The approximation property for spaces of holomorphic functions on infinite dimensional spaces II

Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis Jg. 259; H. 2; S. 545 - 560
Hauptverfasser: Dineen, Seán, Mujica, Jorge
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.07.2010
Schlagworte:
ISSN:0022-1236, 1096-0783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then ( H ( U ) , τ ω ) and ( H ( U ) , τ δ ) have the approximation property for every open subset U of E. The classical space c 0 , the original Tsirelson space T ∗ and the Tsirelson ∗–James space T J ∗ are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2010.04.001