Symbolic–numeric sparse interpolation of multivariate polynomials

We consider the problem of sparse interpolation of an approximate multivariate black-box polynomial in floating point arithmetic. That is, both the inputs and outputs of the black-box polynomial have some error, and all numbers are represented in standard, fixed-precision, floating point arithmetic....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 44; číslo 8; s. 943 - 959
Hlavní autoři: Giesbrecht, Mark, Labahn, George, Lee, Wen-shin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2009
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of sparse interpolation of an approximate multivariate black-box polynomial in floating point arithmetic. That is, both the inputs and outputs of the black-box polynomial have some error, and all numbers are represented in standard, fixed-precision, floating point arithmetic. By interpolating the black box evaluated at random primitive roots of unity, we give efficient and numerically robust solutions. We note the similarity between the exact Ben-Or/Tiwari sparse interpolation algorithm and the classical Prony’s method for interpolating a sum of exponential functions, and exploit the generalized eigenvalue reformulation of Prony’s method. We analyse the numerical stability of our algorithms and the sensitivity of the solutions, as well as the expected conditioning achieved through randomization. Finally, we demonstrate the effectiveness of our techniques in practice through numerical experiments and applications.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2008.11.003