Fuzzy serial-parallel stochastic configuration networks based on nonconvex dynamic membership function optimization

A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly, the kernel density estimation method is used to fit the distribution of original input data to generate dynamic nonconvex membership functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 690; S. 121501
Hauptverfasser: Qiao, Jinghui, Qiao, Jiayu, Gao, Peng, Bai, Zhe, Xiong, Ningkang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.02.2025
Schlagworte:
ISSN:0020-0255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly, the kernel density estimation method is used to fit the distribution of original input data to generate dynamic nonconvex membership functions, which enhances the fuzzy system ability to handle uncertain industrial data. Then the parameters of the nonconvex membership functions are optimized based on Majorization-Minimization algorithm and Generalized Projective Gradient Descent algorithm. The optimized membership matrices and fuzzy outputs are used as inputs of the serial-parallel stochastic configuration networks to improve the overall prediction accuracy of the model. Finally, the prediction accuracy of the F-SPSCN model has been verified by performing prediction experiments with two different functions and four benchmark datasets. The F-SPSCN model demonstrates superior performance compared to other models in predicting the magnetic separation recovery ratio (MSRR) of hydrogen-based mineral phase transformation (HMPT) process for refractory iron ore.
ISSN:0020-0255
DOI:10.1016/j.ins.2024.121501