A fast density peaks clustering algorithm with sparse search

Given a large unlabeled set of complex data, how to efficiently and effectively group them into clusters remains a challenging problem. Density peaks clustering (DPC) algorithm is an emerging algorithm, which identifies cluster centers based on a decision graph. Without setting the number of cluster...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 554; pp. 61 - 83
Main Authors: Xu, Xiao, Ding, Shifei, Wang, Yanru, Wang, Lijuan, Jia, Weikuan
Format: Journal Article
Language:English
Published: Elsevier Inc 01.04.2021
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given a large unlabeled set of complex data, how to efficiently and effectively group them into clusters remains a challenging problem. Density peaks clustering (DPC) algorithm is an emerging algorithm, which identifies cluster centers based on a decision graph. Without setting the number of cluster centers, DPC can effectively recognize the clusters. However, the similarity between every two data points must be calculated to construct a decision graph, which results in high computational complexity. To overcome this issue, we propose a fast sparse search density peaks clustering (FSDPC) algorithm to enhance the DPC, which constructs a decision graph with fewer similarity calculations to identify cluster centers quickly. In FSDPC, we design a novel sparse search strategy to measure the similarity between the nearest neighbors of each data points. Therefore, FSDPC can enhance the efficiency of the DPC while maintaining satisfactory results. We also propose a novel random third-party data point method to search the nearest neighbors, which introduces no additional parameters or high computational complexity. The experimental results on synthetic datasets and real-world datasets indicate that the proposed algorithm consistently outperforms the DPC and other state-of-the-art algorithms.
AbstractList Given a large unlabeled set of complex data, how to efficiently and effectively group them into clusters remains a challenging problem. Density peaks clustering (DPC) algorithm is an emerging algorithm, which identifies cluster centers based on a decision graph. Without setting the number of cluster centers, DPC can effectively recognize the clusters. However, the similarity between every two data points must be calculated to construct a decision graph, which results in high computational complexity. To overcome this issue, we propose a fast sparse search density peaks clustering (FSDPC) algorithm to enhance the DPC, which constructs a decision graph with fewer similarity calculations to identify cluster centers quickly. In FSDPC, we design a novel sparse search strategy to measure the similarity between the nearest neighbors of each data points. Therefore, FSDPC can enhance the efficiency of the DPC while maintaining satisfactory results. We also propose a novel random third-party data point method to search the nearest neighbors, which introduces no additional parameters or high computational complexity. The experimental results on synthetic datasets and real-world datasets indicate that the proposed algorithm consistently outperforms the DPC and other state-of-the-art algorithms.
Author Jia, Weikuan
Xu, Xiao
Ding, Shifei
Wang, Yanru
Wang, Lijuan
Author_xml – sequence: 1
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Yanru
  surname: Wang
  fullname: Wang, Yanru
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 4
  givenname: Lijuan
  surname: Wang
  fullname: Wang, Lijuan
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 5
  givenname: Weikuan
  surname: Jia
  fullname: Jia, Weikuan
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China
BookMark eNp9kMtKAzEUhoNUsK0-gLu8wIw5mZnMBN2U4g0KbnQdMrm0qdNMSaLStzelrlx0cw6Hw_fD_83QxI_eIHQLpAQC7G5bOh9LSmi-oSQNuUBT6FpaMMphgqYkfwpCm-YKzWLcEkLqlrEpelhgK2PC2vjo0gHvjfyMWA1fMZng_BrLYT0GlzY7_JMnjnsZosHRyKA21-jSyiGam789Rx9Pj-_Ll2L19vy6XKwKRXmbiqpmtgJe1y2wnlOq6krbmlCmmtZqKivorLaSct5TwiWRqgPFdc8kGNs1qpqj9pSrwhhjMFYol2Ryo09BukEAEUcJYiuyBHGUIABElpBJ-Efug9vJcDjL3J8Ykyt9OxNEVM54ZbQLRiWhR3eG_gWyynce
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109806
crossref_primary_10_1016_j_patcog_2023_109341
crossref_primary_10_1007_s10479_022_04677_5
crossref_primary_10_1016_j_neucom_2025_130222
crossref_primary_10_3390_agriculture14081422
crossref_primary_10_1080_17445302_2025_2503500
crossref_primary_10_1109_ACCESS_2024_3404917
crossref_primary_10_1007_s10489_022_03206_y
crossref_primary_10_1016_j_asoc_2025_113627
crossref_primary_10_1109_ACCESS_2022_3205742
crossref_primary_10_1016_j_ins_2024_120685
crossref_primary_10_1016_j_patcog_2025_111341
crossref_primary_10_1109_ACCESS_2022_3190958
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1016_j_neucom_2021_12_019
crossref_primary_10_1007_s42952_024_00291_2
crossref_primary_10_1155_2022_4176101
crossref_primary_10_1109_JSEN_2024_3499954
crossref_primary_10_1186_s40537_023_00709_4
crossref_primary_10_1016_j_patcog_2022_109238
crossref_primary_10_3390_app14219977
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_3233_JIFS_220327
crossref_primary_10_1016_j_ins_2023_119788
crossref_primary_10_1016_j_ijar_2023_108968
crossref_primary_10_1016_j_ins_2023_119864
crossref_primary_10_1016_j_inffus_2023_102137
crossref_primary_10_1088_1742_6596_2493_1_012010
crossref_primary_10_3390_info13100477
crossref_primary_10_3390_s23218787
crossref_primary_10_1007_s13042_023_01968_6
crossref_primary_10_1007_s10489_022_03360_3
crossref_primary_10_1109_TKDE_2025_3589794
crossref_primary_10_1016_j_enggeo_2024_107787
crossref_primary_10_1007_s10489_021_02985_0
crossref_primary_10_1016_j_neucom_2024_129060
crossref_primary_10_1007_s11227_025_07296_6
crossref_primary_10_1016_j_ins_2021_08_057
crossref_primary_10_1016_j_ins_2023_119516
crossref_primary_10_1109_TNNLS_2023_3329720
crossref_primary_10_1016_j_patcog_2025_112205
crossref_primary_10_32604_cmc_2023_039923
crossref_primary_10_1016_j_procs_2022_01_040
crossref_primary_10_1016_j_engappai_2025_111981
crossref_primary_10_1016_j_eswa_2022_116539
crossref_primary_10_1016_j_habitatint_2025_103404
crossref_primary_10_1016_j_eswa_2023_121860
crossref_primary_10_1108_DTA_08_2021_0222
crossref_primary_10_3233_IDA_216541
crossref_primary_10_1016_j_asoc_2023_110903
crossref_primary_10_1016_j_ins_2023_119470
Cites_doi 10.1016/j.patcog.2018.05.030
10.1126/science.1242072
10.1016/j.inffus.2017.09.013
10.1016/j.patcog.2017.06.023
10.1016/j.ins.2016.08.086
10.1109/TII.2018.2810226
10.1109/TCYB.2018.2817480
10.1016/j.neucom.2015.11.091
10.1016/j.eswa.2019.01.074
10.1016/j.ins.2018.07.034
10.1109/ACCESS.2017.2780109
10.1016/j.knosys.2017.07.027
10.1126/science.1136800
10.1016/j.knosys.2016.12.025
10.1007/s13042-016-0603-2
10.1016/j.eswa.2017.05.046
10.1016/j.neucom.2018.10.067
10.1016/j.knosys.2020.105841
10.1016/j.physa.2018.09.002
10.1007/s13042-014-0255-z
10.1109/TGRS.2018.2867444
10.1016/j.knosys.2018.05.034
10.1016/j.patcog.2017.04.021
10.1109/TII.2016.2628747
10.1016/j.knosys.2016.02.001
10.1109/TIFS.2018.2796999
10.1016/j.neucom.2016.01.102
10.1016/j.patrec.2017.10.025
10.1109/TKDE.2016.2535209
10.1016/j.bspc.2018.09.013
10.1016/j.eswa.2017.11.020
10.1016/j.ins.2019.08.060
10.1016/j.ins.2016.01.071
10.1109/TETC.2014.2330519
10.1016/j.ins.2016.03.011
10.1016/j.ins.2018.11.054
10.1109/CBD.2015.57
10.1109/TII.2017.2684807
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.11.050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 83
ExternalDocumentID 10_1016_j_ins_2020_11_050
S0020025520311488
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-346f31944716b922c43df4026c57fd2a318fdfa299b209a0ac81c9db6a1ef85c3
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617760500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:59:13 EST 2025
Tue Nov 18 22:19:47 EST 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse search strategy
Similarity matrix
DPC algorithm
Computational complexity
Fewer distance calculations
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-346f31944716b922c43df4026c57fd2a318fdfa299b209a0ac81c9db6a1ef85c3
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2020_11_050
crossref_primary_10_1016_j_ins_2020_11_050
elsevier_sciencedirect_doi_10_1016_j_ins_2020_11_050
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xie, Gao, Xie, Liu, Grant (b0115) 2016; 354
Yan, Wang, Lu (b0160) 2019; 329
Yangqiu, Wen-Yen, Hongjie, Chih-Jen, Chang Edwrd (b0030) 2008; 5212
Frey, Dueck (b0045) 2007; 315
Ren, Wang, Li, Xu (b0070) 2020; 197
Ding, Du, Sun, Xu, Xue (b0075) 2017; 133
Li, Tang (b0145) 2018; 95
Fahad, Alshatri, Tari, Alamri, Khalil, Zomaya, Foufou, Bouras (b0010) 2014; 2
Jain (b0015) 2017; 71
Wu, Wilamowski (b0050) 2017; 13
Shi, Otto, Jain (b0020) 2018; 13
Wang, Zhu, Zhou, Zhu, Wang, Zhang (b0200) 2018; 6
Xu, Ding, Shi (b0130) 2018; 158
Yang, Zhu, Huang, Xiao, Wang, Tong (b0105) 2017; 100
Li, Wong (b0095) 2019; 49
Tu, Zhang, Kang, Zhang, Li (b0150) 2019; 57
Jianhua, Yujun, Dehao, Keqin (b0210) 2019; 514
Zeng, Chen, Zhou (b0155) 2019; 48
Bai, Cheng, Liang, Shen, Guo (b0135) 2017; 71
Zhang, Zhu, Yang, Chen, Zhao, Li (b0005) 2017; 13
Chen, Tang, Bouguila, Wang, Du, Li (b0060) 2018; 83
Ünlü, Xanthopoulos (b0040) 2019; 125
Xu Xiaohua, Ju Yongsheng, Liang Yali, He Ping. Manifold density peaks clustering algorithm. Proceedings of 2015 Third International Conference on Advanced Cloud and Big Data. IEEE, 2015: 311-318.
Shufeng, Yanfeng (b0140) 2016; 53
Xu, Ding, Du, Xue (b0125) 2018; 9
Rodriguez, Laio (b0065) 2014; 344
Chen, He (b0175) 2016; 345
Xu, Wang, Deng (b0185) 2016; 373
Lovely, Ramya Prof (b0055) 2013; 3
Mehmood, Zhang, Bie, Dawood, Ahmad (b0100) 2016; 208
Masud, Huang, Wei, Wang, Khan, Zhong (b0165) 2018; 466
Jiang, Yan, Yu, Guo, Tian (b0215) 2015; 6
Deng, Ye, Ma, Fujita, Xiong (b0035) 2020; 508
Xu, Wang, Li, Deng, Gou (b0195) 2017; 120
Du, Ding, Jia (b0110) 2016; 99
Wang, Zuo, Wang (b0085) 2016; 179
Wang, Min, Zhang, Wu (b0180) 2017; 85
Ding Shifei, Xiao (b0190) 2020; 31
Xiao, Shifei, Tongfeng, Hongmei (b0120) 2018; 55
Zheng, Wang, Li, Zhang (b0080) 2019; 479
Wang, Wei, Yang (b0090) 2019; 15
Wang, Song (b0170) 2016; 28
Ivannikova, Park, Hämäläinen, Lee (b0025) 2018; 42
Frey (10.1016/j.ins.2020.11.050_b0045) 2007; 315
Xu (10.1016/j.ins.2020.11.050_b0185) 2016; 373
Jiang (10.1016/j.ins.2020.11.050_b0215) 2015; 6
Zheng (10.1016/j.ins.2020.11.050_b0080) 2019; 479
Li (10.1016/j.ins.2020.11.050_b0095) 2019; 49
Jain (10.1016/j.ins.2020.11.050_b0015) 2017; 71
Yangqiu (10.1016/j.ins.2020.11.050_b0030) 2008; 5212
Xu (10.1016/j.ins.2020.11.050_b0130) 2018; 158
Ren (10.1016/j.ins.2020.11.050_b0070) 2020; 197
Fahad (10.1016/j.ins.2020.11.050_b0010) 2014; 2
Wang (10.1016/j.ins.2020.11.050_b0090) 2019; 15
Tu (10.1016/j.ins.2020.11.050_b0150) 2019; 57
Wu (10.1016/j.ins.2020.11.050_b0050) 2017; 13
Yang (10.1016/j.ins.2020.11.050_b0105) 2017; 100
Lovely (10.1016/j.ins.2020.11.050_b0055) 2013; 3
Ivannikova (10.1016/j.ins.2020.11.050_b0025) 2018; 42
Xiao (10.1016/j.ins.2020.11.050_b0120) 2018; 55
Xie (10.1016/j.ins.2020.11.050_b0115) 2016; 354
Masud (10.1016/j.ins.2020.11.050_b0165) 2018; 466
Ding Shifei (10.1016/j.ins.2020.11.050_b0190) 2020; 31
Li (10.1016/j.ins.2020.11.050_b0145) 2018; 95
10.1016/j.ins.2020.11.050_b0205
Shi (10.1016/j.ins.2020.11.050_b0020) 2018; 13
Du (10.1016/j.ins.2020.11.050_b0110) 2016; 99
Bai (10.1016/j.ins.2020.11.050_b0135) 2017; 71
Chen (10.1016/j.ins.2020.11.050_b0060) 2018; 83
Deng (10.1016/j.ins.2020.11.050_b0035) 2020; 508
Zhang (10.1016/j.ins.2020.11.050_b0005) 2017; 13
Wang (10.1016/j.ins.2020.11.050_b0170) 2016; 28
Chen (10.1016/j.ins.2020.11.050_b0175) 2016; 345
Yan (10.1016/j.ins.2020.11.050_b0160) 2019; 329
Ünlü (10.1016/j.ins.2020.11.050_b0040) 2019; 125
Shufeng (10.1016/j.ins.2020.11.050_b0140) 2016; 53
Wang (10.1016/j.ins.2020.11.050_b0180) 2017; 85
Wang (10.1016/j.ins.2020.11.050_b0085) 2016; 179
Wang (10.1016/j.ins.2020.11.050_b0200) 2018; 6
Ding (10.1016/j.ins.2020.11.050_b0075) 2017; 133
Mehmood (10.1016/j.ins.2020.11.050_b0100) 2016; 208
Zeng (10.1016/j.ins.2020.11.050_b0155) 2019; 48
Xu (10.1016/j.ins.2020.11.050_b0125) 2018; 9
Jianhua (10.1016/j.ins.2020.11.050_b0210) 2019; 514
Xu (10.1016/j.ins.2020.11.050_b0195) 2017; 120
Rodriguez (10.1016/j.ins.2020.11.050_b0065) 2014; 344
References_xml – volume: 13
  start-page: 1193
  year: 2017
  end-page: 1201
  ident: b0005
  article-title: An incremental CFS algorithm for clustering large data in industrial internet of things
  publication-title: IEEE Trans. Ind. Inf.
– volume: 479
  start-page: 55
  year: 2019
  end-page: 75
  ident: b0080
  article-title: Personalized recommendation based on hierarchical interest overlapping community
  publication-title: Inform. Sci.
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: b0110
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowledge-Based Syst.
– volume: 373
  start-page: 200
  year: 2016
  end-page: 218
  ident: b0185
  article-title: DenPEHC: Density peak based efficient hierarchical clustering
  publication-title: Inform. Sci.
– volume: 197
  start-page: 105841
  year: 2020
  ident: b0070
  article-title: Deep density-based image clustering
  publication-title: Knowledge-Based Syst.
– volume: 6
  start-page: 197
  year: 2015
  end-page: 204
  ident: b0215
  article-title: A Chinese expert disambiguation method based on semi-supervised graph clustering
  publication-title: Int. J. Mach. Learn. Cyber.
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: b0135
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recog.
– volume: 48
  start-page: 69
  year: 2019
  end-page: 79
  ident: b0155
  article-title: Color perception algorithm of medical images using density peak based hierarchical clustering
  publication-title: Biomed. Signal Process. Control
– volume: 5212
  start-page: 374
  year: 2008
  end-page: 389
  ident: b0030
  article-title: Parallel spectral clustering
  publication-title: Proc. KDD
– volume: 31
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0190
  article-title: Optimized density peaks clustering algorithm based on dissimilarity measure
  publication-title: J. Software
– volume: 53
  start-page: 1400
  year: 2016
  end-page: 1409
  ident: b0140
  article-title: EDDPC: An efficient distributed density peaks clustering algorithm
  publication-title: J. Computer Res. Develop.
– volume: 15
  start-page: 105
  year: 2019
  end-page: 115
  ident: b0090
  article-title: Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines
  publication-title: IEEE Trans. Ind. Inf.
– volume: 85
  start-page: 305
  year: 2017
  end-page: 317
  ident: b0180
  article-title: Active learning through density clustering
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 1620
  year: 2017
  end-page: 1628
  ident: b0050
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
– volume: 28
  start-page: 1971
  year: 2016
  end-page: 1985
  ident: b0170
  article-title: Automatic clustering via outward statistical testing on density metrics
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 95
  start-page: 236
  year: 2018
  end-page: 247
  ident: b0145
  article-title: Comparative density peaks clustering
  publication-title: Expert Syst. Appl.
– reference: Xu Xiaohua, Ju Yongsheng, Liang Yali, He Ping. Manifold density peaks clustering algorithm. Proceedings of 2015 Third International Conference on Advanced Cloud and Big Data. IEEE, 2015: 311-318.
– volume: 2
  start-page: 267
  year: 2014
  end-page: 279
  ident: b0010
  article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Topics Comput.
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b0065
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 120
  start-page: 99
  year: 2017
  end-page: 117
  ident: b0195
  article-title: Fat node leading tree for data stream clustering with density peaks
  publication-title: Knowledge-Based Syst.
– volume: 158
  start-page: 65
  year: 2018
  end-page: 74
  ident: b0130
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowledge-Based Syst.
– volume: 466
  start-page: 129
  year: 2018
  end-page: 151
  ident: b0165
  article-title: I-nice: A new approach for identifying the number of clusters and initial cluster centres
  publication-title: Inform. Sci.
– volume: 13
  start-page: 1626
  year: 2018
  end-page: 1640
  ident: b0020
  article-title: Face clustering: Representation and pairwise constraints
  publication-title: IEEE Trans. Inform. Forensic Secur.
– volume: 508
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0035
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inform. Sci.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b0045
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 133
  start-page: 294
  year: 2017
  end-page: 313
  ident: b0075
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowledge-Based Syst.
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: b0115
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inform. Sci.
– volume: 345
  start-page: 271
  year: 2016
  end-page: 293
  ident: b0175
  article-title: A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data
  publication-title: Inform. Sci.
– volume: 71
  start-page: 26
  year: 2017
  end-page: 35
  ident: b0015
  article-title: Consistency of mean partitions in consensus clustering
  publication-title: Pattern Recog.
– volume: 57
  start-page: 1573
  year: 2019
  end-page: 1584
  ident: b0150
  article-title: Density peak-based noisy label detection for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 1718
  year: 2018
  end-page: 1729
  ident: b0200
  article-title: From partition-based clustering to density-based clustering: Fast find clusters with diverse shapes and densities in spatial databases
  publication-title: IEEE Access
– volume: 83
  start-page: 375
  year: 2018
  end-page: 387
  ident: b0060
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Patt. Recog.
– volume: 329
  start-page: 348
  year: 2019
  end-page: 358
  ident: b0160
  article-title: Identifying cluster centroids from decision graph automatically using a statistical outlier detection method
  publication-title: Neurocomputing
– volume: 42
  start-page: 24
  year: 2018
  end-page: 36
  ident: b0025
  article-title: Revealing community structures by ensemble clustering using group diffusion
  publication-title: Inform. Fusion
– volume: 514
  start-page: 25
  year: 2019
  end-page: 35
  ident: b0210
  article-title: DPC-LG: Density peaks clustering based on logistic distribution and gravitation
  publication-title: Physica A: Stat. Mech. Appl.
– volume: 49
  start-page: 1680
  year: 2019
  end-page: 1693
  ident: b0095
  article-title: Evolutionary multiobjective clustering and its applications to patient stratification
  publication-title: IEEE Trans. Cybern.
– volume: 125
  start-page: 33
  year: 2019
  end-page: 39
  ident: b0040
  article-title: Estimating the number of clusters in a dataset via consensus clustering
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 398
  year: 2013
  end-page: 403
  ident: b0055
  article-title: Review on density based clustering algorithms for very large datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 179
  start-page: 219
  year: 2016
  end-page: 227
  ident: b0085
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
– volume: 55
  start-page: 2419
  year: 2018
  end-page: 2429
  ident: b0120
  article-title: Large-scale density peaks clustering algorithm based on grid screening
  publication-title: J. Computer Res. Developm.
– volume: 208
  start-page: 210
  year: 2016
  end-page: 217
  ident: b0100
  article-title: Clustering by fast search and find of density peaks via heat diffusion
  publication-title: Neurocomputing
– volume: 100
  start-page: 167
  year: 2017
  end-page: 173
  ident: b0105
  article-title: Parameter-free Laplacian centrality peaks clustering
  publication-title: Pattern Recog. Lett.
– volume: 9
  start-page: 743
  year: 2018
  end-page: 754
  ident: b0125
  article-title: DPCG: An efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cyber.
– volume: 83
  start-page: 375
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0060
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Patt. Recog.
  doi: 10.1016/j.patcog.2018.05.030
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.ins.2020.11.050_b0065
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 42
  start-page: 24
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0025
  article-title: Revealing community structures by ensemble clustering using group diffusion
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2017.09.013
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0135
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2017.06.023
– volume: 373
  start-page: 200
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0185
  article-title: DenPEHC: Density peak based efficient hierarchical clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.08.086
– volume: 15
  start-page: 105
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0090
  article-title: Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2810226
– volume: 49
  start-page: 1680
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0095
  article-title: Evolutionary multiobjective clustering and its applications to patient stratification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2817480
– volume: 179
  start-page: 219
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0085
  article-title: An improved density peaks-based clustering method for social circle discovery in social networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.091
– volume: 125
  start-page: 33
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0040
  article-title: Estimating the number of clusters in a dataset via consensus clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.074
– volume: 466
  start-page: 129
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0165
  article-title: I-nice: A new approach for identifying the number of clusters and initial cluster centres
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.07.034
– volume: 6
  start-page: 1718
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0200
  article-title: From partition-based clustering to density-based clustering: Fast find clusters with diverse shapes and densities in spatial databases
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780109
– volume: 133
  start-page: 294
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0075
  article-title: An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2017.07.027
– volume: 3
  start-page: 398
  issue: 12
  year: 2013
  ident: 10.1016/j.ins.2020.11.050_b0055
  article-title: Review on density based clustering algorithms for very large datasets
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.ins.2020.11.050_b0045
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 120
  start-page: 99
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0195
  article-title: Fat node leading tree for data stream clustering with density peaks
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.12.025
– volume: 9
  start-page: 743
  issue: 5
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0125
  article-title: DPCG: An efficient density peaks clustering algorithm based on grid
  publication-title: Int. J. Mach. Learn. Cyber.
  doi: 10.1007/s13042-016-0603-2
– volume: 85
  start-page: 305
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0180
  article-title: Active learning through density clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.046
– volume: 329
  start-page: 348
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0160
  article-title: Identifying cluster centroids from decision graph automatically using a statistical outlier detection method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.067
– volume: 197
  start-page: 105841
  year: 2020
  ident: 10.1016/j.ins.2020.11.050_b0070
  article-title: Deep density-based image clustering
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.105841
– volume: 514
  start-page: 25
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0210
  article-title: DPC-LG: Density peaks clustering based on logistic distribution and gravitation
  publication-title: Physica A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.09.002
– volume: 6
  start-page: 197
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2020.11.050_b0215
  article-title: A Chinese expert disambiguation method based on semi-supervised graph clustering
  publication-title: Int. J. Mach. Learn. Cyber.
  doi: 10.1007/s13042-014-0255-z
– volume: 57
  start-page: 1573
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0150
  article-title: Density peak-based noisy label detection for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2867444
– volume: 158
  start-page: 65
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0130
  article-title: An improved density peaks clustering algorithm with fast finding cluster centers
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.05.034
– volume: 71
  start-page: 26
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0015
  article-title: Consistency of mean partitions in consensus clustering
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2017.04.021
– volume: 5212
  start-page: 374
  year: 2008
  ident: 10.1016/j.ins.2020.11.050_b0030
  article-title: Parallel spectral clustering
  publication-title: Proc. KDD
– volume: 13
  start-page: 1620
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0050
  article-title: A fast density and grid based clustering method for data with arbitrary shapes and noise
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2628747
– volume: 53
  start-page: 1400
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0140
  article-title: EDDPC: An efficient distributed density peaks clustering algorithm
  publication-title: J. Computer Res. Develop.
– volume: 99
  start-page: 135
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0110
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.02.001
– volume: 13
  start-page: 1626
  issue: 7
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0020
  article-title: Face clustering: Representation and pairwise constraints
  publication-title: IEEE Trans. Inform. Forensic Secur.
  doi: 10.1109/TIFS.2018.2796999
– volume: 208
  start-page: 210
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0100
  article-title: Clustering by fast search and find of density peaks via heat diffusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.102
– volume: 100
  start-page: 167
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0105
  article-title: Parameter-free Laplacian centrality peaks clustering
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2017.10.025
– volume: 28
  start-page: 1971
  issue: 8
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0170
  article-title: Automatic clustering via outward statistical testing on density metrics
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2535209
– volume: 55
  start-page: 2419
  issue: 11
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0120
  article-title: Large-scale density peaks clustering algorithm based on grid screening
  publication-title: J. Computer Res. Developm.
– volume: 48
  start-page: 69
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0155
  article-title: Color perception algorithm of medical images using density peak based hierarchical clustering
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.09.013
– volume: 95
  start-page: 236
  year: 2018
  ident: 10.1016/j.ins.2020.11.050_b0145
  article-title: Comparative density peaks clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.020
– volume: 508
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2020.11.050_b0035
  article-title: Low-rank local tangent space embedding for subspace clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.060
– volume: 345
  start-page: 271
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0175
  article-title: A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.071
– volume: 2
  start-page: 267
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2020.11.050_b0010
  article-title: A survey of clustering algorithms for big data: Taxonomy and empirical analysis
  publication-title: IEEE Trans. Emerg. Topics Comput.
  doi: 10.1109/TETC.2014.2330519
– volume: 354
  start-page: 19
  year: 2016
  ident: 10.1016/j.ins.2020.11.050_b0115
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.03.011
– volume: 479
  start-page: 55
  year: 2019
  ident: 10.1016/j.ins.2020.11.050_b0080
  article-title: Personalized recommendation based on hierarchical interest overlapping community
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.11.054
– volume: 31
  start-page: 1
  issue: 12
  year: 2020
  ident: 10.1016/j.ins.2020.11.050_b0190
  article-title: Optimized density peaks clustering algorithm based on dissimilarity measure
  publication-title: J. Software
– ident: 10.1016/j.ins.2020.11.050_b0205
  doi: 10.1109/CBD.2015.57
– volume: 13
  start-page: 1193
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2020.11.050_b0005
  article-title: An incremental CFS algorithm for clustering large data in industrial internet of things
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2684807
SSID ssj0004766
Score 2.5621364
Snippet Given a large unlabeled set of complex data, how to efficiently and effectively group them into clusters remains a challenging problem. Density peaks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Computational complexity
DPC algorithm
Fewer distance calculations
Similarity matrix
Sparse search strategy
Title A fast density peaks clustering algorithm with sparse search
URI https://dx.doi.org/10.1016/j.ins.2020.11.050
Volume 554
WOSCitedRecordID wos000617760500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF-09UEfpFbFqi37ID4YIsnmY3fBl0NaqpQiWCU-hb39aHOeueMukf75zmY3uXhUUcGXcAy3SZj5ZXZmdj4QeqEI7Kk5oaFgXIcpZRq-OTYNucljoOhIdeXRn8_o-TkrCv7B5-muu3ECtK7Z9TVf_ldRAw2EbUtn_0Lcw02BAL9B6HAFscP1jwQ_CYxYN4GymelgYS-1-LoO5Ly1HRG6isT55WJVNVfffHr6ElxbHYyCWrM-uX0obAz8PjnY30VrRVNUYjEYwn42yseryuhqE6Z31C-iXrXbxLNq1nps-rADiUfZKl0srK-H-Sld0xqfofVS3O7iVCqjJMyJm8nV69wsS0da07Vj7_ff5EbN7oIMM3BHbJN1YnX968j1rN1qmG3PnztXiYDCAm-P3Ua7hGYc1Pbu5N1x8X5TN0vdWXb_1v2pd5f_t_Wgm-2WkS1ysYfueycCT5zwH6Bbut5H90atJffRoS9IwS_xSJDYq_KH6M0EW5hgDxPcwQRvYIIHmGALE-xggh1MHqFPJ8cXb09DP0kjlITTJkzS3ICuTcESyaecEJkmyqTgfsuMGkUEKHajjADTZEoiLiIhWSy5muYi1oZlMnmMdupFrZ8gzIykHBZEKrP3E0JE0hY7J7miIoviAxT1fCqlbzNvp53Myz6fcFYCa0vLWnA_S2DtAXo1LFm6Hiu_-3PaM7_04HfGXwlI-fWyp_-27Bm6uwH_c7TTrFp9iO7I7021Xh15PP0AOtOItQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+density+peaks+clustering+algorithm+with+sparse+search&rft.jtitle=Information+sciences&rft.au=Xu%2C+Xiao&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Yanru&rft.au=Wang%2C+Lijuan&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=554&rft.spage=61&rft.epage=83&rft_id=info:doi/10.1016%2Fj.ins.2020.11.050&rft.externalDocID=S0020025520311488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon