Fuzzy serial-parallel stochastic configuration networks based on nonconvex dynamic membership function optimization
A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly, the kernel density estimation method is used to fit the distribution of original input data to generate dynamic nonconvex membership functions...
Uložené v:
| Vydané v: | Information sciences Ročník 690; s. 121501 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.02.2025
|
| Predmet: | |
| ISSN: | 0020-0255 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly, the kernel density estimation method is used to fit the distribution of original input data to generate dynamic nonconvex membership functions, which enhances the fuzzy system ability to handle uncertain industrial data. Then the parameters of the nonconvex membership functions are optimized based on Majorization-Minimization algorithm and Generalized Projective Gradient Descent algorithm. The optimized membership matrices and fuzzy outputs are used as inputs of the serial-parallel stochastic configuration networks to improve the overall prediction accuracy of the model. Finally, the prediction accuracy of the F-SPSCN model has been verified by performing prediction experiments with two different functions and four benchmark datasets. The F-SPSCN model demonstrates superior performance compared to other models in predicting the magnetic separation recovery ratio (MSRR) of hydrogen-based mineral phase transformation (HMPT) process for refractory iron ore. |
|---|---|
| AbstractList | A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly, the kernel density estimation method is used to fit the distribution of original input data to generate dynamic nonconvex membership functions, which enhances the fuzzy system ability to handle uncertain industrial data. Then the parameters of the nonconvex membership functions are optimized based on Majorization-Minimization algorithm and Generalized Projective Gradient Descent algorithm. The optimized membership matrices and fuzzy outputs are used as inputs of the serial-parallel stochastic configuration networks to improve the overall prediction accuracy of the model. Finally, the prediction accuracy of the F-SPSCN model has been verified by performing prediction experiments with two different functions and four benchmark datasets. The F-SPSCN model demonstrates superior performance compared to other models in predicting the magnetic separation recovery ratio (MSRR) of hydrogen-based mineral phase transformation (HMPT) process for refractory iron ore. |
| ArticleNumber | 121501 |
| Author | Qiao, Jinghui Xiong, Ningkang Qiao, Jiayu Gao, Peng Bai, Zhe |
| Author_xml | – sequence: 1 givenname: Jinghui surname: Qiao fullname: Qiao, Jinghui email: qiaojh2002@163.com organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China – sequence: 2 givenname: Jiayu surname: Qiao fullname: Qiao, Jiayu email: 635655110@qq.com organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China – sequence: 3 givenname: Peng surname: Gao fullname: Gao, Peng organization: School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Zhe surname: Bai fullname: Bai, Zhe organization: School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Ningkang surname: Xiong fullname: Xiong, Ningkang organization: School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China |
| BookMark | eNp9kE1PAjEQhnvAREB_gLf-gcW2-x1PhoiakHjRc1Oms1LcbTdtQeHXu4AnD5wmeTPPm5lnQkbWWSTkjrMZZ7y438yMDTPBRDbjgueMj8iYMcESJvL8mkxC2DDGsrIoxiQstofDngb0RrVJr7xqW2xpiA7WKkQDFJxtzOfWq2icpRbjt_Nfga5UQE2PibPDyg5_qN5b1Q1Eh90KfVibnjZbCyfO9dF05nAquSFXjWoD3v7NKflYPL3PX5Ll2_Pr_HGZgKjLmAjNOIOySOuqbjJeCJ0jUwWoBopqVYOuUp6prK4Zz0otMgU6b4pc5yWkFU91OiXluRe8C8FjI8HE0wXRK9NKzuTRl9zIwZc8-pJnXwPJ_5G9N53y-4vMw5nB4aWdQS8DGLSA2niEKLUzF-hf2ISK7A |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_118313 |
| Cites_doi | 10.1214/10-AOS799 10.1109/TSP.2016.2601299 10.1016/j.ins.2024.120132 10.1109/TPWRS.2008.922249 10.1145/3065386 10.1103/PhysRevLett.77.3865 10.1109/TCYB.2017.2734043 10.1561/2200000058 10.1109/TNNLS.2019.2952219 10.1109/TFUZZ.2018.2882342 10.1016/j.matcom.2023.04.021 10.1109/TFUZZ.2023.3315368 10.1023/A:1018628609742 10.1109/TR.2020.3001232 10.1109/TMECH.2014.2332256 10.1016/j.ins.2023.01.128 10.1016/j.ins.2022.06.028 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. |
| Copyright_xml | – notice: 2024 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2024.121501 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | 10_1016_j_ins_2024_121501 S0020025524014154 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-2d010c763989f4162d5e0a6cafc68b9cd8314a4990147d24acd5f65d57c3813d3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:19:01 EST 2025 Sat Nov 29 02:44:17 EST 2025 Sat Nov 16 15:59:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nonconvex optimization Stochastic configuration networks (SCN) Generalized projective gradient descent algorithm Magnetic separation recovery ratio (MSRR) Majorization-minimization algorithm Fuzzy systems Hydrogen-based mineral phase transformation (HMPT) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-2d010c763989f4162d5e0a6cafc68b9cd8314a4990147d24acd5f65d57c3813d3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2024_121501 crossref_primary_10_1016_j_ins_2024_121501 elsevier_sciencedirect_doi_10_1016_j_ins_2024_121501 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Krizhevsky, Sutskever, Hinton (b0040) 2017; 60 Perdew, Burke, Ernzerhof (b0070) 1996; 77 Zhang, Zhou, Sun, Lei, Liu, Yang (b0115) 2008; 23 Ferreira, Martiniano, Ferreira, Romero, Sassi (b0025) 2018 Qiao, Chai (b0080) 2014; 20 Tfekci, Kaya (b0100) 2014 Lei, Hu, Li, Ke (b0045) 2020; 31 Deng, Zhao, Zhang, Li, Wang (b0015) 2024; 661 Felicetti, Wang (b0020) 2022; 607 Liaw, Wiener (b0050) 2007; 2 Liparulo, Proietti, Panella (b0060) 2013 Shi, Ye, Liu, Zhao (b0085) 2023; 211 McCulloch, Wagner (b0065) 2019; 27 Sun, Babu, Palomar (b0090) 2017; 63 L. Disorders, UCI Machine Learning Repository, 1990. doi:10.24432/C54G67. Wang, Li (b0105) 2017; 47 P. Jain, P. Kar, Non-convex Optimization for Machine Learning, The official publication is available from now publishers via doi:10.1561/2200000058. K. Li, J.F. Qiao, D.H. Wang, Fuzzy stochastic configuration networks for nonlinear system modeling, IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2023.3315368. Botev, Grotowski, Kroese (b0005) 2010; 38 Cheng (b0030) 2018 Qiao, Chen (b0075) 2023; 629 Zhang, Zhang, Ye, Fang, Xu (b0110) 2021 Suykens, Vandewalle (b0095) 1999; 9 Liaw (10.1016/j.ins.2024.121501_b0050) 2007; 2 Botev (10.1016/j.ins.2024.121501_b0005) 2010; 38 Cheng (10.1016/j.ins.2024.121501_b0030) 2018 McCulloch (10.1016/j.ins.2024.121501_b0065) 2019; 27 Qiao (10.1016/j.ins.2024.121501_b0080) 2014; 20 Ferreira (10.1016/j.ins.2024.121501_b0025) 2018 Lei (10.1016/j.ins.2024.121501_b0045) 2020; 31 Krizhevsky (10.1016/j.ins.2024.121501_b0040) 2017; 60 Sun (10.1016/j.ins.2024.121501_b0090) 2017; 63 Wang (10.1016/j.ins.2024.121501_b0105) 2017; 47 Zhang (10.1016/j.ins.2024.121501_b0115) 2008; 23 Shi (10.1016/j.ins.2024.121501_b0085) 2023; 211 Zhang (10.1016/j.ins.2024.121501_b0110) 2021 Qiao (10.1016/j.ins.2024.121501_b0075) 2023; 629 10.1016/j.ins.2024.121501_b0035 Perdew (10.1016/j.ins.2024.121501_b0070) 1996; 77 Deng (10.1016/j.ins.2024.121501_b0015) 2024; 661 Suykens (10.1016/j.ins.2024.121501_b0095) 1999; 9 Felicetti (10.1016/j.ins.2024.121501_b0020) 2022; 607 Liparulo (10.1016/j.ins.2024.121501_b0060) 2013 10.1016/j.ins.2024.121501_b0010 10.1016/j.ins.2024.121501_b0055 Tfekci (10.1016/j.ins.2024.121501_b0100) 2014 |
| References_xml | – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b0040 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – year: 2018 ident: b0030 article-title: Real estate valuation publication-title: UCI Mach. Learn. Repository – year: 2014 ident: b0100 article-title: Combined cycle power plant publication-title: UCI Mach. Learn. Repository – volume: 31 start-page: 4394 year: 2020 end-page: 4400 ident: b0045 article-title: Stochastic gradient descent for nonconvex learning without bounded gradient assumptions publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 20 start-page: 1204 year: 2014 end-page: 1217 ident: b0080 article-title: Modeling and parameter identification of raw meal calcination process publication-title: IEEE/ASME Trans. Mechatron. – reference: K. Li, J.F. Qiao, D.H. Wang, Fuzzy stochastic configuration networks for nonlinear system modeling, IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2023.3315368. – volume: 23 start-page: 853 year: 2008 end-page: 858 ident: b0115 article-title: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment publication-title: IEEE Trans. Power Syst. – volume: 661 year: 2024 ident: b0015 article-title: A holistic global-local stochastic configuration network modeling framework with ant+inoise awareness for efficient semi-supervised regression publication-title: Inf. Sci. – volume: 629 start-page: 96 year: 2023 end-page: 108 ident: b0075 article-title: Stochastic configuration networks with chaotic maps and hierarchical learning strategy publication-title: Inf. Sci. – volume: 63 start-page: 794 year: 2017 end-page: 816 ident: b0090 article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 2916 year: 2010 end-page: 2957 ident: b0005 article-title: Kernel density estimation via diffusion publication-title: Ann. Stat. – year: 2013 ident: b0060 article-title: Fuzzy membership functions based on point-to-polygon distance evaluation publication-title: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad India – year: 2018 ident: b0025 article-title: Container crane controller data set publication-title: UCI Mach. Learn. Repository – start-page: 887 year: 2021 end-page: 900 ident: b0110 article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis publication-title: IEEE Trans. Reliab. – volume: 2 start-page: 18 year: 2007 end-page: 22 ident: b0050 article-title: Classification and regression by random forest publication-title: R News – volume: 211 start-page: 430 year: 2023 end-page: 444 ident: b0085 article-title: A class of nonconvex fuzzy optimization problems under granular differentiability concept publication-title: Math. Comput. Simul – volume: 47 start-page: 3466 year: 2017 end-page: 3479 ident: b0105 article-title: Stochastic configuration networks: fundamentals and algorithms publication-title: IEEE Trans. Cybern. – reference: L. Disorders, UCI Machine Learning Repository, 1990. doi:10.24432/C54G67. – reference: P. Jain, P. Kar, Non-convex Optimization for Machine Learning, The official publication is available from now publishers via doi:10.1561/2200000058. – volume: 607 start-page: 819 year: 2022 end-page: 830 ident: b0020 article-title: Deep stochastic configuration networks with different random sampling strategies publication-title: Inf. Sci. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b0095 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 27 start-page: 1506 year: 2019 end-page: 1515 ident: b0065 article-title: Measuring the directional or non-directional distance between type-1 and type-2 fuzzy sets with complex membership functions publication-title: IEEE Trans. Fuzzy Syst. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: b0070 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 38 start-page: 2916 issue: 5 year: 2010 ident: 10.1016/j.ins.2024.121501_b0005 article-title: Kernel density estimation via diffusion publication-title: Ann. Stat. doi: 10.1214/10-AOS799 – volume: 2 start-page: 18 issue: 3 year: 2007 ident: 10.1016/j.ins.2024.121501_b0050 article-title: Classification and regression by random forest publication-title: R News – volume: 63 start-page: 794 issue: 5 year: 2017 ident: 10.1016/j.ins.2024.121501_b0090 article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2601299 – volume: 661 year: 2024 ident: 10.1016/j.ins.2024.121501_b0015 article-title: A holistic global-local stochastic configuration network modeling framework with ant+inoise awareness for efficient semi-supervised regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120132 – year: 2018 ident: 10.1016/j.ins.2024.121501_b0025 article-title: Container crane controller data set publication-title: UCI Mach. Learn. Repository – volume: 23 start-page: 853 issue: 3 year: 2008 ident: 10.1016/j.ins.2024.121501_b0115 article-title: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.922249 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.ins.2024.121501_b0040 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – year: 2013 ident: 10.1016/j.ins.2024.121501_b0060 article-title: Fuzzy membership functions based on point-to-polygon distance evaluation – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 10.1016/j.ins.2024.121501_b0070 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – year: 2014 ident: 10.1016/j.ins.2024.121501_b0100 article-title: Combined cycle power plant publication-title: UCI Mach. Learn. Repository – volume: 47 start-page: 3466 issue: 10 year: 2017 ident: 10.1016/j.ins.2024.121501_b0105 article-title: Stochastic configuration networks: fundamentals and algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2734043 – ident: 10.1016/j.ins.2024.121501_b0035 doi: 10.1561/2200000058 – volume: 31 start-page: 4394 issue: 10 year: 2020 ident: 10.1016/j.ins.2024.121501_b0045 article-title: Stochastic gradient descent for nonconvex learning without bounded gradient assumptions publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2019.2952219 – volume: 27 start-page: 1506 issue: 7 year: 2019 ident: 10.1016/j.ins.2024.121501_b0065 article-title: Measuring the directional or non-directional distance between type-1 and type-2 fuzzy sets with complex membership functions publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2882342 – volume: 211 start-page: 430 year: 2023 ident: 10.1016/j.ins.2024.121501_b0085 article-title: A class of nonconvex fuzzy optimization problems under granular differentiability concept publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2023.04.021 – ident: 10.1016/j.ins.2024.121501_b0055 doi: 10.1109/TFUZZ.2023.3315368 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.ins.2024.121501_b0095 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – start-page: 887 year: 2021 ident: 10.1016/j.ins.2024.121501_b0110 article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2020.3001232 – volume: 20 start-page: 1204 issue: 3 year: 2014 ident: 10.1016/j.ins.2024.121501_b0080 article-title: Modeling and parameter identification of raw meal calcination process publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2332256 – volume: 629 start-page: 96 year: 2023 ident: 10.1016/j.ins.2024.121501_b0075 article-title: Stochastic configuration networks with chaotic maps and hierarchical learning strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.01.128 – ident: 10.1016/j.ins.2024.121501_b0010 – year: 2018 ident: 10.1016/j.ins.2024.121501_b0030 article-title: Real estate valuation publication-title: UCI Mach. Learn. Repository – volume: 607 start-page: 819 year: 2022 ident: 10.1016/j.ins.2024.121501_b0020 article-title: Deep stochastic configuration networks with different random sampling strategies publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.028 |
| SSID | ssj0004766 |
| Score | 2.4607062 |
| Snippet | A fuzzy series–parallel stochastic configuration networks (F-SPSCN) is proposed based on the application of nonconvex optimization in fuzzy systems. Firstly,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 121501 |
| SubjectTerms | Fuzzy systems Generalized projective gradient descent algorithm Hydrogen-based mineral phase transformation (HMPT) Magnetic separation recovery ratio (MSRR) Majorization-minimization algorithm Nonconvex optimization Stochastic configuration networks (SCN) |
| Title | Fuzzy serial-parallel stochastic configuration networks based on nonconvex dynamic membership function optimization |
| URI | https://dx.doi.org/10.1016/j.ins.2024.121501 |
| Volume | 690 |
| WOSCitedRecordID | wos001369207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxNBFJ8oeNCDQdQIApmD8WCzSbudndk5EgMBDgQTTBovm-l82JKyENolhb_e9-aj3YIaNfGy2Ux2Opv-fvvem3lfhHxw3HSHcigyzZzMGJM8k5ZpEIbOCSu062nmm02I09NyMJBn0dE-9e0ERF2X87m8_q9QwxiAjamzfwH34kdhAO4BdLgC7HD9I-APm_v7u05YKsPK3pOJxZyQKz1SWJQZA83d-HsToa9DHPi0g_rMoO-gvqp9LPq8Y0K7-s6lxbYhPq4L9WAwMkHWXMYkzraFG_Ob_DNRvS7M9i9jFRw9oC9HzfjxsLprFgFBYezMRtXqT1t96MG3kW2fVeRFCm9OB2gpiWYlxhMt1gy3Nm2hzEMT0UcCPpw1XMCuBGut58xXx4hLrNbNRje03zGBzdIDM4U9Jeu5KCSIvvX944PByTJ9VgSXdnqP5Pz2YYAPFvq5-dIySc43yMu4l6D7gQOvyBNbb5IXrQqTm2Q35qXQj7QFDI0S_TWZerbQB2yhS7bQFbbQxBbq2UJxJLGFRrbQJVtoYgtts-UN-Xp4cP75KIt9ODKdSzHLcgObdg2KSJbSgQGfm8J2FdfKaV4OpTZlv8cUQw8rEyZnSpvC8cIUQoM92Df9t2QNXsa-I9SWlg1Lx60rFePKSSG57osu3ClmjNwi3fT3VjoWqcdeKZMqRSNeVIBIhYhUAZEt8mkx5TpUaPndwyxhVsVvIJiOFRDs19O2_23ae_J8-RXskLXZTWN3yTN9OxtPb_YiDX8AuuKnJA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+serial-parallel+stochastic+configuration+networks+based+on+nonconvex+dynamic+membership+function+optimization&rft.jtitle=Information+sciences&rft.au=Qiao%2C+Jinghui&rft.au=Qiao%2C+Jiayu&rft.au=Gao%2C+Peng&rft.au=Bai%2C+Zhe&rft.date=2025-02-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=690&rft_id=info:doi/10.1016%2Fj.ins.2024.121501&rft.externalDocID=S0020025524014154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |