Laser beam oscillation welding for fatigue properties enhancement of tailor-welded blanks

•Laser welding without beam oscillation resulted in welds with severe root defects.•Welding with circle and cardioid oscillation mode reduced the root defects, while the lean root was present in the welds made with linear oscillation.•Root defects did not negatively affect the tensile strength of a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Thin-walled structures Ročník 196; s. 111506
Hlavní autoři: Šebestová, Hana, Jambor, Michal, Horník, Petr, Novotný, Jan, Mrňa, Libor
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2024
Témata:
ISSN:0263-8231
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Laser welding without beam oscillation resulted in welds with severe root defects.•Welding with circle and cardioid oscillation mode reduced the root defects, while the lean root was present in the welds made with linear oscillation.•Root defects did not negatively affect the tensile strength of a weld joint nor its deep-drawability.•Applying any beam oscillation mode significantly improved the joints' fatigue properties.•The oscillation mode influences the extent of phase transformation and, thereby, the level and distribution of residual stresses. The fatigue properties are influenced both by these factors as well as by the presence and geometry of weld notches. Dissimilar thickness laser welded tailored blanks of two low-alloyed carbon steel grades were fabricated. Laser welds made without beam oscillation exhibited serious root undercuts. Although these notches did not degrade the tensile strength, they were detrimental to the fatigue lifetime of a weld joint. Therefore, laser welds with three different beam oscillation modes to modify the root were examined. Application of beam oscillation improved fatigue properties in all tested cases. The best results were achieved with line oscillation, even though this mode did not suppress weld root notches, suggesting other factors, besides joint geometry, contributing to the resulting fatigue properties.
AbstractList •Laser welding without beam oscillation resulted in welds with severe root defects.•Welding with circle and cardioid oscillation mode reduced the root defects, while the lean root was present in the welds made with linear oscillation.•Root defects did not negatively affect the tensile strength of a weld joint nor its deep-drawability.•Applying any beam oscillation mode significantly improved the joints' fatigue properties.•The oscillation mode influences the extent of phase transformation and, thereby, the level and distribution of residual stresses. The fatigue properties are influenced both by these factors as well as by the presence and geometry of weld notches. Dissimilar thickness laser welded tailored blanks of two low-alloyed carbon steel grades were fabricated. Laser welds made without beam oscillation exhibited serious root undercuts. Although these notches did not degrade the tensile strength, they were detrimental to the fatigue lifetime of a weld joint. Therefore, laser welds with three different beam oscillation modes to modify the root were examined. Application of beam oscillation improved fatigue properties in all tested cases. The best results were achieved with line oscillation, even though this mode did not suppress weld root notches, suggesting other factors, besides joint geometry, contributing to the resulting fatigue properties.
ArticleNumber 111506
Author Šebestová, Hana
Novotný, Jan
Horník, Petr
Mrňa, Libor
Jambor, Michal
Author_xml – sequence: 1
  givenname: Hana
  surname: Šebestová
  fullname: Šebestová, Hana
  email: sebestova@isibrno.cz
  organization: Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
– sequence: 2
  givenname: Michal
  surname: Jambor
  fullname: Jambor, Michal
  organization: Institute of Physics of Materials of the Czech Academy of Sciences, Žižkova 22, Brno 616 62, Czech Republic
– sequence: 3
  givenname: Petr
  surname: Horník
  fullname: Horník, Petr
  organization: Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
– sequence: 4
  givenname: Jan
  surname: Novotný
  fullname: Novotný, Jan
  organization: Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
– sequence: 5
  givenname: Libor
  surname: Mrňa
  fullname: Mrňa, Libor
  organization: Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, Brno 612 64, Czech Republic
BookMark eNp9kLtOAzEQRV0EiSTwAXT-gQ1-7MMrKhTxkiLRQEFlza5ng8PGjmxDxN_jECqKVDOaqzPSPTMycd4hIVecLTjj9fVmkfZxIZiQC855xeoJmTJRy0IJyc_JLMYNY7zhbTklbyuIGGiHsKU-9nYcIVnv6B5HY92aDj7QIZ_Wn0h3we8wJIuRonsH1-MWXaJ-oAns6ENxgNDQbgT3ES_I2QBjxMu_OSev93cvy8di9fzwtLxdFb1om1TI0ihsBbRDBaaGkoOCSsmmGnjNmRKql8yUUgI3DUCXt06B6FRfdzkzKOeEH__2wccYcNC7YLcQvjVn-uBDb3T2oQ8-9NFHZpp_TG_Tb_EUcpWT5M2RxFzpy2LQWRpmFcYG7JM23p6gfwCkVYCD
CitedBy_id crossref_primary_10_1016_j_jmapro_2025_05_006
crossref_primary_10_1016_j_optlastec_2025_113843
crossref_primary_10_3390_ma18153497
crossref_primary_10_1007_s00170_025_15142_5
crossref_primary_10_1007_s40194_025_02121_3
Cites_doi 10.1016/j.jmapro.2022.10.016
10.1016/j.msea.2019.138780
10.1016/j.msea.2006.01.075
10.1016/j.optlastec.2020.106563
10.1007/s40194-016-0297-9
10.1007/s40194-022-01306-4
10.1016/j.matdes.2019.108195
10.1016/j.engfailanal.2009.10.010
10.1007/s40194-019-00713-4
10.1016/j.proeng.2017.04.087
10.1023/A:1014312301037
10.1002/phvs.201900033
10.1007/s00170-009-2270-x
10.1117/12.922403
10.2351/7.0000724
10.1016/j.phpro.2014.08.037
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2023.111506
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tws_2023_111506
S0263823123009837
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-34d8e92a9f5ad6a41a8a58375f1610828c30d433a1d7aab433b8a2b8c6b28cde3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001141105800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8231
IngestDate Sat Nov 29 06:07:41 EST 2025
Tue Nov 18 21:06:33 EST 2025
Sat Feb 01 16:09:02 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Defect
Fatigue
Wobbling
Tailor welded blanks
Laser welding
Beam oscillation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-34d8e92a9f5ad6a41a8a58375f1610828c30d433a1d7aab433b8a2b8c6b28cde3
ParticipantIDs crossref_primary_10_1016_j_tws_2023_111506
crossref_citationtrail_10_1016_j_tws_2023_111506
elsevier_sciencedirect_doi_10_1016_j_tws_2023_111506
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ottersböck, Leitner, Stoschka, Maurer (bib0025) 2019; 63
Boldrin, Colopi, D'arcangelo, Caprio, Gökhan Demir, Previtali (bib0011) 2021
ArcelorMittal, “I - Tailored Blanks value proposal.” [Online]. Available
Thiel, Hess, Weber, Graf (bib0005) 2012; 8433
Volpp (bib0007) Nov. 2022; 34
Cerit, Kokumer, Genel (bib0017) Mar. 2010; 17
Mayi, Dal, Peyre, Bellet, Fabbro (bib0003) 2023; 158
Aalderink, Pathiraj, Aarts (bib0009) 2010; 48
(bib0022) 2015
Rhee, Kwak, Oh (bib0020) 2002; 37
Gäbler (bib0006) Aug. 2019; 16
Hensel (bib0008) 2022; 66
Köhler, Tóth, Kreybohm, Hensel, Dilger (bib0016) 2020; 4
Bahador (bib0004) 2017; 184
(bib0024) 2012
Franco, Oliveira, Santos, Miranda (bib0012) Jan. 2021; 133
(bib0023) 2019
.
Steen (bib0002) 2003
Kraetzsch, Standfuss, Klotzbach, Kaspar, Brenner, Beyer (bib0015) 2011; 169
Schultz, Seefeld, Vollertsen (bib0010) 2014; 56
Horník, Šebestová, Novotný, Mrňa (bib0014) Dec. 2022; 84
Anand, Chen, Bhole, Andreychuk, Boudreau (bib0019) Mar. 2006; 420
Šebestová (bib0018) 2020; 772
Yan, Meng, Chen, Tan, Song, Wang (bib0026) 2022; 145
Jiang (bib0013) Jan. 2020; 186
Haelsig, Mayr, Kusch (bib0021) 2016; 60
Haelsig (10.1016/j.tws.2023.111506_bib0021) 2016; 60
Mayi (10.1016/j.tws.2023.111506_bib0003) 2023; 158
(10.1016/j.tws.2023.111506_bib0023) 2019
Kraetzsch (10.1016/j.tws.2023.111506_bib0015) 2011; 169
Anand (10.1016/j.tws.2023.111506_bib0019) 2006; 420
Köhler (10.1016/j.tws.2023.111506_bib0016) 2020; 4
Bahador (10.1016/j.tws.2023.111506_bib0004) 2017; 184
Gäbler (10.1016/j.tws.2023.111506_bib0006) 2019; 16
Thiel (10.1016/j.tws.2023.111506_bib0005) 2012; 8433
Cerit (10.1016/j.tws.2023.111506_bib0017) 2010; 17
(10.1016/j.tws.2023.111506_bib0022) 2015
Boldrin (10.1016/j.tws.2023.111506_bib0011) 2021
Steen (10.1016/j.tws.2023.111506_bib0002) 2003
Hensel (10.1016/j.tws.2023.111506_bib0008) 2022; 66
Schultz (10.1016/j.tws.2023.111506_bib0010) 2014; 56
Volpp (10.1016/j.tws.2023.111506_bib0007) 2022; 34
Jiang (10.1016/j.tws.2023.111506_bib0013) 2020; 186
Horník (10.1016/j.tws.2023.111506_bib0014) 2022; 84
Yan (10.1016/j.tws.2023.111506_bib0026) 2022; 145
(10.1016/j.tws.2023.111506_bib0024) 2012
Šebestová (10.1016/j.tws.2023.111506_bib0018) 2020; 772
Aalderink (10.1016/j.tws.2023.111506_bib0009) 2010; 48
Ottersböck (10.1016/j.tws.2023.111506_bib0025) 2019; 63
Rhee (10.1016/j.tws.2023.111506_bib0020) 2002; 37
Franco (10.1016/j.tws.2023.111506_bib0012) 2021; 133
10.1016/j.tws.2023.111506_bib0001
References_xml – volume: 37
  start-page: 1019
  year: 2002
  end-page: 1025
  ident: bib0020
  article-title: Fatigue behavior characterization of laser-welded cold rolled sheet metal (SPCEN)
  publication-title: J. Mater. Sci.
– volume: 184
  start-page: 205
  year: 2017
  end-page: 213
  ident: bib0004
  article-title: Defocusing Effects of Laser Beam on the Weldability of Powder Metallurgy Ti-Based Shape Memory Alloys
  publication-title: Procedia Eng
– volume: 17
  start-page: 571
  year: Mar. 2010
  end-page: 578
  ident: bib0017
  article-title: Stress concentration effects of undercut defect and reinforcement metal in butt welded joint
  publication-title: Eng. Fail. Anal.
– year: 2019
  ident: bib0023
  article-title: 2019 Metallic Materials - Tensile Testing - Part 1: Method of Test at Room Temperature.”
– year: 2003
  ident: bib0002
  article-title: Laser Material Processing
– volume: 84
  start-page: 216
  year: Dec. 2022
  end-page: 222
  ident: bib0014
  article-title: Laser beam oscillation strategy for weld geometry variation
  publication-title: J. Manuf. Process.
– year: 2012
  ident: bib0024
  article-title: 2012 Destructive Tests on Welds in Metallic Materials - Transverse Tensile Test
– volume: 145
  year: 2022
  ident: bib0026
  article-title: Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel
  publication-title: Opt. Laser Technol.
– volume: 133
  year: Jan. 2021
  ident: bib0012
  article-title: Analysis of copper sheets welded by fiber laser with beam oscillation
  publication-title: Opt. Laser Technol.
– volume: 16
  start-page: 52
  year: Aug. 2019
  end-page: 55
  ident: bib0006
  article-title: Optimizing automotive welding applications with CleanWeld
  publication-title: PhotonicsViews
– volume: 66
  start-page: 1867
  year: 2022
  end-page: 1881
  ident: bib0008
  article-title: Laser welding of 16MnCr5 butt welds with gap: resulting weld quality and fatigue strength assessment
  publication-title: Weld. World
– volume: 158
  year: 2023
  ident: bib0003
  article-title: Physical mechanisms of conduction-to-keyhole transition in laser welding and additive manufacturing processes
  publication-title: Opt. Laser Technol.
– reference: ArcelorMittal, “I - Tailored Blanks value proposal.” [Online]. Available:
– volume: 420
  start-page: 199
  year: Mar. 2006
  end-page: 207
  ident: bib0019
  article-title: Fatigue behavior of tailor (laser)-welded blanks for automotive applications
  publication-title: Mater. Sci. Eng. A
– volume: 56
  start-page: 545
  year: 2014
  end-page: 553
  ident: bib0010
  article-title: Gap bridging ability in laser beam welding of thin aluminum sheets
  publication-title: Phys. Procedia
– volume: 60
  start-page: 259
  year: 2016
  end-page: 266
  ident: bib0021
  article-title: Determination of energy flows for welding processes
  publication-title: Weld. World
– volume: 8433
  start-page: 84330V
  year: 2012
  ident: bib0005
  article-title: Stabilization of laser welding processes by means of beam oscillation
  publication-title: Laser Sources Appl.
– reference: .
– year: 2021
  ident: bib0011
  article-title: High speed videography of gap bridging with beam oscillation and wire feeding during the laser welding of stainless steel and aluminum alloys
  publication-title: Lasers Manuf. Conf
– volume: 4
  year: 2020
  ident: bib0016
  article-title: Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beamwelding
  publication-title: J. Manuf. Mater. Process.
– year: 2015
  ident: bib0022
  article-title: 2015 Laser Welded Tailored Blanks - Technical delivery Conditions
– volume: 63
  start-page: 851
  year: 2019
  end-page: 865
  ident: bib0025
  article-title: Analysis of fatigue notch effect due to axial misalignment for ultra high-strength steel butt joints
  publication-title: Weld. World
– volume: 169
  start-page: 169
  year: 2011
  end-page: 178
  ident: bib0015
  article-title: Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers
  publication-title: 30th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2011
– volume: 48
  start-page: 143
  year: 2010
  end-page: 154
  ident: bib0009
  article-title: Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 186
  year: Jan. 2020
  ident: bib0013
  article-title: Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy
  publication-title: Mater. Des.
– volume: 34
  year: Nov. 2022
  ident: bib0007
  article-title: Multispot laser welding for increased gap bridgability
  publication-title: J. Laser Appl.
– volume: 772
  year: 2020
  ident: bib0018
  article-title: Fatigue properties of laser and hybrid laser-TIG welds of thermo-mechanically rolled steels
  publication-title: Mater. Sci. Eng. A
– volume: 84
  start-page: 216
  year: 2022
  ident: 10.1016/j.tws.2023.111506_bib0014
  article-title: Laser beam oscillation strategy for weld geometry variation
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.10.016
– volume: 169
  start-page: 169
  issue: 2011
  year: 2011
  ident: 10.1016/j.tws.2023.111506_bib0015
  article-title: Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers
  publication-title: 30th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2011
– year: 2019
  ident: 10.1016/j.tws.2023.111506_bib0023
– volume: 772
  year: 2020
  ident: 10.1016/j.tws.2023.111506_bib0018
  article-title: Fatigue properties of laser and hybrid laser-TIG welds of thermo-mechanically rolled steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138780
– volume: 420
  start-page: 199
  issue: 1–2
  year: 2006
  ident: 10.1016/j.tws.2023.111506_bib0019
  article-title: Fatigue behavior of tailor (laser)-welded blanks for automotive applications
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.01.075
– volume: 133
  year: 2021
  ident: 10.1016/j.tws.2023.111506_bib0012
  article-title: Analysis of copper sheets welded by fiber laser with beam oscillation
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106563
– volume: 60
  start-page: 259
  issue: 2
  year: 2016
  ident: 10.1016/j.tws.2023.111506_bib0021
  article-title: Determination of energy flows for welding processes
  publication-title: Weld. World
  doi: 10.1007/s40194-016-0297-9
– volume: 66
  start-page: 1867
  year: 2022
  ident: 10.1016/j.tws.2023.111506_bib0008
  article-title: Laser welding of 16MnCr5 butt welds with gap: resulting weld quality and fatigue strength assessment
  publication-title: Weld. World
  doi: 10.1007/s40194-022-01306-4
– volume: 186
  year: 2020
  ident: 10.1016/j.tws.2023.111506_bib0013
  article-title: Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108195
– volume: 17
  start-page: 571
  issue: 2
  year: 2010
  ident: 10.1016/j.tws.2023.111506_bib0017
  article-title: Stress concentration effects of undercut defect and reinforcement metal in butt welded joint
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2009.10.010
– volume: 63
  start-page: 851
  issue: 3
  year: 2019
  ident: 10.1016/j.tws.2023.111506_bib0025
  article-title: Analysis of fatigue notch effect due to axial misalignment for ultra high-strength steel butt joints
  publication-title: Weld. World
  doi: 10.1007/s40194-019-00713-4
– volume: 145
  issue: August 2021
  year: 2022
  ident: 10.1016/j.tws.2023.111506_bib0026
  article-title: Prediction of temperature field and residual stress of oscillation laser welding of 316LN stainless steel
  publication-title: Opt. Laser Technol.
– volume: 158
  issue: PA
  year: 2023
  ident: 10.1016/j.tws.2023.111506_bib0003
  article-title: Physical mechanisms of conduction-to-keyhole transition in laser welding and additive manufacturing processes
  publication-title: Opt. Laser Technol.
– volume: 184
  start-page: 205
  year: 2017
  ident: 10.1016/j.tws.2023.111506_bib0004
  article-title: Defocusing Effects of Laser Beam on the Weldability of Powder Metallurgy Ti-Based Shape Memory Alloys
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2017.04.087
– ident: 10.1016/j.tws.2023.111506_bib0001
– volume: 4
  issue: 2
  year: 2020
  ident: 10.1016/j.tws.2023.111506_bib0016
  article-title: Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beamwelding
  publication-title: J. Manuf. Mater. Process.
– volume: 37
  start-page: 1019
  issue: 5
  year: 2002
  ident: 10.1016/j.tws.2023.111506_bib0020
  article-title: Fatigue behavior characterization of laser-welded cold rolled sheet metal (SPCEN)
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014312301037
– volume: 16
  start-page: 52
  issue: 4
  year: 2019
  ident: 10.1016/j.tws.2023.111506_bib0006
  article-title: Optimizing automotive welding applications with CleanWeld
  publication-title: PhotonicsViews
  doi: 10.1002/phvs.201900033
– year: 2021
  ident: 10.1016/j.tws.2023.111506_bib0011
  article-title: High speed videography of gap bridging with beam oscillation and wire feeding during the laser welding of stainless steel and aluminum alloys
  publication-title: Lasers Manuf. Conf
– volume: 48
  start-page: 143
  issue: 1–4
  year: 2010
  ident: 10.1016/j.tws.2023.111506_bib0009
  article-title: Seam gap bridging of laser based processes for the welding of aluminium sheets for industrial applications
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2270-x
– volume: 8433
  start-page: 84330V
  year: 2012
  ident: 10.1016/j.tws.2023.111506_bib0005
  article-title: Stabilization of laser welding processes by means of beam oscillation
  publication-title: Laser Sources Appl.
  doi: 10.1117/12.922403
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.tws.2023.111506_bib0007
  article-title: Multispot laser welding for increased gap bridgability
  publication-title: J. Laser Appl.
  doi: 10.2351/7.0000724
– year: 2003
  ident: 10.1016/j.tws.2023.111506_bib0002
– volume: 56
  start-page: 545
  issue: C
  year: 2014
  ident: 10.1016/j.tws.2023.111506_bib0010
  article-title: Gap bridging ability in laser beam welding of thin aluminum sheets
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2014.08.037
– year: 2015
  ident: 10.1016/j.tws.2023.111506_bib0022
– year: 2012
  ident: 10.1016/j.tws.2023.111506_bib0024
SSID ssj0017194
Score 2.4108052
Snippet •Laser welding without beam oscillation resulted in welds with severe root defects.•Welding with circle and cardioid oscillation mode reduced the root defects,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111506
SubjectTerms Beam oscillation
Defect
Fatigue
Laser welding
Tailor welded blanks
Wobbling
Title Laser beam oscillation welding for fatigue properties enhancement of tailor-welded blanks
URI https://dx.doi.org/10.1016/j.tws.2023.111506
Volume 196
WOSCitedRecordID wos001141105800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0263-8231
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017194
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOqLxEgVY-0AuRUZ4b-7j0oVJVKyQKWk6RHTuFduusku1ufz5jO6-WhwCJSxQ5Ge9q5os99nyeQei1X6hACRETGcoxiXOWEhYJQRJY9AQwAfHc7ul-PkmnUzqbsQ9NBL-25QRSren1NVv8V1NDGxjbHJ39C3N3nUID3IPR4Qpmh-sfGf4E5qXKE4pfeiZR5dyR3by1smEmSyssoOnsyhyRKheGV61qT-mvxv4tNcDwSsuKGCHjos65vqiHfqwp90nWpg6L9FwK2quqZyPu7iW7Ex8MB57lyobiAzvFcd1NAsf8UridAkvc73geR2WlrcT-RUMf7tjD03JVLu3Dd_uO4KuHexZh3JO23EZae5imZy7VNgdsRExU8sbg7Ord_jDQuz2H87fLtcm5HkZm6E_8W0m17TT90fRruoXFls9gPX4XbYRpwugIbUzeH8yOu6BTGti6md3_aIPglg5464d-7sYMXJPTTfSwWVPgicPCI3RH6cfowSDT5BP0xaICG1TgASpwgwoMqMANKnCPCjxABS4LfAMV2KHiKfp0eHC6d0SaqhokD1m6JFEsqWIhZ0XC5ZjHAac8AbUkBTj_JqFhHvkyjiIeyJRzAXeC8lDQfCzgmVTRMzTSpVbPEQ7HKg-okEnA_TiVsDZVKbiDIBcISlm4hfxWSVnepJw3lU_mWcstPM9Ar5nRa-b0uoXedCILl2_ldy_HreazxmF0jmAGMPm12It_E3uJ7vdYfoVG8HGpbXQvXy2_1dVOA6bvuaqO2A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+beam+oscillation+welding+for+fatigue+properties+enhancement+of+tailor-welded+blanks&rft.jtitle=Thin-walled+structures&rft.au=%C5%A0ebestov%C3%A1%2C+Hana&rft.au=Jambor%2C+Michal&rft.au=Horn%C3%ADk%2C+Petr&rft.au=Novotn%C3%BD%2C+Jan&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.volume=196&rft_id=info:doi/10.1016%2Fj.tws.2023.111506&rft.externalDocID=S0263823123009837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon