A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method

The aim of the manuscript is to investigate numerical solutions of the system of coupled Korteweg-de Vries equation. For this approximation, we have used finite difference method for time integration and differential quadrature method depending on modified cubic B-splines for space integration. To d...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 360; pp. 42 - 57
Main Author: Başhan, Ali
Format: Journal Article
Language:English
Published: Elsevier Inc 01.11.2019
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the manuscript is to investigate numerical solutions of the system of coupled Korteweg-de Vries equation. For this approximation, we have used finite difference method for time integration and differential quadrature method depending on modified cubic B-splines for space integration. To display the accuracy of the present mixed method three famous test problems namely single soliton, interaction of two solitons and birth of solitons are solved and the error norms L2 and L∞ are computed and compared with earlier works. Comparison of error norms show that present mixed method obtained superior results than earlier works by using same parameters and less number of nodal points. At the same time, two lowest invariants and amplitude values of solitons during the simulations are calculated and reported. In addition those, relative changes of invariants are computed and tabulated. Properties of solitons observed clearly at the all of the test problems and figures of the all of the simulations are given.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2019.04.073