The approximation property for spaces of holomorphic functions on infinite dimensional spaces II

Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of functional analysis Ročník 259; číslo 2; s. 545 - 560
Hlavní autoři: Dineen, Seán, Mujica, Jorge
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.07.2010
Témata:
ISSN:0022-1236, 1096-0783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then ( H ( U ) , τ ω ) and ( H ( U ) , τ δ ) have the approximation property for every open subset U of E. The classical space c 0 , the original Tsirelson space T ∗ and the Tsirelson ∗–James space T J ∗ are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2010.04.001