Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)

Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression, occlusion and scenes. Recently, deep learning methods achieved remarkable results in image representation and recognition fields. Such methods ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 355; S. 325 - 342
Hauptverfasser: Görgel, Pelin, Simsek, Ahmet
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.08.2019
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression, occlusion and scenes. Recently, deep learning methods achieved remarkable results in image representation and recognition fields. Such methods extract salient features automatically from images to reduce the dimension and obtain more useful representation of raw data. In this paper, the proposed face recognition system namely Deep Stacked Denoising Sparse Autoencoders (DSDSA) combines the deep neural network technology, sparse autoencoders and denoising task. Autoencoder is used to construct a neural network that learns an approximation of an identity function by placing constraints to learn fine representations of the inputs. Autoencoders have unique capabilities in dealing with interpretation of the input data; in this way produce more meaningful results. They are successfully applied to many object recognition fields. For the classification task, two classifiers were used, namely multi-class SVM and Softmax classifier. Experimental results on known face databases including ORL, Yale, Caltech and a subset of PubFig show that the proposed system yields promising performance and achieves comparable accuracy.
AbstractList Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression, occlusion and scenes. Recently, deep learning methods achieved remarkable results in image representation and recognition fields. Such methods extract salient features automatically from images to reduce the dimension and obtain more useful representation of raw data. In this paper, the proposed face recognition system namely Deep Stacked Denoising Sparse Autoencoders (DSDSA) combines the deep neural network technology, sparse autoencoders and denoising task. Autoencoder is used to construct a neural network that learns an approximation of an identity function by placing constraints to learn fine representations of the inputs. Autoencoders have unique capabilities in dealing with interpretation of the input data; in this way produce more meaningful results. They are successfully applied to many object recognition fields. For the classification task, two classifiers were used, namely multi-class SVM and Softmax classifier. Experimental results on known face databases including ORL, Yale, Caltech and a subset of PubFig show that the proposed system yields promising performance and achieves comparable accuracy.
Author Simsek, Ahmet
Görgel, Pelin
Author_xml – sequence: 1
  givenname: Pelin
  surname: Görgel
  fullname: Görgel, Pelin
  email: paras@istanbul.edu.tr
– sequence: 2
  givenname: Ahmet
  surname: Simsek
  fullname: Simsek, Ahmet
BookMark eNp9kD1PwzAQhi1UJNrCD2DLCEPCOZ-2mKqWFqRKDIHZOl0ulUsbV3aoxL8nVZkYOr16h-d07zMRo851LMS9hESCLJ-2Ce4pSUHqBNIEKnklxlJVWVyUuR6JMYAu4wwguxGTELYAUJUyH4vVEokjz-Q2ne2t66KjxWjBfIjqHumLm6F0zgbbbaL6gD5wNPvuHXfkGvYheljUi3r2eCuuW9wFvvvLqfhcvnzMX-P1--ptPlvHlOqqjzMCJllUhVSqqCgvslY1CiEFLDEnLFpVKCBFXGpAyJUkjSlp1aasJbbZVFTnu-RdCJ5bQ7bH0-O9R7szEszJh9mawYc5-TCQmsHHQMp_5MHbPfqfi8zzmeFh0tGyN4HsMJ0bOyjrTePsBfoX3iZ5Tw
CitedBy_id crossref_primary_10_1007_s10489_021_02477_1
crossref_primary_10_1007_s11277_022_10127_z
crossref_primary_10_1155_2022_5732379
crossref_primary_10_1109_ACCESS_2023_3254539
crossref_primary_10_1109_TAI_2023_3266190
crossref_primary_10_1049_bme2_12008
crossref_primary_10_1007_s11277_024_11600_7
crossref_primary_10_1016_j_eswa_2020_113780
crossref_primary_10_1080_23307706_2020_1759466
crossref_primary_10_1016_j_procs_2020_03_341
crossref_primary_10_1080_13682199_2023_2176735
crossref_primary_10_1007_s11571_020_09642_1
crossref_primary_10_1016_j_energy_2021_120451
crossref_primary_10_1016_j_neucom_2020_04_158
crossref_primary_10_1016_j_imavis_2021_104245
crossref_primary_10_1109_JSEN_2021_3099823
crossref_primary_10_1109_TCSVT_2020_3047140
crossref_primary_10_3390_info10040144
crossref_primary_10_1016_j_neunet_2021_01_010
crossref_primary_10_1016_j_neunet_2025_107843
crossref_primary_10_1109_JSEN_2020_3030910
crossref_primary_10_1016_j_asoc_2020_107003
Cites_doi 10.1109/TIFS.2015.2446438
10.1016/j.procs.2018.05.164
10.1007/s12559-016-9404-x
10.3758/BRM.42.1.351
10.1109/TCSVT.2011.2133210
10.1023/B:VISI.0000013087.49260.fb
10.1109/TPAMI.2008.79
10.1016/j.neucom.2011.08.018
10.1162/neco.2006.18.7.1527
10.1016/j.patrec.2018.04.010
10.1007/s00138-004-0144-7
10.1109/TPAMI.2005.55
10.1016/j.ijleo.2015.10.179
10.1016/j.neucom.2017.08.043
10.1162/089976698300017467
10.1109/TPAMI.2015.2448075
10.1126/science.1127647
10.1126/science.290.5500.2323
10.1016/j.neucom.2016.12.038
10.1561/2200000006
10.1016/j.procs.2017.03.153
10.1109/TMM.2015.2477042
10.1016/j.jvcir.2012.05.003
10.1016/j.patrec.2011.01.004
10.1109/34.817413
10.1109/34.598228
10.1109/TPAMI.2006.244
10.1016/j.ijleo.2017.12.072
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2019.02.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 342
ExternalDocumentID 10_1016_j_amc_2019_02_071
S009630031930181X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c297t-3c0ec157518857c453f8d8a020a6a4ca5f8580c8ce690a0481c9a2c98f2e91af3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464930500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Tue Nov 18 22:29:40 EST 2025
Sat Nov 29 02:52:26 EST 2025
Fri Feb 23 02:25:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Face recognition
Sparse autoencoders
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3c0ec157518857c453f8d8a020a6a4ca5f8580c8ce690a0481c9a2c98f2e91af3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_amc_2019_02_071
crossref_primary_10_1016_j_amc_2019_02_071
elsevier_sciencedirect_doi_10_1016_j_amc_2019_02_071
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References C. Huang, S. Zhu, K. Yu, 2012, Large scale strongly supervised ensemble metric learning with applications to face verification and retrieval. arXiv
Y. Sun, X. Wang, X. Tang, 2015, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892–2900.
Vinay, Gupta, Bharadwaj, Srinivasan, Murthy, Natarajan (bib0041) 2018; 132
Ren, Hui, Hu, Zhan (bib0013) 2018; 167
Koestinger, Wohlhart, Roth, Bischof (bib0065) 2011
Sun, Wang, Tang (bib0028) 2014
Z. Zhu, P. Luo, X. Wang, X. Tang, 2014, Recover canonical-view faces in the wild with deep neural networks. arXiv
Zeng, Zhang, Song, Liu, Li, Dobaie (bib0049) 2018; 273
Zeng, Wang, Zhang, Liu, Alsaadi (bib0029) 2016; 8
Lu, Min, Gui, Zhu, Lei (bib0022) 2013; 24
Schölkopf, Smola, Müller (bib0006) 1998; 10
Chen, Huang, Liu, Zhana (bib0039) 2016; 127
He, Yan, Hu, Niyogi, Zhang (bib0057) 2005; 27
Ding, Tao (bib0047) 2015; 17
Huang, Ramesh, Berg, Learned-miller (bib0061) 2008
Vapnik (bib0012) 1998
Yin, Liu, Jin, Yang (bib0024) 2012; 77
Huang, Lee, Learned-Miller (bib0025) 2012
Beveridge, Bolme, Draper, Teixeira (bib0064) 2005; 16
Ortiz, Wright, Shah (bib0060) June 2013
Jain, Li (bib0001) 2011
Mika, Ratsch, Weston, Scholkopf, Mullers (bib0007) 1999
Ebner, Riediger, Lindenberger (bib0063) 2010; 42
Biswas, Sil (bib0011) 2017
Ahonen, Hadid, Pietikainen (bib0008) 2006; 28
Ho, Yang, Lim, Lee, Kriegman (bib0014) 2003
Yang, Zhang (bib0021) 2010
Biswas, Sil, Maity (bib0038) 2017
.
Hinton, Salakhutdinov (bib0043) 2006; 313
Hinton, Osindero, Teh (bib0055) 2006; 18
Kumar, Berg, Belhumeur, Nayar (bib0056) 2009
Luo, Shen, Hu, Deng, Hu, Guan (bib0042) 2017; 107
Déniz, Bueno, Salido, De la Torre (bib0010) 2011; 32
Wright, Yang, Ganesh, Sastry, Ma (bib0018) 2009; 31
Chopra, Hadsell, LeCun (bib0033) 2005; 1
Cinbis, Verbeek, Schmid (bib0017) 2011
Baltrusaitis, Robinson, Morency (bib0054) 2013
Taigman, Yang, Ranzato, Wolf (bib0026) 2014
Zhang, Yang, Feng (bib0019) 2011
Liao, Jain, Li (bib0002) 2016; 38
Boukabou, Ghouti, Bouridane (bib0009) 2006
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0031) 2017; 234
Gravelines (bib0051) 2014
Bengio (bib0050) 2009; 2
Turk, Pentland (bib0004) 1991
Schroff, Kalenichenko, Philbin (bib0035) 2015
Jain, Shishir, Kumar, Shamsolmoali, Zareapoor (bib0040) 2018
Belhumeur, Hespanha, Kriegman (bib0003) 1997; 19
Sudha, Mohan, Meher (bib0058) 2011; 21
Li, Gao, Wang (bib0048) 2017; 132
Lyons, Budynek, Akamatsu (bib0062) 1999; 21
Yu, Huang, Zhang, Yan, Metaxas (bib0053) 2013
Zhang, Shan, Kan, Chen (bib0045) 2014
T. Sim, R. Sukthankar, M. Mullin, S. Baluja, 1970, High-Performance Memory-based Face Recognition for Visitor Identification.
Gao, Zhang, Jia, Lu, Zhang (bib0020) 2015; 10
Parkhi, Vedaldi, Zisserman (bib0036) 2015, September
Gao, Tsang, Chia (bib0046) 2010
Zhang, Li, Zhu (bib0037) 2015
Viola, Jones (bib0052) 2004; 57
Guillaumin, Verbeek, Schmid (bib0015) 2009, September
Kan, Shan, Chang, Chen (bib0044) 2014
Y. Sun, D. Liang, X. Wang, X. Tang, 2015, Deepid3: face recognition with very deep neural networks. arXiv
Min, Dugelay (bib0023) 2011
Roweis, Saul (bib0005) 2000; 290
Sun, Wang, Tang (bib0027) 2013
Gao (10.1016/j.amc.2019.02.071_bib0046) 2010
Ahonen (10.1016/j.amc.2019.02.071_bib0008) 2006; 28
Zeng (10.1016/j.amc.2019.02.071_bib0049) 2018; 273
Yang (10.1016/j.amc.2019.02.071_bib0021) 2010
10.1016/j.amc.2019.02.071_bib0016
Baltrusaitis (10.1016/j.amc.2019.02.071_bib0054) 2013
Huang (10.1016/j.amc.2019.02.071_bib0061) 2008
Roweis (10.1016/j.amc.2019.02.071_bib0005) 2000; 290
Sun (10.1016/j.amc.2019.02.071_bib0027) 2013
Ho (10.1016/j.amc.2019.02.071_bib0014) 2003
Lu (10.1016/j.amc.2019.02.071_bib0022) 2013; 24
Yu (10.1016/j.amc.2019.02.071_bib0053) 2013
Ebner (10.1016/j.amc.2019.02.071_bib0063) 2010; 42
Yin (10.1016/j.amc.2019.02.071_bib0024) 2012; 77
Vinay (10.1016/j.amc.2019.02.071_bib0041) 2018; 132
Turk (10.1016/j.amc.2019.02.071_bib0004) 1991
Schroff (10.1016/j.amc.2019.02.071_bib0035) 2015
Min (10.1016/j.amc.2019.02.071_bib0023) 2011
Viola (10.1016/j.amc.2019.02.071_bib0052) 2004; 57
Hinton (10.1016/j.amc.2019.02.071_bib0055) 2006; 18
10.1016/j.amc.2019.02.071_bib0059
Ortiz (10.1016/j.amc.2019.02.071_bib0060) 2013
Luo (10.1016/j.amc.2019.02.071_bib0042) 2017; 107
Jain (10.1016/j.amc.2019.02.071_bib0040) 2018
Beveridge (10.1016/j.amc.2019.02.071_bib0064) 2005; 16
Zhang (10.1016/j.amc.2019.02.071_bib0019) 2011
Boukabou (10.1016/j.amc.2019.02.071_bib0009) 2006
Belhumeur (10.1016/j.amc.2019.02.071_bib0003) 1997; 19
Kumar (10.1016/j.amc.2019.02.071_bib0056) 2009
Kan (10.1016/j.amc.2019.02.071_bib0044) 2014
Schölkopf (10.1016/j.amc.2019.02.071_bib0006) 1998; 10
Biswas (10.1016/j.amc.2019.02.071_bib0011) 2017
Sun (10.1016/j.amc.2019.02.071_bib0028) 2014
Biswas (10.1016/j.amc.2019.02.071_bib0038) 2017
Sudha (10.1016/j.amc.2019.02.071_bib0058) 2011; 21
Guillaumin (10.1016/j.amc.2019.02.071_bib0015) 2009
Ding (10.1016/j.amc.2019.02.071_bib0047) 2015; 17
Gravelines (10.1016/j.amc.2019.02.071_bib0051) 2014
Liu (10.1016/j.amc.2019.02.071_bib0031) 2017; 234
Taigman (10.1016/j.amc.2019.02.071_bib0026) 2014
Déniz (10.1016/j.amc.2019.02.071_bib0010) 2011; 32
Bengio (10.1016/j.amc.2019.02.071_bib0050) 2009; 2
He (10.1016/j.amc.2019.02.071_bib0057) 2005; 27
Wright (10.1016/j.amc.2019.02.071_bib0018) 2009; 31
Parkhi (10.1016/j.amc.2019.02.071_bib0036) 2015
Koestinger (10.1016/j.amc.2019.02.071_bib0065) 2011
Ren (10.1016/j.amc.2019.02.071_bib0013) 2018; 167
Zeng (10.1016/j.amc.2019.02.071_bib0029) 2016; 8
10.1016/j.amc.2019.02.071_bib0034
Liao (10.1016/j.amc.2019.02.071_bib0002) 2016; 38
Mika (10.1016/j.amc.2019.02.071_bib0007) 1999
10.1016/j.amc.2019.02.071_bib0030
10.1016/j.amc.2019.02.071_bib0032
Gao (10.1016/j.amc.2019.02.071_bib0020) 2015; 10
Hinton (10.1016/j.amc.2019.02.071_bib0043) 2006; 313
Li (10.1016/j.amc.2019.02.071_bib0048) 2017; 132
Chen (10.1016/j.amc.2019.02.071_bib0039) 2016; 127
Chopra (10.1016/j.amc.2019.02.071_bib0033) 2005; 1
Lyons (10.1016/j.amc.2019.02.071_bib0062) 1999; 21
Cinbis (10.1016/j.amc.2019.02.071_bib0017) 2011
Huang (10.1016/j.amc.2019.02.071_bib0025) 2012
Zhang (10.1016/j.amc.2019.02.071_bib0045) 2014
Vapnik (10.1016/j.amc.2019.02.071_bib0012) 1998
Jain (10.1016/j.amc.2019.02.071_bib0001) 2011
Zhang (10.1016/j.amc.2019.02.071_bib0037) 2015
References_xml – volume: 27
  start-page: 328
  year: 2005
  end-page: 340
  ident: bib0057
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 1071
  year: 2011
  end-page: 1084
  ident: bib0058
  article-title: A self-configurable systolic architecture for face recognition system based on principal component neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2017
  ident: bib0011
  article-title: An efficient face recognition method using contourlet and curvelet transform
  publication-title: J.King Saud Univ. Comput. Inf. Sci.
– start-page: 471
  year: 2011
  end-page: 478
  ident: bib0019
  article-title: Sparse representation or collaborative representation: which helps face recognition?
  publication-title: Proceedings of the IEEE in Computer vision (ICCV)
– volume: 17
  start-page: 2049
  year: 2015
  end-page: 2058
  ident: bib0047
  article-title: Robust face recognition via multimodal deep face representation
  publication-title: IEEE Trans. Multimed.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: bib0008
  article-title: Face description with local binary patterns application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 354
  year: 2013
  end-page: 361
  ident: bib0054
  article-title: Constrained local neural fields for robust facial landmark detection in the wild
  publication-title: Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops (ICCVW)
– year: 2008
  ident: bib0061
  article-title: Labeled faces in the wild: a database for studying face recognition in unconstrained environments
  publication-title: Proceedings of the ECCV Workshop on Faces in Real-life Images, 2008
– start-page: 2144
  year: 2011
  end-page: 2151
  ident: bib0065
  article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization
  publication-title: Proceedings of the IEEE International Workshop on Benchmarking Facial Image Analysis Technologies
– start-page: 1701
  year: 2014
  end-page: 1708
  ident: bib0026
  article-title: Deepface: closing the gap to human-level performance in face verification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2017
  ident: bib0038
  article-title: On prediction error compressive sensing image reconstruction for face recognition
  publication-title: Comput. Electr. Eng.
– year: 2018
  ident: bib0040
  article-title: Hybrid deep neural networks for face emotion recognition
  publication-title: Pattern Recognit. Lett.
– volume: 77
  start-page: 120
  year: 2012
  end-page: 128
  ident: bib0024
  article-title: Kernel sparse representation based classification
  publication-title: Neurocomputing
– start-page: 1891
  year: 2014
  end-page: 1898
  ident: bib0028
  article-title: Deep learning face representation from predicting 10,000 classes
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 128
  year: 2005
  end-page: 138
  ident: bib0064
  article-title: The CSU face identification evaluation system: its purpose features and structure
  publication-title: Mach. Vis. Appl.
– reference: Y. Sun, D. Liang, X. Wang, X. Tang, 2015, Deepid3: face recognition with very deep neural networks. arXiv:
– volume: 167
  start-page: 7
  year: 2018
  end-page: 14
  ident: bib0013
  article-title: A weighted sparse neighbor representation based on Gaussian kernel function to face recognition
  publication-title: Optik
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bib0003
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib0018
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 594
  year: 2015
  end-page: 598
  ident: bib0037
  article-title: Deep neural network for face recognition based on sparse autoencoder
  publication-title: Proceedings of the Eighth International Congress on Image and Signal Processing (CISP)
– year: 1998
  ident: bib0012
  article-title: Statistical Learning Theory
– start-page: 448
  year: 2010
  end-page: 461
  ident: bib0021
  article-title: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 6
  year: 2015, September
  ident: bib0036
  article-title: Deep face recognition
  publication-title: Proceedings of the BMVC
– volume: 21
  start-page: 1357
  year: 1999
  end-page: 1362
  ident: bib0062
  article-title: Automatic classification of single facial images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2010
  end-page: 14
  ident: bib0046
  article-title: Kernel sparse representation for image classification and face recognition
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 107
  start-page: 715
  year: 2017
  end-page: 720
  ident: bib0042
  article-title: A Deep convolution neural network model for vehicle recognition and face recognition
  publication-title: Proc. Comput. Sci.
– volume: 24
  start-page: 111
  year: 2013
  end-page: 116
  ident: bib0022
  article-title: Face recognition via weighted sparse representation
  publication-title: J. Vis. Commun. Image Represent.
– reference: Y. Sun, X. Wang, X. Tang, 2015, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2892–2900.
– reference: Z. Zhu, P. Luo, X. Wang, X. Tang, 2014, Recover canonical-view faces in the wild with deep neural networks. arXiv:
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 815
  year: 2015
  end-page: 823
  ident: bib0035
  article-title: Facenet: a unified embedding for face recognition and clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 273
  start-page: 643
  year: 2018
  end-page: 649
  ident: bib0049
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0050
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: bib0006
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– reference: T. Sim, R. Sukthankar, M. Mullin, S. Baluja, 1970, High-Performance Memory-based Face Recognition for Visitor Identification.
– start-page: 498
  year: 2009, September
  end-page: 505
  ident: bib0015
  article-title: Is that you? Metric learning approaches for face identification
  publication-title: Proceedings of the IEEE Twelfth International Conference on Computer Vision
– year: 2014
  ident: bib0051
  article-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity
  publication-title: Proceedings of the Electronic Thesis and Dissertation Repository
– start-page: 1883
  year: 2014
  end-page: 1890
  ident: bib0044
  article-title: Stacked progressive auto-encoders for face recognition across poses
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2003
  end-page: 11
  ident: bib0014
  article-title: Clustering appearances of objects under varying illumination conditions
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: bib0005
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– start-page: 2518
  year: 2012
  end-page: 2525
  ident: bib0025
  article-title: Learning hierarchical representations for face verification with convolutional deep belief networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR)
– volume: 132
  start-page: 76
  year: 2018
  end-page: 83
  ident: bib0041
  article-title: Deep learning on binary patterns for face recognition
  publication-title: Proc. Comput. Sci.
– start-page: 465
  year: 2006
  end-page: 468
  ident: bib0009
  article-title: Face recognition using a Gabor filter bank approach
  publication-title: First NASA/ESA Conference on Adaptive Hardware and Systems
– start-page: 1489
  year: 2013
  end-page: 1496
  ident: bib0027
  article-title: Hybrid deep learning for face verification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– start-page: 41
  year: 1999
  end-page: 48
  ident: bib0007
  article-title: Fisher discriminant analysis with kernels
  publication-title: Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE Signal Processing Society Workshop
– volume: 8
  start-page: 684
  year: 2016
  end-page: 692
  ident: bib0029
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
– start-page: 1
  year: 2014
  end-page: 16
  ident: bib0045
  article-title: Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0043
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 42
  start-page: 351
  year: 2010
  end-page: 362
  ident: bib0063
  article-title: FACES—A database of facial expressions in young, middle-aged, and older women and men: development and validation
  publication-title: Behav. Res. Methods
– volume: 127
  start-page: 946
  year: 2016
  end-page: 954
  ident: bib0039
  article-title: Multi-pose face ensemble classification aided by Gabor features and deep belief nets
  publication-title: Optik - Int. J. Light Electron Opt.
– volume: 32
  start-page: 1598
  year: 2011
  end-page: 1603
  ident: bib0010
  article-title: Face recognition using histograms of oriented gradients
  publication-title: Pattern Recognit. Lett.
– volume: 57
  start-page: 137
  year: 2004
  end-page: 154
  ident: bib0052
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
– year: 2009
  ident: bib0056
  article-title: Attribute and simile classifiers for face verification
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV)
– volume: 1
  start-page: 539
  year: 2005
  end-page: 546
  ident: bib0033
  article-title: Learning a similarity metric discriminatively, with application to face verification
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 05)
– volume: 10
  start-page: 2108
  year: 2015
  end-page: 2118
  ident: bib0020
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics and Secur.
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib0023
  article-title: Improved combination of LBP and sparse representation based classification (SRC) for face recognition
  publication-title: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME)
– volume: 132
  start-page: 243
  year: 2017
  end-page: 246
  ident: bib0048
  article-title: Face recognition based on deep autoencoder networks with dropout
  publication-title: Adv. Intell. Syst. Res.
– start-page: 3531
  year: June 2013
  end-page: 3538
  ident: bib0060
  article-title: , Face recognition in movie trailers via mean sequence sparse representation-based classification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1944
  year: 2013
  end-page: 1951
  ident: bib0053
  article-title: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model
  publication-title: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV)
– reference: C. Huang, S. Zhu, K. Yu, 2012, Large scale strongly supervised ensemble metric learning with applications to face verification and retrieval. arXiv:
– reference: .
– start-page: 1559
  year: 2011
  end-page: 1566
  ident: bib0017
  article-title: Unsupervised metric learning for face identification in TV video
  publication-title: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV)
– volume: 38
  start-page: 211
  year: 2016
  end-page: 223
  ident: bib0002
  article-title: A fast and accurate unconstrained face detector
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bib0031
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– year: 2011
  ident: bib0001
  article-title: Handbook of Face Recognition
– start-page: 586
  year: 1991
  end-page: 591
  ident: bib0004
  article-title: Face recognition using eigenfaces
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR'91
– year: 1998
  ident: 10.1016/j.amc.2019.02.071_bib0012
– ident: 10.1016/j.amc.2019.02.071_bib0032
– volume: 1
  start-page: 539
  year: 2005
  ident: 10.1016/j.amc.2019.02.071_bib0033
  article-title: Learning a similarity metric discriminatively, with application to face verification
– volume: 10
  start-page: 2108
  issue: 10
  year: 2015
  ident: 10.1016/j.amc.2019.02.071_bib0020
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics and Secur.
  doi: 10.1109/TIFS.2015.2446438
– start-page: 448
  year: 2010
  ident: 10.1016/j.amc.2019.02.071_bib0021
  article-title: Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary
– start-page: 594
  year: 2015
  ident: 10.1016/j.amc.2019.02.071_bib0037
  article-title: Deep neural network for face recognition based on sparse autoencoder
– year: 2009
  ident: 10.1016/j.amc.2019.02.071_bib0056
  article-title: Attribute and simile classifiers for face verification
– start-page: 1559
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0017
  article-title: Unsupervised metric learning for face identification in TV video
– volume: 132
  start-page: 76
  year: 2018
  ident: 10.1016/j.amc.2019.02.071_bib0041
  article-title: Deep learning on binary patterns for face recognition
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.05.164
– start-page: 1
  year: 2010
  ident: 10.1016/j.amc.2019.02.071_bib0046
  article-title: Kernel sparse representation for image classification and face recognition
– ident: 10.1016/j.amc.2019.02.071_bib0059
– start-page: 1
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0023
  article-title: Improved combination of LBP and sparse representation based classification (SRC) for face recognition
– year: 2017
  ident: 10.1016/j.amc.2019.02.071_bib0038
  article-title: On prediction error compressive sensing image reconstruction for face recognition
  publication-title: Comput. Electr. Eng.
– volume: 8
  start-page: 684
  issue: 4
  year: 2016
  ident: 10.1016/j.amc.2019.02.071_bib0029
  article-title: Deep belief networks for quantitative analysis of a gold immunochromatographic strip
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-016-9404-x
– volume: 42
  start-page: 351
  issue: 1
  year: 2010
  ident: 10.1016/j.amc.2019.02.071_bib0063
  article-title: FACES—A database of facial expressions in young, middle-aged, and older women and men: development and validation
  publication-title: Behav. Res. Methods
  doi: 10.3758/BRM.42.1.351
– volume: 21
  start-page: 1071
  issue: 8
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0058
  article-title: A self-configurable systolic architecture for face recognition system based on principal component neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2133210
– start-page: 1489
  year: 2013
  ident: 10.1016/j.amc.2019.02.071_bib0027
  article-title: Hybrid deep learning for face verification
– volume: 57
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.amc.2019.02.071_bib0052
  article-title: Robust real-time face detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000013087.49260.fb
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.amc.2019.02.071_bib0018
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 77
  start-page: 120
  issue: 1
  year: 2012
  ident: 10.1016/j.amc.2019.02.071_bib0024
  article-title: Kernel sparse representation based classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.08.018
– start-page: 1701
  year: 2014
  ident: 10.1016/j.amc.2019.02.071_bib0026
  article-title: Deepface: closing the gap to human-level performance in face verification
– start-page: 6
  year: 2015
  ident: 10.1016/j.amc.2019.02.071_bib0036
  article-title: Deep face recognition
– year: 2008
  ident: 10.1016/j.amc.2019.02.071_bib0061
  article-title: Labeled faces in the wild: a database for studying face recognition in unconstrained environments
– year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0001
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.amc.2019.02.071_bib0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 498
  year: 2009
  ident: 10.1016/j.amc.2019.02.071_bib0015
  article-title: Is that you? Metric learning approaches for face identification
– year: 2018
  ident: 10.1016/j.amc.2019.02.071_bib0040
  article-title: Hybrid deep neural networks for face emotion recognition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.04.010
– start-page: 41
  year: 1999
  ident: 10.1016/j.amc.2019.02.071_bib0007
  article-title: Fisher discriminant analysis with kernels
– volume: 16
  start-page: 128
  issue: 2
  year: 2005
  ident: 10.1016/j.amc.2019.02.071_bib0064
  article-title: The CSU face identification evaluation system: its purpose features and structure
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0144-7
– volume: 27
  start-page: 328
  issue: 3
  year: 2005
  ident: 10.1016/j.amc.2019.02.071_bib0057
  article-title: Face recognition using laplacianfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.55
– volume: 127
  start-page: 946
  issue: 2
  year: 2016
  ident: 10.1016/j.amc.2019.02.071_bib0039
  article-title: Multi-pose face ensemble classification aided by Gabor features and deep belief nets
  publication-title: Optik - Int. J. Light Electron Opt.
  doi: 10.1016/j.ijleo.2015.10.179
– volume: 273
  start-page: 643
  year: 2018
  ident: 10.1016/j.amc.2019.02.071_bib0049
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.043
– year: 2017
  ident: 10.1016/j.amc.2019.02.071_bib0011
  article-title: An efficient face recognition method using contourlet and curvelet transform
  publication-title: J.King Saud Univ. Comput. Inf. Sci.
– start-page: 1944
  year: 2013
  ident: 10.1016/j.amc.2019.02.071_bib0053
  article-title: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model
– start-page: 465
  year: 2006
  ident: 10.1016/j.amc.2019.02.071_bib0009
  article-title: Face recognition using a Gabor filter bank approach
– ident: 10.1016/j.amc.2019.02.071_bib0034
– ident: 10.1016/j.amc.2019.02.071_bib0030
– start-page: 471
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0019
  article-title: Sparse representation or collaborative representation: which helps face recognition?
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 10.1016/j.amc.2019.02.071_bib0006
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 38
  start-page: 211
  issue: 2
  year: 2016
  ident: 10.1016/j.amc.2019.02.071_bib0002
  article-title: A fast and accurate unconstrained face detector
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2448075
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.amc.2019.02.071_bib0043
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.amc.2019.02.071_bib0005
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.amc.2019.02.071_bib0031
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– start-page: 2144
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0065
  article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization
– start-page: 1883
  year: 2014
  ident: 10.1016/j.amc.2019.02.071_bib0044
  article-title: Stacked progressive auto-encoders for face recognition across poses
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.amc.2019.02.071_bib0050
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– start-page: 1891
  year: 2014
  ident: 10.1016/j.amc.2019.02.071_bib0028
  article-title: Deep learning face representation from predicting 10,000 classes
– start-page: 354
  year: 2013
  ident: 10.1016/j.amc.2019.02.071_bib0054
  article-title: Constrained local neural fields for robust facial landmark detection in the wild
– volume: 107
  start-page: 715
  year: 2017
  ident: 10.1016/j.amc.2019.02.071_bib0042
  article-title: A Deep convolution neural network model for vehicle recognition and face recognition
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.03.153
– start-page: 815
  year: 2015
  ident: 10.1016/j.amc.2019.02.071_bib0035
  article-title: Facenet: a unified embedding for face recognition and clustering
– start-page: 3531
  year: 2013
  ident: 10.1016/j.amc.2019.02.071_bib0060
  article-title: , Face recognition in movie trailers via mean sequence sparse representation-based classification
– volume: 17
  start-page: 2049
  issue: 11
  year: 2015
  ident: 10.1016/j.amc.2019.02.071_bib0047
  article-title: Robust face recognition via multimodal deep face representation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2477042
– start-page: 2518
  year: 2012
  ident: 10.1016/j.amc.2019.02.071_bib0025
  article-title: Learning hierarchical representations for face verification with convolutional deep belief networks
– start-page: 1
  year: 2003
  ident: 10.1016/j.amc.2019.02.071_bib0014
  article-title: Clustering appearances of objects under varying illumination conditions
– year: 2014
  ident: 10.1016/j.amc.2019.02.071_bib0051
  article-title: Deep learning via stacked sparse autoencoders for automated voxel-wise brain parcellation based on functional connectivity
– volume: 24
  start-page: 111
  issue: 2
  year: 2013
  ident: 10.1016/j.amc.2019.02.071_bib0022
  article-title: Face recognition via weighted sparse representation
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2012.05.003
– start-page: 1
  year: 2014
  ident: 10.1016/j.amc.2019.02.071_bib0045
  article-title: Coarse-to-fine auto-encoder networks (cfan) for real-time face alignment
– ident: 10.1016/j.amc.2019.02.071_bib0016
– volume: 32
  start-page: 1598
  year: 2011
  ident: 10.1016/j.amc.2019.02.071_bib0010
  article-title: Face recognition using histograms of oriented gradients
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.01.004
– volume: 21
  start-page: 1357
  issue: 12
  year: 1999
  ident: 10.1016/j.amc.2019.02.071_bib0062
  article-title: Automatic classification of single facial images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.817413
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.amc.2019.02.071_bib0003
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– volume: 132
  start-page: 243
  year: 2017
  ident: 10.1016/j.amc.2019.02.071_bib0048
  article-title: Face recognition based on deep autoencoder networks with dropout
  publication-title: Adv. Intell. Syst. Res.
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.amc.2019.02.071_bib0008
  article-title: Face description with local binary patterns application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 167
  start-page: 7
  year: 2018
  ident: 10.1016/j.amc.2019.02.071_bib0013
  article-title: A weighted sparse neighbor representation based on Gaussian kernel function to face recognition
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.12.072
– start-page: 586
  year: 1991
  ident: 10.1016/j.amc.2019.02.071_bib0004
  article-title: Face recognition using eigenfaces
SSID ssj0007614
Score 2.4413066
Snippet Face recognition is still a hot topic under investigation due to many challenges of variation including the difference in poses, illumination, expression,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 325
SubjectTerms Deep learning
Face recognition
Sparse autoencoders
Title Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)
URI https://dx.doi.org/10.1016/j.amc.2019.02.071
Volume 355
WOSCitedRecordID wos000464930500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lb9QwEIct1HKAA-Ipyks-cOChICeOE_sY6AOQqCptkfYWeb122YrNRvuo-uczE9tpWiiiBy7RKtp4d_15x2N75jeEvBZuUsCsKxKmnUtyl2eJyoRLMlOWdiKtLZjpik2Uh4dyPFZHoVzqqisnUDaNPD9X7X9FDfcANqbO3gB33yjcgNcAHa6AHa7_BH5fGyyFEuKCAO7ZTINZsS06lvCfxcjjZjHr9ghGLaxr7ftqs16goCUGNaPLuTvaHVVxjyBK1AZ3dd7rvK5iTly7uXyef4Cn7x-L5YmPADjClPd-J2c2X9nOAlc_5iH5Omw6YJ6TTHzaZTSkCkPmGB8aUi7EwBRyn9AcZlXuNbR-M9h-7-D0g56jnmSqOgFVX5Tlsjj2lUmrDyWMUWqnNTRRYxM1y2qGsgLbWSkU2L7t6sve-Gs_P5eFV3yPPyGedXdRf1e-x5-9lYEHcnyf3AtLB1p55A_ILds8JHe_XfB4RA4QPh3ApwCfInwa4NMePvXw6RA-fdOhf_uYfN_fO_70OQmlMhKTqXKdcMOsSbszNClKkwvu5FRqWAvoQudGCyeFZEYaWyimUSPIKJ0ZJV1mVaodf0K2mkVjnxIKC5hUTTXnqBqdTsFe57mDfpTOToyQcoew2CW1CTryWM7kZ30tih3yrn-k9SIqf3tzHvu5Dl6g9-5qGDPXP_bsJp_xnNy5GNUvyNZ6ubEvyW1ztp6tlq_CgPkFHTd4fg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+recognition+via+Deep+Stacked+Denoising+Sparse+Autoencoders+%28DSDSA%29&rft.jtitle=Applied+mathematics+and+computation&rft.au=G%C3%B6rgel%2C+Pelin&rft.au=Simsek%2C+Ahmet&rft.date=2019-08-15&rft.issn=0096-3003&rft.volume=355&rft.spage=325&rft.epage=342&rft_id=info:doi/10.1016%2Fj.amc.2019.02.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2019_02_071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon