The approximation property for spaces of holomorphic functions on infinite dimensional spaces II

Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of functional analysis Ročník 259; číslo 2; s. 545 - 560
Hlavní autori: Dineen, Seán, Mujica, Jorge
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.07.2010
Predmet:
ISSN:0022-1236, 1096-0783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then ( H ( U ) , τ ω ) and ( H ( U ) , τ δ ) have the approximation property for every open subset U of E. The classical space c 0 , the original Tsirelson space T ∗ and the Tsirelson ∗–James space T J ∗ are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains.
AbstractList Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote the compact-ported topology and the bornological topology on H ( U ) . We show that if E is a Banach space with a shrinking Schauder basis, and with the property that every continuous polynomial on E is weakly continuous on bounded sets, then ( H ( U ) , τ ω ) and ( H ( U ) , τ δ ) have the approximation property for every open subset U of E. The classical space c 0 , the original Tsirelson space T ∗ and the Tsirelson ∗–James space T J ∗ are examples of Banach spaces which satisfy the hypotheses of our main result. Our results are actually valid for Riemann domains.
Author Mujica, Jorge
Dineen, Seán
Author_xml – sequence: 1
  givenname: Seán
  surname: Dineen
  fullname: Dineen, Seán
  email: sean.dineen@ucd.ie
  organization: Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 2
  givenname: Jorge
  surname: Mujica
  fullname: Mujica, Jorge
  email: mujica@ime.unicamp.br
  organization: Departamento de Matemática, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda 651, 13083-859 Campinas, SP, Brazil
BookMark eNp9kEtOwzAQQC1UJNrCAdj5AgnjOLETsUIVn0qV2JS1cRxbdZTakR0QvT0uhQ2Lrub7Rpq3QDPnnUbolkBOgLC7Pu-NzAtINZQ5ALlAcwINy4DXdIbmAEWRkYKyK7SIsU8LhJXVHL1vdxrLcQz-y-7lZL3DKR91mA7Y-IDjKJWO2Bu884Pf-zDurMLmw6njbho4bJ2xzk4ad3avXUxtOfxx6_U1ujRyiPrmNy7R29PjdvWSbV6f16uHTaaKhk8ZrTkwXhqqFYeKSU4axhvaAG-ruqopo6ro6pJ1UJdNrWTbtro1RnUga0q6hi4RP91VwccYtBHKTj8PTUHaQRAQR1GiF0mUOIoSUIrkIZHkHzmG5CIczjL3J0anlz6tDiIqq53SnQ1aTaLz9gz9DX14hDM
CitedBy_id crossref_primary_10_1007_s13398_012_0065_7
crossref_primary_10_1016_j_jmaa_2011_12_058
crossref_primary_10_1007_s13163_019_00344_9
crossref_primary_10_1007_s00605_013_0569_z
crossref_primary_10_1007_s13398_016_0335_x
crossref_primary_10_1007_s10587_015_0181_6
Cites_doi 10.4064/sm-122-2-139-151
10.5802/aif.419
10.1016/j.jmaa.2006.05.076
10.1007/s13163-009-0026-7
10.1007/BF01419608
10.1016/j.jat.2004.01.008
10.1016/S1385-7258(67)50051-3
10.5802/aif.68
10.1016/0022-1236(76)90026-4
10.1007/BF01351314
10.1016/S0019-3577(01)80022-7
10.1016/0022-1236(83)90081-2
10.1007/BF01078599
10.1090/S0002-9939-1984-0728358-5
10.4064/sm-16-2-173-182
10.1007/BF02385668
10.5802/aif.345
10.1007/BF02392870
10.1216/rmjm/1181071856
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright_xml – notice: 2010 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jfa.2010.04.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0783
EndPage 560
ExternalDocumentID 10_1016_j_jfa_2010_04_001
S0022123610001369
GroupedDBID --K
--M
--Z
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-3870674f3ec7056a7196793907b5858363c2d846d08498cabbbebffcd0a831d93
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277528000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1236
IngestDate Sat Nov 29 06:26:50 EST 2025
Tue Nov 18 22:23:53 EST 2025
Fri Feb 23 02:23:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pseudoconvex Riemann domain
Holomorphic function
Banach space
Schauder basis
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3870674f3ec7056a7196793907b5858363c2d846d08498cabbbebffcd0a831d93
OpenAccessLink https://dx.doi.org/10.1016/j.jfa.2010.04.001
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_jfa_2010_04_001
crossref_primary_10_1016_j_jfa_2010_04_001
elsevier_sciencedirect_doi_10_1016_j_jfa_2010_04_001
PublicationCentury 2000
PublicationDate 2010-07-00
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-00
PublicationDecade 2010
PublicationTitle Journal of functional analysis
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gillman, Jerison (bib015) 1960
Bierstedt, Meise (bib006) 1974; 209
Tsirelson (bib033) 1974; 8
Gruman, Kiselman (bib017) 1972; 274
in press
Nachbin (bib026) 1970; 271
Boyd, Dineen, Rueda (bib008) 2001; 12
Aron, Hervés, Valdivia (bib004) 1983; 52
Aron, Schottenloher (bib005) 1976; 21
Bogdanowicz (bib007) 1957; 5
Dineen (bib012) 1999
Díaz, Dineen (bib010) 1998; 36
Szankowski (bib032) 1981; 147
L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques, Applications, Séminaire Schwartz 1953–1954
Schwartz (bib031) 1957; 7
Grothendieck (bib016) 1955; 16
Aron, Dineen (bib003) 1997; 27
Floret (bib014) 1997; 17
Dineen (bib011) 1972; 196
Alencar, Aron, Dineen (bib001) 1984; 90
Pelczynski (bib027) 1957; 16
Coeuré (bib009) 1970; 20
Mujica (bib022) 1997; 122
Hirschowitz (bib018) 1972; 22
Mujica (bib021) 1986; vol. 120
Schottenloher (bib029) 1975
Nachbin (bib025) 1967; 29
R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Doctoral thesis, Trinity College Dublin, 1980
J. Mujica, D. Vieira, Weakly continuous holomorphic functions on pseudoconvex domains in Banach spaces, Rev. Mat. Complut.
Jarchow (bib019) 1981
Dineen, Mujica (bib013) 2004; 126
Mujica (bib023) 2009; vol. 1
Vieira (bib034) 2007; 328
H. Alexander, Analytic functions on Banach spaces, PhD thesis, University of California, Berkeley, 1968
Lindenstrauss, Tzafriri (bib020) 1977
Aron (10.1016/j.jfa.2010.04.001_bib005) 1976; 21
Hirschowitz (10.1016/j.jfa.2010.04.001_bib018) 1972; 22
Nachbin (10.1016/j.jfa.2010.04.001_bib026) 1970; 271
10.1016/j.jfa.2010.04.001_bib002
10.1016/j.jfa.2010.04.001_bib024
Lindenstrauss (10.1016/j.jfa.2010.04.001_bib020) 1977
Bierstedt (10.1016/j.jfa.2010.04.001_bib006) 1974; 209
Grothendieck (10.1016/j.jfa.2010.04.001_bib016) 1955; 16
10.1016/j.jfa.2010.04.001_bib028
Alencar (10.1016/j.jfa.2010.04.001_bib001) 1984; 90
Aron (10.1016/j.jfa.2010.04.001_bib004) 1983; 52
Pelczynski (10.1016/j.jfa.2010.04.001_bib027) 1957; 16
Szankowski (10.1016/j.jfa.2010.04.001_bib032) 1981; 147
Dineen (10.1016/j.jfa.2010.04.001_bib012) 1999
Vieira (10.1016/j.jfa.2010.04.001_bib034) 2007; 328
Gruman (10.1016/j.jfa.2010.04.001_bib017) 1972; 274
Nachbin (10.1016/j.jfa.2010.04.001_bib025) 1967; 29
Gillman (10.1016/j.jfa.2010.04.001_bib015) 1960
Dineen (10.1016/j.jfa.2010.04.001_bib011) 1972; 196
Schottenloher (10.1016/j.jfa.2010.04.001_bib029) 1975
Coeuré (10.1016/j.jfa.2010.04.001_bib009) 1970; 20
Díaz (10.1016/j.jfa.2010.04.001_bib010) 1998; 36
10.1016/j.jfa.2010.04.001_bib030
Bogdanowicz (10.1016/j.jfa.2010.04.001_bib007) 1957; 5
Boyd (10.1016/j.jfa.2010.04.001_bib008) 2001; 12
Floret (10.1016/j.jfa.2010.04.001_bib014) 1997; 17
Mujica (10.1016/j.jfa.2010.04.001_bib023) 2009; vol. 1
Tsirelson (10.1016/j.jfa.2010.04.001_bib033) 1974; 8
Aron (10.1016/j.jfa.2010.04.001_bib003) 1997; 27
Jarchow (10.1016/j.jfa.2010.04.001_bib019) 1981
Mujica (10.1016/j.jfa.2010.04.001_bib021) 1986; vol. 120
Dineen (10.1016/j.jfa.2010.04.001_bib013) 2004; 126
Schwartz (10.1016/j.jfa.2010.04.001_bib031) 1957; 7
Mujica (10.1016/j.jfa.2010.04.001_bib022) 1997; 122
References_xml – volume: 36
  start-page: 87
  year: 1998
  end-page: 96
  ident: bib010
  article-title: Polynomials on stable spaces
  publication-title: Ark. Mat.
– volume: 147
  start-page: 89
  year: 1981
  end-page: 108
  ident: bib032
  publication-title: Acta Math.
– volume: 12
  start-page: 147
  year: 2001
  end-page: 156
  ident: bib008
  article-title: Weakly uniformly continuous holomorphic functions and the approximation property
  publication-title: Indag. Math. (N.S.)
– reference: J. Mujica, D. Vieira, Weakly continuous holomorphic functions on pseudoconvex domains in Banach spaces, Rev. Mat. Complut.,
– start-page: 261
  year: 1975
  end-page: 270
  ident: bib029
  publication-title: Analyse Fonctionelle et Applications
– volume: 20
  start-page: 361
  year: 1970
  end-page: 432
  ident: bib009
  article-title: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'etude des fonctions analytiques
  publication-title: Ann. Inst. Fourier (Grenoble)
– reference: L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques, Applications, Séminaire Schwartz 1953–1954
– reference: H. Alexander, Analytic functions on Banach spaces, PhD thesis, University of California, Berkeley, 1968
– volume: 21
  start-page: 7
  year: 1976
  end-page: 30
  ident: bib005
  article-title: Compact holomorphic mappings on Banach spaces and the approximation property
  publication-title: J. Funct. Anal.
– year: 1981
  ident: bib019
  article-title: Locally Convex Spaces
– volume: 7
  start-page: 1
  year: 1957
  end-page: 141
  ident: bib031
  article-title: Théorie des distributions a valeurs vectoriells
  publication-title: Ann. Inst. Fourier (Grenoble)
– year: 1999
  ident: bib012
  article-title: Complex Analysis on Infinite Dimensional Spaces
– volume: 122
  start-page: 139
  year: 1997
  end-page: 151
  ident: bib022
  article-title: Spaces of holomorphic functions on Banach spaces with a Schauder basis
  publication-title: Studia Math.
– volume: 5
  start-page: 243
  year: 1957
  end-page: 246
  ident: bib007
  article-title: On the weak continuity of the polynomial functions defined on the space
  publication-title: Bull. Pol. Acad. Sci.
– volume: 209
  start-page: 99
  year: 1974
  end-page: 107
  ident: bib006
  article-title: Bemerkungen über die Approximationseigenschaft lokalkonvexer Funktionenräume
  publication-title: Math. Ann.
– volume: 271
  start-page: 596
  year: 1970
  end-page: 598
  ident: bib026
  article-title: Sur les espaces vectoriels topologiques d'applications continues
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 52
  start-page: 189
  year: 1983
  end-page: 204
  ident: bib004
  article-title: Weakly continuous mappings on Banach spaces
  publication-title: J. Funct. Anal.
– volume: 16
  year: 1955
  ident: bib016
  article-title: Produits tensoriels topologiques et espaces nucléaires
  publication-title: Mem. Amer. Math. Soc.
– volume: 16
  start-page: 173
  year: 1957
  end-page: 182
  ident: bib027
  article-title: A property of multilinear operations
  publication-title: Studia Math.
– volume: 90
  start-page: 407
  year: 1984
  end-page: 411
  ident: bib001
  article-title: A reflexive space of holomorphic functions in infinitely many variables
  publication-title: Proc. Amer. Math. Soc.
– volume: 27
  start-page: 1009
  year: 1997
  end-page: 1027
  ident: bib003
  publication-title: Rocky Mountain J. Math.
– volume: 328
  start-page: 984
  year: 2007
  end-page: 994
  ident: bib034
  article-title: Polynomial approximation in Banach spaces
  publication-title: J. Math. Anal. Appl.
– volume: vol. 120
  year: 1986
  ident: bib021
  article-title: Complex Analysis in Banach Spaces
  publication-title: North-Holland Math. Stud.
– volume: 8
  start-page: 138
  year: 1974
  end-page: 141
  ident: bib033
  article-title: Not every Banach space contains an imbedding of
  publication-title: Funct. Anal. Appl.
– volume: 126
  start-page: 141
  year: 2004
  end-page: 156
  ident: bib013
  article-title: The approximation property for spaces of holomorphic functions on infinite dimensional spaces I
  publication-title: J. Approx. Theory
– volume: 17
  start-page: 153
  year: 1997
  end-page: 188
  ident: bib014
  article-title: Natural norms on symmetric tensor products of normed spaces
  publication-title: Note Mat.
– reference: , in press
– volume: vol. 1
  year: 2009
  ident: bib023
  article-title: Spaces of Holomorphic Functions and the Approximation Property
  publication-title: IMI Graduate Lecture Notes
– year: 1977
  ident: bib020
  article-title: Classical Banach Spaces I
– reference: R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Doctoral thesis, Trinity College Dublin, 1980
– volume: 274
  start-page: 1296
  year: 1972
  end-page: 1299
  ident: bib017
  article-title: Le problème de Levi dans les espaces de Banach à base
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 22
  start-page: 255
  year: 1972
  end-page: 292
  ident: bib018
  article-title: Prolongement analytique en dimension infinie
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 196
  start-page: 106
  year: 1972
  end-page: 116
  ident: bib011
  article-title: Holomorphic functions on
  publication-title: Math. Ann.
– volume: 29
  start-page: 366
  year: 1967
  end-page: 368
  ident: bib025
  article-title: On the topology of the space of all holomorphic functions on a given open subset
  publication-title: Indag. Math.
– year: 1960
  ident: bib015
  article-title: Rings of Continuous Functions
– volume: 122
  start-page: 139
  year: 1997
  ident: 10.1016/j.jfa.2010.04.001_bib022
  article-title: Spaces of holomorphic functions on Banach spaces with a Schauder basis
  publication-title: Studia Math.
  doi: 10.4064/sm-122-2-139-151
– volume: 22
  start-page: 255
  issue: 2
  year: 1972
  ident: 10.1016/j.jfa.2010.04.001_bib018
  article-title: Prolongement analytique en dimension infinie
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.419
– volume: 328
  start-page: 984
  year: 2007
  ident: 10.1016/j.jfa.2010.04.001_bib034
  article-title: Polynomial approximation in Banach spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.05.076
– year: 1977
  ident: 10.1016/j.jfa.2010.04.001_bib020
– ident: 10.1016/j.jfa.2010.04.001_bib024
  doi: 10.1007/s13163-009-0026-7
– volume: 17
  start-page: 153
  year: 1997
  ident: 10.1016/j.jfa.2010.04.001_bib014
  article-title: Natural norms on symmetric tensor products of normed spaces
  publication-title: Note Mat.
– ident: 10.1016/j.jfa.2010.04.001_bib028
– volume: 196
  start-page: 106
  year: 1972
  ident: 10.1016/j.jfa.2010.04.001_bib011
  article-title: Holomorphic functions on (c0,Xb)-modules
  publication-title: Math. Ann.
  doi: 10.1007/BF01419608
– year: 1999
  ident: 10.1016/j.jfa.2010.04.001_bib012
– volume: 126
  start-page: 141
  year: 2004
  ident: 10.1016/j.jfa.2010.04.001_bib013
  article-title: The approximation property for spaces of holomorphic functions on infinite dimensional spaces I
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2004.01.008
– ident: 10.1016/j.jfa.2010.04.001_bib030
– volume: 29
  start-page: 366
  year: 1967
  ident: 10.1016/j.jfa.2010.04.001_bib025
  article-title: On the topology of the space of all holomorphic functions on a given open subset
  publication-title: Indag. Math.
  doi: 10.1016/S1385-7258(67)50051-3
– volume: 5
  start-page: 243
  year: 1957
  ident: 10.1016/j.jfa.2010.04.001_bib007
  article-title: On the weak continuity of the polynomial functions defined on the space c0
  publication-title: Bull. Pol. Acad. Sci.
– volume: vol. 120
  year: 1986
  ident: 10.1016/j.jfa.2010.04.001_bib021
  article-title: Complex Analysis in Banach Spaces
– volume: 7
  start-page: 1
  year: 1957
  ident: 10.1016/j.jfa.2010.04.001_bib031
  article-title: Théorie des distributions a valeurs vectoriells
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.68
– volume: 21
  start-page: 7
  year: 1976
  ident: 10.1016/j.jfa.2010.04.001_bib005
  article-title: Compact holomorphic mappings on Banach spaces and the approximation property
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(76)90026-4
– volume: 209
  start-page: 99
  year: 1974
  ident: 10.1016/j.jfa.2010.04.001_bib006
  article-title: Bemerkungen über die Approximationseigenschaft lokalkonvexer Funktionenräume
  publication-title: Math. Ann.
  doi: 10.1007/BF01351314
– volume: 12
  start-page: 147
  year: 2001
  ident: 10.1016/j.jfa.2010.04.001_bib008
  article-title: Weakly uniformly continuous holomorphic functions and the approximation property
  publication-title: Indag. Math. (N.S.)
  doi: 10.1016/S0019-3577(01)80022-7
– volume: vol. 1
  year: 2009
  ident: 10.1016/j.jfa.2010.04.001_bib023
  article-title: Spaces of Holomorphic Functions and the Approximation Property
– volume: 52
  start-page: 189
  year: 1983
  ident: 10.1016/j.jfa.2010.04.001_bib004
  article-title: Weakly continuous mappings on Banach spaces
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(83)90081-2
– volume: 8
  start-page: 138
  year: 1974
  ident: 10.1016/j.jfa.2010.04.001_bib033
  article-title: Not every Banach space contains an imbedding of ℓp or c0
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF01078599
– start-page: 261
  year: 1975
  ident: 10.1016/j.jfa.2010.04.001_bib029
  article-title: ε-product and continuation of analytic mappings
– volume: 16
  year: 1955
  ident: 10.1016/j.jfa.2010.04.001_bib016
  article-title: Produits tensoriels topologiques et espaces nucléaires
  publication-title: Mem. Amer. Math. Soc.
– volume: 90
  start-page: 407
  year: 1984
  ident: 10.1016/j.jfa.2010.04.001_bib001
  article-title: A reflexive space of holomorphic functions in infinitely many variables
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1984-0728358-5
– ident: 10.1016/j.jfa.2010.04.001_bib002
– volume: 271
  start-page: 596
  year: 1970
  ident: 10.1016/j.jfa.2010.04.001_bib026
  article-title: Sur les espaces vectoriels topologiques d'applications continues
  publication-title: C. R. Math. Acad. Sci. Paris
– year: 1981
  ident: 10.1016/j.jfa.2010.04.001_bib019
– volume: 16
  start-page: 173
  year: 1957
  ident: 10.1016/j.jfa.2010.04.001_bib027
  article-title: A property of multilinear operations
  publication-title: Studia Math.
  doi: 10.4064/sm-16-2-173-182
– volume: 36
  start-page: 87
  year: 1998
  ident: 10.1016/j.jfa.2010.04.001_bib010
  article-title: Polynomials on stable spaces
  publication-title: Ark. Mat.
  doi: 10.1007/BF02385668
– volume: 20
  start-page: 361
  issue: 1
  year: 1970
  ident: 10.1016/j.jfa.2010.04.001_bib009
  article-title: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'etude des fonctions analytiques
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.345
– volume: 274
  start-page: 1296
  year: 1972
  ident: 10.1016/j.jfa.2010.04.001_bib017
  article-title: Le problème de Levi dans les espaces de Banach à base
  publication-title: C. R. Math. Acad. Sci. Paris
– volume: 147
  start-page: 89
  year: 1981
  ident: 10.1016/j.jfa.2010.04.001_bib032
  article-title: B(H) does not have the approximation property
  publication-title: Acta Math.
  doi: 10.1007/BF02392870
– volume: 27
  start-page: 1009
  year: 1997
  ident: 10.1016/j.jfa.2010.04.001_bib003
  article-title: Q-reflexive Banach spaces
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/rmjm/1181071856
– year: 1960
  ident: 10.1016/j.jfa.2010.04.001_bib015
SSID ssj0011645
Score 1.9432553
Snippet Let H ( U ) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E. Let τ ω and τ δ respectively denote...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms Banach space
Holomorphic function
Pseudoconvex Riemann domain
Schauder basis
Title The approximation property for spaces of holomorphic functions on infinite dimensional spaces II
URI https://dx.doi.org/10.1016/j.jfa.2010.04.001
Volume 259
WOSCitedRecordID wos000277528000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0783
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011645
  issn: 0022-1236
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwELVY4LAcELC74mNBPnBaFOR81ckRrUAEAeIAqLes7ThSKkirtrvqz2cmttPAUgQHLlEVxU6a9zIz9oyfCTksIqYjHcYejD2YFwlfeOgVvSLA4EFynTSiPveX_Po66ffTG5uKmTTbCfC6TmazdPSpUMM5ABuXzn4A7rZTOAG_AXQ4AuxwfDfwjVL4rDLLErEGa4QSuk1JIVgQZYRm0e49DuE9V-oI3ZuticPSx7LCUPSoQOl_I9vh2mXZgnDW9dBoDxihkzZIRsVDM8-qm8S8X89xHgBLzDT-2JYl2TkITJ9zNwcxXxOAOi5duxpYqe-qM741VjI2CpLW4cZmQ4H_bLmZVhgcD0phS_BQ6NyfOy6XrH_hz9oqQ1fANsihixy7yFmERXxfyErA4xSM4MpJdtq_aNNOMHaMnbw8_h2XBm8KAl88x-uBTCc4ud0g6xYGemLYsEmWdL1F1q5aSd7JN_IHeEGf8YI6XlDgBTX40mFJO7ygLS8oXO94QTu8cO2y7Du5Ozu9_X3u2e01PBWkfIqqyhCqRGWoFYcwWHAwxmCtU8YljCGTsBeqoIDwtGBJlCZKSCm1LEtVMJGEfpGGP8hyPaz1NqHQRyB6aeknUkYq6IlYgZdlshSsgC8-3iHMvatcWe153ALlIV-I0Q751TYZGeGVty6OHAC5jRxNRJgDmRY32_3IPfbI1zn1f5Ll6fiv3ier6t-0mowPLJOeANGLj6Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+approximation+property+for+spaces+of+holomorphic+functions+on+infinite+dimensional+spaces+II&rft.jtitle=Journal+of+functional+analysis&rft.au=Dineen%2C+Se%C3%A1n&rft.au=Mujica%2C+Jorge&rft.date=2010-07-01&rft.issn=0022-1236&rft.volume=259&rft.issue=2&rft.spage=545&rft.epage=560&rft_id=info:doi/10.1016%2Fj.jfa.2010.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2010_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon