_primary_10_1016_j_crma_2015_02_004 crossref_primary_10_1007_s12220_017_9784_5 crossref_primary_10_1007_s11785_018_0779_4 crossref_primary_10_1007_s10231_025_01572_1 crossref_primary_10_1007_s12220_021_00709_x crossref_primary_10_1016_j_aim_2025_110498 crossref_primary_10_1134_S1063454124700213 crossref_primary_10_1007_s10455_010_9238_9 crossref_primary_10_1007_s00006_020_1041_5 crossref_primary_10_1007_s12220_024_01896_z crossref_primary_10_1002_mana_201100082 crossref_primary_10_1002_mma_5988 crossref_primary_10_1007_s43037_023_00252_7 crossref_primary_10_1002_mma_5506 crossref_primary_10_1017_prm_2020_74 crossref_primary_10_1007_s11785_011_0213_7 crossref_primary_10_1007_s00006_016_0737_z crossref_primary_10_1007_s00020_011_1935_7 crossref_primary_10_1007_s00006_024_01344_9 crossref_primary_10_1007_s00025_021_01477_4 crossref_primary_10_1016_j_aim_2014_09_026 crossref_primary_10_1098_rsos_150255 crossref_primary_10_1007_s10958_018_4085_5 crossref_primary_10_5802_crmath_467 crossref_primary_10_1007_s11785_014_0432_9 crossref_primary_10_1080_17476933_2012_709851 crossref_primary_10_1007_s11785_016_0609_5 crossref_primary_10_1007_s12220_017_9979_9 crossref_primary_10_1080_00927872_2016_1172609 crossref_primary_10_52737_18291163_2025_17_4_1_10 crossref_primary_10_1007_s11785_019_00919_w crossref_primary_10_1080_17476933_2020_1755967 crossref_primary_10_1007_s10473_021_0512_7 crossref_primary_10_1007_s11040_020_9332_6 crossref_primary_10_1515_forum_2024_0049 crossref_primary_10_1016_j_jat_2019_105325 crossref_primary_10_1016_j_jmaa_2010_08_016 crossref_primary_10_1007_s00006_025_01376_9 crossref_primary_10_1007_s00020_014_2173_6 crossref_primary_10_1007_s11785_023_01410_3 crossref_primary_10_1007_s10231_025_01586_9 crossref_primary_10_1016_j_laa_2024_01_005 crossref_primary_10_1007_s10231_022_01208_8 crossref_primary_10_1016_j_cam_2016_05_037 crossref_primary_10_1216_rmj_2025_55_1037 crossref_primary_10_1007_s10231_018_0724_1 crossref_primary_10_1080_17476933_2011_627441 crossref_primary_10_1631_FITEE_1500334 crossref_primary_10_1016_j_jmaa_2022_126905 crossref_primary_10_1016_j_aim_2009_06_015 crossref_primary_10_1016_j_aim_2011_04_001 crossref_primary_10_2298_FIL2427453M crossref_primary_10_1007_s00006_014_0474_0 crossref_primary_10_1007_s00006_023_01292_w crossref_primary_10_1016_j_jmaa_2022_126480 crossref_primary_10_1186_s13662_018_1906_2 crossref_primary_10_1007_s00006_020_01064_w crossref_primary_10_1007_s00209_024_03434_7 crossref_primary_10_1007_s00208_010_0631_2 crossref_primary_10_1007_s10476_018_0109_0 crossref_primary_10_1002_mana_201900259 crossref_primary_10_1016_j_aim_2022_108747 crossref_primary_10_1007_s00009_023_02362_w crossref_primary_10_1002_mma_7684 crossref_primary_10_1007_s10455_011_9266_0 crossref_primary_10_1002_mana_201000149 crossref_primary_10_1080_17476933_2015_1113270 crossref_primary_10_1016_j_jde_2009_06_015 crossref_primary_10_1007_s11785_024_01529_x crossref_primary_10_1080_17476933_2015_1024670 crossref_primary_10_1007_s10231_022_01209_7 crossref_primary_10_1080_17476930903275938 crossref_primary_10_1007_s00006_025_01391_w crossref_primary_10_1007_s00006_015_0534_0 crossref_primary_10_1007_s00209_007_0254_9 crossref_primary_10_1080_17476933_2017_1380000 crossref_primary_10_1007_s13324_022_00712_7 crossref_primary_10_1002_mma_6344 crossref_primary_10_1007_s00009_022_02112_4 crossref_primary_10_1007_s00009_022_02151_x crossref_primary_10_1007_s11785_009_0015_3 crossref_primary_10_1007_s11785_024_01517_1 crossref_primary_10_1080_00927872_2022_2081332 crossref_primary_10_3103_S1068362324601770 crossref_primary_10_1007_s00006_021_01148_1 crossref_primary_10_1142_S0129167X17500173 crossref_primary_10_1007_s10231_016_0598_z crossref_primary_10_1007_s11785_014_0393_z crossref_primary_10_55225_sti_441 crossref_primary_10_1007_s00208_015_1182_3 crossref_primary_10_1134_S1063454125700384 crossref_primary_10_1186_s13662_017_1131_4 crossref_primary_10_1002_mma_1447 crossref_primary_10_1002_mana_201500489 crossref_primary_10_1016_j_aim_2010_08_015 crossref_primary_10_1007_s11785_019_00977_0 crossref_primary_10_1007_s11785_024_01504_6 crossref_primary_10_1007_s11565_024_00568_8 crossref_primary_10_1007_s40315_024_00551_6 crossref_primary_10_1007_s10455_009_9191_7 crossref_primary_10_1007_s12220_021_00682_5 crossref_primary_10_5269_bspm_67719 crossref_primary_10_1007_s10231_020_01034_w crossref_primary_10_1007_s10473_022_0222_9 crossref_primary_10_1007_s00209_018_2225_8 crossref_primary_10_1007_s00006_019_1018_4 crossref_primary_10_1017_S0013091516000626 crossref_primary_10_1016_j_jsc_2009_06_003 crossref_primary_10_1007_s11785_025_01751_1 crossref_primary_10_1002_mma_1315 crossref_primary_10_1007_s11785_020_01054_7 crossref_primary_10_1007_s10231_010_0162_1 crossref_primary_10_1080_17476933_2020_1738410 crossref_primary_10_1307_mmj_1231770366 crossref_primary_10_1016_j_jmaa_2025_129480 crossref_primary_10_1007_s10231_023_01325_y crossref_primary_10_1007_s12220_009_9075_x crossref_primary_10_1109_TSP_2015_2399865 crossref_primary_10_1007_s11785_022_01292_x crossref_primary_10_1016_j_camwa_2009_08_034 crossref_primary_10_1016_j_jsc_2024_102388 crossref_primary_10_1007_s12220_025_01900_0 crossref_primary_10_1016_j_aim_2012_05_023 crossref_primary_10_1007_s12220_024_01563_3 crossref_primary_10_1007_s13324_020_00394_z crossref_primary_10_1016_j_jmaa_2020_124780 crossref_primary_10_1017_S0013091518000226 crossref_primary_10_1002_mana_201100232 crossref_primary_10_1080_17476933_2015_1015530 crossref_primary_10_1007_s13398_023_01546_z crossref_primary_10_1016_j_geomphys_2024_105240 crossref_primary_10_1007_s43037_020_00087_6 crossref_primary_10_1007_s12220_020_00356_8 crossref_primary_10_1080_17476933_2020_1818731 crossref_primary_10_1007_s00209_022_03066_9 crossref_primary_10_1007_s00006_015_0578_1 crossref_primary_10_1007_s12220_018_0064_9 crossref_primary_10_1007_s00020_016_2318_x crossref_primary_10_1007_s10231_022_01291_x crossref_primary_10_1007_s11785_024_01630_1 crossref_primary_10_1016_j_geomphys_2023_105098 crossref_primary_10_1080_17476933_2021_1980877 crossref_primary_10_1007_s11785_018_0856_8 crossref_primary_10_1088_1742_6596_597_1_012011 crossref_primary_10_1080_17476930701778869 crossref_primary_10_3390_physics4010023 crossref_primary_10_1016_j_geomphys_2018_12_007 crossref_primary_10_1515_advgeom_2017_0007 crossref_primary_10_1080_17476933_2014_889691 crossref_primary_10_1080_03081087_2022_2047876 crossref_primary_10_1307_mmj_1301586304 crossref_primary_10_1186_s13662_021_03581_9 crossref_primary_10_1007_s40315_023_00485_5 crossref_primary_10_1080_17476933_2013_868448 crossref_primary_10_1007_s00025_018_0942_2 crossref_primary_10_3390_axioms14090651 crossref_primary_10_1017_prm_2019_13 crossref_primary_10_1307_mmj_1301586309 crossref_primary_10_1002_mana_201200318 crossref_primary_10_1007_s13398_021_01126_z crossref_primary_10_1016_j_crma_2014_10_011 crossref_primary_10_1016_j_jmaa_2020_124764 crossref_primary_10_1016_j_geomphys_2017_09_007 crossref_primary_10_1007_s00006_019_1005_9 crossref_primary_10_3390_math13060994 crossref_primary_10_1080_17476933_2012_674521 |
| Cites_doi | 10.1080/0278107042000220276 10.1007/BF01620640 10.1215/S0012-7094-60-02701-0 10.1017/S0305004100055638 10.1007/BF01292723 10.1215/S0012-7094-65-03212-6 10.1080/17476939208814584 10.1007/BF03043103 10.1080/17476930108815384 10.1016/j.crma.2006.03.015 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Inc. |
| Copyright_xml | – notice: 2007 Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.aim.2007.05.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1090-2082 |
| EndPage | 301 |
| ExternalDocumentID | 10_1016_j_aim_2007_05_010 S0001870807001600 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABCQX ABEFU ABFNM ABJNI ABLJU ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFDAS AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D0L DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K UPT WH7 XOL XPP ZCG ZKB ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-3cf86ddb080f1fa24c7c5d7dbced01a8b2bdc3a036775112d2163abce5ceb87a3 |
| ISICitedReferencesCount | 306 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250413100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-8708 |
| IngestDate | Sat Nov 29 06:33:30 EST 2025 Tue Nov 18 22:37:48 EST 2025 Fri Feb 23 02:21:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Quaternions Functions of hypercomplex variables Functions of complex variables |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-3cf86ddb080f1fa24c7c5d7dbced01a8b2bdc3a036775112d2163abce5ceb87a3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.aim.2007.05.010 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_aim_2007_05_010 crossref_primary_10_1016_j_aim_2007_05_010 elsevier_sciencedirect_doi_10_1016_j_aim_2007_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-12-01 |
| PublicationDateYYYYMMDD | 2007-12-01 |
| PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Advances in mathematics (New York. 1965) |
| PublicationYear | 2007 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Gentili, Struppa (bib006) 2006; 342 Rinehart (bib012) 1960; 27 Sudbery (bib013) 1979; 85 Fueter (bib004) 1934; 7 Leutwiler (bib010) 1992; 20 Pogorui, Shapiro (bib011) 2004; 49 Kravchenko, Shapiro (bib007) 1996; vol. 351 Colombo, Sabadini, Sommen, Struppa (bib002) 2004 Fueter (bib005) 1939; 12 Laville, Ramadanoff (bib008) 1998; 8 Laville, Ramadanoff (bib009) 2001; 45 Ahlfors (bib001) 1966 Cullen (bib003) 1965; 32 Ahlfors (10.1016/j.aim.2007.05.010_bib001) 1966 Colombo (10.1016/j.aim.2007.05.010_bib002) 2004 Leutwiler (10.1016/j.aim.2007.05.010_bib010) 1992; 20 Rinehart (10.1016/j.aim.2007.05.010_bib012) 1960; 27 Laville (10.1016/j.aim.2007.05.010_bib008) 1998; 8 Sudbery (10.1016/j.aim.2007.05.010_bib013) 1979; 85 Cullen (10.1016/j.aim.2007.05.010_bib003) 1965; 32 Fueter (10.1016/j.aim.2007.05.010_bib004) 1934; 7 Gentili (10.1016/j.aim.2007.05.010_bib006) 2006; 342 Kravchenko (10.1016/j.aim.2007.05.010_bib007) 1996; vol. 351 Fueter (10.1016/j.aim.2007.05.010_bib005) 1939; 12 Pogorui (10.1016/j.aim.2007.05.010_bib011) 2004; 49 Laville (10.1016/j.aim.2007.05.010_bib009) 2001; 45 |
| References_xml | – volume: 32 start-page: 139 year: 1965 end-page: 148 ident: bib003 article-title: An integral theorem for analytic intrinsic functions on quaternions publication-title: Duke Math. J. – volume: 20 start-page: 19 year: 1992 end-page: 51 ident: bib010 article-title: Modified quaternionic analysis in publication-title: Complex Var. Theory Appl. – volume: 27 start-page: 1 year: 1960 end-page: 19 ident: bib012 article-title: Elements of a theory of intrinsic functions on algebras publication-title: Duke Math. J. – volume: 342 start-page: 741 year: 2006 end-page: 744 ident: bib006 article-title: A new approach to Cullen-regular functions of a quaternionic variable publication-title: C. R. Acad. Sci. Paris Ser. I – volume: 12 start-page: 75 year: 1939 end-page: 80 ident: bib005 article-title: Über Hartogs'schen Satz publication-title: Comment. Math. Helv. – volume: 7 start-page: 307 year: 1934 end-page: 330 ident: bib004 article-title: Die Funktionentheorie der Differentialgleichungen publication-title: Comment. Math. Helv. – volume: 49 start-page: 379 year: 2004 end-page: 389 ident: bib011 article-title: On the structure of the set of zeros of quaternionic polynomials publication-title: Complex Variables – year: 1966 ident: bib001 article-title: Complex Analysis – volume: 8 start-page: 323 year: 1998 end-page: 340 ident: bib008 article-title: Holomorphic Cliffordian functions publication-title: Adv. Appl. Clifford Algebras – year: 2004 ident: bib002 article-title: Analysis of Dirac Systems and Computational Algebra – volume: vol. 351 year: 1996 ident: bib007 article-title: Integral Representations for Spatial Models of Mathematical Physics publication-title: Pitman Res. Notes Math. – volume: 45 start-page: 297 year: 2001 end-page: 318 ident: bib009 article-title: Elliptic Cliffordian functions publication-title: Complex Var. Theory Appl. – volume: 85 start-page: 199 year: 1979 end-page: 225 ident: bib013 article-title: Quaternionic analysis publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 49 start-page: 379 issue: 6 year: 2004 ident: 10.1016/j.aim.2007.05.010_bib011 article-title: On the structure of the set of zeros of quaternionic polynomials publication-title: Complex Variables doi: 10.1080/0278107042000220276 – volume: 12 start-page: 75 year: 1939 ident: 10.1016/j.aim.2007.05.010_bib005 article-title: Über Hartogs'schen Satz publication-title: Comment. Math. Helv. doi: 10.1007/BF01620640 – volume: 27 start-page: 1 year: 1960 ident: 10.1016/j.aim.2007.05.010_bib012 article-title: Elements of a theory of intrinsic functions on algebras publication-title: Duke Math. J. doi: 10.1215/S0012-7094-60-02701-0 – volume: 85 start-page: 199 year: 1979 ident: 10.1016/j.aim.2007.05.010_bib013 article-title: Quaternionic analysis publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100055638 – volume: 7 start-page: 307 year: 1934 ident: 10.1016/j.aim.2007.05.010_bib004 article-title: Die Funktionentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reellen Variablen publication-title: Comment. Math. Helv. doi: 10.1007/BF01292723 – volume: 32 start-page: 139 year: 1965 ident: 10.1016/j.aim.2007.05.010_bib003 article-title: An integral theorem for analytic intrinsic functions on quaternions publication-title: Duke Math. J. doi: 10.1215/S0012-7094-65-03212-6 – volume: 20 start-page: 19 year: 1992 ident: 10.1016/j.aim.2007.05.010_bib010 article-title: Modified quaternionic analysis in R3 publication-title: Complex Var. Theory Appl. doi: 10.1080/17476939208814584 – year: 1966 ident: 10.1016/j.aim.2007.05.010_bib001 – volume: vol. 351 year: 1996 ident: 10.1016/j.aim.2007.05.010_bib007 article-title: Integral Representations for Spatial Models of Mathematical Physics – volume: 8 start-page: 323 year: 1998 ident: 10.1016/j.aim.2007.05.010_bib008 article-title: Holomorphic Cliffordian functions publication-title: Adv. Appl. Clifford Algebras doi: 10.1007/BF03043103 – volume: 45 start-page: 297 year: 2001 ident: 10.1016/j.aim.2007.05.010_bib009 article-title: Elliptic Cliffordian functions publication-title: Complex Var. Theory Appl. doi: 10.1080/17476930108815384 – year: 2004 ident: 10.1016/j.aim.2007.05.010_bib002 – volume: 342 start-page: 741 year: 2006 ident: 10.1016/j.aim.2007.05.010_bib006 article-title: A new approach to Cullen-regular functions of a quaternionic variable publication-title: C. R. Acad. Sci. Paris Ser. I doi: 10.1016/j.crma.2006.03.015 |
| SSID | ssj0009419 |
| Score | 2.3917904 |
| Snippet | In this paper we develop the fundamental elements and results of a new theory of regular functions of one quaternionic variable. The theory we describe follows... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 279 |
| SubjectTerms | Functions of complex variables Functions of hypercomplex variables Quaternions |
| Title | A new theory of regular functions of a quaternionic variable |
| URI | https://dx.doi.org/10.1016/j.aim.2007.05.010 |
| Volume | 216 |
| WOSCitedRecordID | wos000250413100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2082 dateEnd: 20171215 omitProxy: false ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpof2UPqkSR_40FMXL7IlWzL0YkKattBQaAp7M3rChsS7eLch9Ndn9LDXmz5oC70YI1sW1nwejcYz8yH0OrMl5VbiVJlSp1RnOhUFMSmToqKaU20z4ckm2MkJn8-rz9GVvfZ0Aqxt-dVVtfqvooY2ELZLnf0LcQ8PhQY4B6HDEcQOxz8SfO1YwkOCov973nm2-W7qVrAh7E24bErnC1x4BpxL2DG7HKqxqVqH6AAfL3sxFHddj-l7ZlNXKXDkTDh2sUch4fq4E98BesvBhbPpvq1WYpTWPj2c7fgc2I34jSEZZidW05mLoFxxUKcm6FNcYZAO31G4eciu3EFWVJ-BWCauxCQM-YOSD_6Gs5lYXMQalK70Kt6uaEOc4RfsSQfBKmaeUBvfRns5Kyo-QXv1h6P5x219ZprFnVJ4h_4HuA8FvDHQz02YkVly-gDdj_uJpA44eIhumfYRuvdpK6_H6G2dACKSgIhkaZOIiGRAhGsUyRgRSY-IJ-jru6PTw_dpJM1IVV6xTUqU5aXWEt7ZZlbkVDFVaKalMhpngstcakUEGC6MOWNbgzSIgKuFMpIzQZ6iSbtszTOUUNh4KUyYVaSkpqIVsUblheSyFKTk5T7C_Tw0KlaUd8Qm500fOnjWwNQ5plPW4KKBqdtHb4Yuq1BO5Xc3035ym2gPBjuvAST8utvBv3V7ju5uof4CTeCrMC_RHXW5Way7VxEv138kgfg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+theory+of+regular+functions+of+a+quaternionic+variable&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Gentili%2C+Graziano&rft.au=Struppa%2C+Daniele+C.&rft.date=2007-12-01&rft.pub=Elsevier+Inc&rft.issn=0001-8708&rft.eissn=1090-2082&rft.volume=216&rft.issue=1&rft.spage=279&rft.epage=301&rft_id=info:doi/10.1016%2Fj.aim.2007.05.010&rft.externalDocID=S0001870807001600 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon |