The approximation property for spaces of holomorphic functions on infinite dimensional spaces II

Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis Vol. 259; no. 2; pp. 545 - 560
Main Authors: Dineen, Seán, Mujica, Jorge
Format: Journal Article
Language:English
Published: Elsevier Inc 01.07.2010
Subjects:
ISSN:0022-1236, 1096-0783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then ( H ( U ) , τ ω ) and ( H ( U ) , τ δ ) have the approximation property for every open subset U of E. The classical space c 0 , the original Tsirelson space T ∗ and the Tsirelson ∗–James space T J ∗ are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2010.04.001