Pointwise approximation with quasi-interpolation by radial basis functions
We consider radial basis function approximations using at first a localization of the basis functions known as quasi-interpolation (to be contrasted to the plain linear combinations of shifts of radial basis functions or for instance cardinal interpolation). Using these quasi-interpolants we derive...
Uloženo v:
| Vydáno v: | Journal of approximation theory Ročník 192; s. 156 - 192 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2015
|
| Témata: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider radial basis function approximations using at first a localization of the basis functions known as quasi-interpolation (to be contrasted to the plain linear combinations of shifts of radial basis functions or for instance cardinal interpolation). Using these quasi-interpolants we derive various pointwise error estimates in Lp for p∈[1,∞). |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2014.11.005 |