An improved learning-based LSTM approach for lane change intention prediction subject to imbalanced data
Lane change intention prediction is an essential component for motion planning of Autonomous Vehicles (AVs). In this work, we aim to achieve this task by using Long-Short Term Memory (LSTM) network. One critical challenge on this task is that the dataset used for training such a network is usually h...
Gespeichert in:
| Veröffentlicht in: | Transportation research. Part C, Emerging technologies Jg. 133; S. 103414 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2021
|
| Schlagworte: | |
| ISSN: | 0968-090X, 1879-2359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Lane change intention prediction is an essential component for motion planning of Autonomous Vehicles (AVs). In this work, we aim to achieve this task by using Long-Short Term Memory (LSTM) network. One critical challenge on this task is that the dataset used for training such a network is usually highly imbalanced due to the fact that the size of left/right lane change data is much smaller than that of the lane keeping data. The imbalanced dateset would lead to trivial output of LSTM model. To deal with this problem, we propose a hierarchical over-sampling bagging method based on Grey Wolf Optimizer (GWO) algorithm and Synthetic Minority Over-sampling Technique (SMOTE). With the proposed method, more diverse and informative instances of minority classes can be generated for training LSTM model. Furthermore, we also propose a sampling technique to keep the temporal information and make the proposed method applicable to sequential data. Moreover, to further improve the prediction performance, we also take the interactions between neighboring vehicles into account by concatenating their trajectories when constructing features. We evaluate our method against several baseline algorithms over two benchmark datasets and the empirical results validate the effectiveness and efficiency of our method in terms of the indexes of prediction time, F1, and G-mean.
•Taking the data imbalance into consideration when training the lane change intention predictor and modify the SMOTE method by GWO algorithm.•A modified oversampling method which can generate imbalanced trajectory sequence and keep the temporal information in the newly formed sequence.•Taking the influence of surrounding vehicles into consideration by mathematically integrating the features of surrounding vehicles and subject vehicle for training the prediction classifier of lane change intention. |
|---|---|
| AbstractList | Lane change intention prediction is an essential component for motion planning of Autonomous Vehicles (AVs). In this work, we aim to achieve this task by using Long-Short Term Memory (LSTM) network. One critical challenge on this task is that the dataset used for training such a network is usually highly imbalanced due to the fact that the size of left/right lane change data is much smaller than that of the lane keeping data. The imbalanced dateset would lead to trivial output of LSTM model. To deal with this problem, we propose a hierarchical over-sampling bagging method based on Grey Wolf Optimizer (GWO) algorithm and Synthetic Minority Over-sampling Technique (SMOTE). With the proposed method, more diverse and informative instances of minority classes can be generated for training LSTM model. Furthermore, we also propose a sampling technique to keep the temporal information and make the proposed method applicable to sequential data. Moreover, to further improve the prediction performance, we also take the interactions between neighboring vehicles into account by concatenating their trajectories when constructing features. We evaluate our method against several baseline algorithms over two benchmark datasets and the empirical results validate the effectiveness and efficiency of our method in terms of the indexes of prediction time, F1, and G-mean.
•Taking the data imbalance into consideration when training the lane change intention predictor and modify the SMOTE method by GWO algorithm.•A modified oversampling method which can generate imbalanced trajectory sequence and keep the temporal information in the newly formed sequence.•Taking the influence of surrounding vehicles into consideration by mathematically integrating the features of surrounding vehicles and subject vehicle for training the prediction classifier of lane change intention. |
| ArticleNumber | 103414 |
| Author | Zhang, Hui Shi, Qian |
| Author_xml | – sequence: 1 givenname: Qian surname: Shi fullname: Shi, Qian organization: School of Transportation Science and Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Hui orcidid: 0000-0002-2501-712X surname: Zhang fullname: Zhang, Hui email: huizhang285@gmail.com organization: School of Transportation Science and Engineering, Beihang University, Beijing 100191, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6TYTuKHWFUVL6mIBUViZ00cp3WUOpVjKvH3OJQVi65mRva50j0zNPG9twjdUrKghPK7dhGDWTDCaLrzghYXaEqlUBnLSzVBU6K4zIgin1doNgwtIYSqUkzRbumx2x9Cf7Q17iwE7_w2q2BI5_p984rhkB7B7HDTB9yBt9jswG8tdj5aH13v8SHY2pnfdfiqWmsijn1KrSD9NymohgjX6LKBbrA3f3OOPh4fNqvnbP329LJarjPDlIgZM0WtBGnyWkqRC16VUhAquQChSs55wQugwGmeK1FxUjLJCTNW1YYUVSVZPkf0lGtCPwzBNvoQ3B7Ct6ZEj6p0q5MqParSJ1WJEf8Y4yKMhWIA150l70-kTZWOzgY9GGfH0i4kD7ru3Rn6B4X7hTo |
| CitedBy_id | crossref_primary_10_1080_19439962_2023_2201181 crossref_primary_10_1080_21680566_2024_2326018 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_1109_TIV_2024_3360417 crossref_primary_10_1080_15325008_2024_2329326 crossref_primary_10_1109_TITS_2025_3542517 crossref_primary_10_3390_infrastructures8110156 crossref_primary_10_1080_19439962_2024_2372292 crossref_primary_10_1109_TITS_2022_3207182 crossref_primary_10_3390_su16041639 crossref_primary_10_1016_j_mechatronics_2024_103143 crossref_primary_10_1016_j_tre_2024_103748 crossref_primary_10_1371_journal_pone_0320578 crossref_primary_10_1016_j_trc_2022_103874 crossref_primary_10_1109_TITS_2025_3552417 crossref_primary_10_1049_cit2_12313 crossref_primary_10_1016_j_measurement_2025_116670 crossref_primary_10_1016_j_engappai_2024_108171 crossref_primary_10_1109_TITS_2023_3248842 crossref_primary_10_1109_TITS_2023_3330941 crossref_primary_10_1016_j_tbs_2023_100595 crossref_primary_10_1177_03611981251335883 crossref_primary_10_1109_TKDE_2023_3348550 crossref_primary_10_3390_info14050257 crossref_primary_10_1109_TITS_2023_3320583 crossref_primary_10_3390_electronics13091625 crossref_primary_10_1109_TVT_2024_3441759 crossref_primary_10_1016_j_commtr_2025_100164 crossref_primary_10_1109_TITS_2023_3344647 crossref_primary_10_1016_j_multra_2025_100222 crossref_primary_10_1109_ACCESS_2023_3327815 crossref_primary_10_1016_j_physa_2022_128290 crossref_primary_10_1177_16878132221108491 crossref_primary_10_3390_systems11040196 |
| Cites_doi | 10.1016/j.ins.2019.07.070 10.1613/jair.953 10.1109/IVS.2011.5940538 10.1109/TITS.2013.2285337 10.1162/neco.1997.9.8.1735 10.1109/TVT.2021.3064680 10.1109/IVS.2013.6629564 10.1109/TKDE.2016.2609424 10.1109/IVS.2017.7995919 10.1109/TIE.2020.2994868 10.1002/rob.20135 10.1109/ITSC45102.2020.9294326 10.1006/jcss.1997.1504 10.1109/34.3899 10.1016/j.trc.2020.102615 10.1016/S0893-6080(99)00073-8 10.1016/j.advengsoft.2013.12.007 10.1109/ICRA.2019.8794146 10.1177/154193120504902217 10.1109/TIV.2017.2708600 10.1142/S0218001401000836 10.1109/ITSC.2017.8317874 10.1177/0361198120922210 10.1016/j.bspc.2020.102194 10.1109/TSMCB.2008.2002909 10.1109/ACCESS.2020.2982170 10.1109/TVT.2020.2996954 10.1016/j.apergo.2015.03.017 10.1109/TKDE.2008.239 10.1016/j.patcog.2007.04.009 10.1109/TNNLS.2019.2920246 10.1023/A:1018054314350 10.1109/TASE.2015.2498192 10.1162/089976699300016890 10.1109/CIDM.2009.4938667 10.1016/j.neucom.2018.04.088 10.1016/j.eswa.2007.01.009 10.1109/TIT.1967.1053964 10.1109/TCST.2007.894653 10.3390/s18041096 10.1109/TITS.2019.2932802 10.3141/2645-18 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.trc.2021.103414 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| ExternalDocumentID | 10_1016_j_trc_2021_103414 S0968090X21004083 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1864201 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-2c4d970f3d887376b58701867a795666464a1a613397b60528602ce9dc04bb823 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771458500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Sat Nov 29 07:09:43 EST 2025 Tue Nov 18 22:35:44 EST 2025 Fri Feb 23 02:43:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autonomous Vehicles Ensemble learning Lane change intention prediction Long Short Term Memory (LSTM) network Over-sampling method Data imbalance |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-2c4d970f3d887376b58701867a795666464a1a613397b60528602ce9dc04bb823 |
| ORCID | 0000-0002-2501-712X |
| ParticipantIDs | crossref_primary_10_1016_j_trc_2021_103414 crossref_citationtrail_10_1016_j_trc_2021_103414 elsevier_sciencedirect_doi_10_1016_j_trc_2021_103414 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hou, Jin, Niu, Sun, Lu (b18) 2011 Ju, Zhang, Tan (b19) 2021 Morris, B., Doshi, A., Trivedi, M., 2011. Lane change intent prediction for driver assistance: On-road design and evaluation. In: 2011 IEEE Intelligent Vehicles Symposium, IV. pp. 895–901. Mandalia, Salvucci (b27) 2005; 49 Luo, Nguyen, Fleming, Zhang (b25) 2021; 70 Wu, Guo, Lin, Yu, Ji (b43) 2018; 18 Pentland, Liu (b32) 1999; 11 Bakhit, Osman, Ishak (b1) 2017 Sun, Kamel, Wong, Wang (b35) 2007; 40 Mahajan, Katrakazas, Antoniou (b26) 2020; 2674 Talebpour, Mahmassani, Mete, Hamdar (b36) 2018 Falcone, Borrelli, Asgari, Tseng, Hrovat (b11) 2007; 15 Benterki, Boukhnifer, Judalet, Maaoui (b2) 2020; 8 Hou, Edara, Sun (b17) 2014; 15 Tang, Zhang, Chawla, Krasser (b37) 2009; 39 Turk, Morgenthaler, Gremban, Marra (b38) 1988; 10 Wang, Huang, Khajepour, Cao, Lv (b39) 2020; 69 Mirjalili, Mirjalili, Lewis (b28) 2014; 69 Chawla, Bowyer, Hall, Kegelmeyer (b5) 2002; 16 De Morais, Vasconcelos (b8) 2019; 343 Yang, Yu, Wen, Cao, Chen, Wong, You (b45) 2020; 31 Peng, Guo, Fu, Yuan, Wang (b31) 2015; 50 Graves (b14) 2012 Haibo, Edwardo (b15) 2009; 21 Zyner, A., Worrall, S., Ward, J., Nebot, E., 2017. Long short term memory for driver intent prediction. In: 2017 IEEE Intelligent Vehicles Symposium, IV. pp. 1484–1489. Breiman (b4) 1996; 24 Yu, Wang, Lai (b46) 2008; 34 Hochreiter, Schmidhuber (b16) 1997; 9 Ojala, Vepsäläinen, Hanhirova, Hirvisalo, Tammi (b30) 2020; 21 Petmezas, Haris, Stefanopoulos, Kilintzis, Maglaveras (b33) 2021; 63 Liu, Yao (b24) 1999; 12 Xing, Lv, Cao (b44) 2020; 115 Freund, Schapire (b13) 1995; 55 Cover, Hart (b6) 1953; 13 Wozniak, Krawczyk, Schaefer (b42) 2013; 14 Zheng, Hansen (b47) 2017; 2 Bhahramani (b3) 2001; 15 Fernández-Llorca, D., Biparva, M., Izquierdo-Gonzalo, R., Tsotsos, J.K., 2020. Two-stream networks for lane-change prediction of surrounding vehicles. In: 2020 International Conference on Intelligent Transportation Systems, ITSC. pp. 1–6. Elreedy, Atiya (b10) 2019; 505 Cremean, Foote, Gillula, Hines, Kogan, Kriechbaum, Lamb, Leibs, Lindzey, Rasmussen (b7) 2006; 23 Wang, S., Yao, X., 2009. Diversity analysis on imbalanced data sets by using ensemble models. In: IEEE Symposium on Computational Intelligence & Data Mining. pp. 1–8. Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 2015 International Conference on Learning Representations, ICLR. pp. 1–15. Kumar, P., Perrollaz, M., Lefèvre, S., Laugier, C., 2013. Learning-based approach for online lane change intention prediction. In: Intelligent Vehicles Symposium. pp. 797–802. Wang, Pineau (b40) 2016; 28 Shi, Zhang (b34) 2020; 68 Lee, D., Kwon, Y.P., McMains, S., Hedrick, J.K., 2017. Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC. In: 2017 International Conference on Intelligent Transportation Systems, ITSC. pp. 1–6. Ding, W., Chen, J., Shen, S., 2019. Predicting vehicle behaviors over an extended horizon using behavior interaction network. In: 2019 International Conference on Robotics and Automation, ICRA. pp. 8634–8640. Lefevre, Carvalho, Borrelli (b23) 2016; 13 Talebpour (10.1016/j.trc.2021.103414_b36) 2018 Tang (10.1016/j.trc.2021.103414_b37) 2009; 39 Turk (10.1016/j.trc.2021.103414_b38) 1988; 10 Wang (10.1016/j.trc.2021.103414_b39) 2020; 69 Bhahramani (10.1016/j.trc.2021.103414_b3) 2001; 15 10.1016/j.trc.2021.103414_b12 Bakhit (10.1016/j.trc.2021.103414_b1) 2017 10.1016/j.trc.2021.103414_b9 De Morais (10.1016/j.trc.2021.103414_b8) 2019; 343 Lefevre (10.1016/j.trc.2021.103414_b23) 2016; 13 Cremean (10.1016/j.trc.2021.103414_b7) 2006; 23 Yu (10.1016/j.trc.2021.103414_b46) 2008; 34 Benterki (10.1016/j.trc.2021.103414_b2) 2020; 8 Wang (10.1016/j.trc.2021.103414_b40) 2016; 28 Breiman (10.1016/j.trc.2021.103414_b4) 1996; 24 Chawla (10.1016/j.trc.2021.103414_b5) 2002; 16 Petmezas (10.1016/j.trc.2021.103414_b33) 2021; 63 Wozniak (10.1016/j.trc.2021.103414_b42) 2013; 14 Peng (10.1016/j.trc.2021.103414_b31) 2015; 50 Shi (10.1016/j.trc.2021.103414_b34) 2020; 68 Xing (10.1016/j.trc.2021.103414_b44) 2020; 115 Falcone (10.1016/j.trc.2021.103414_b11) 2007; 15 Hochreiter (10.1016/j.trc.2021.103414_b16) 1997; 9 Yang (10.1016/j.trc.2021.103414_b45) 2020; 31 Ju (10.1016/j.trc.2021.103414_b19) 2021 10.1016/j.trc.2021.103414_b41 Cover (10.1016/j.trc.2021.103414_b6) 1953; 13 Hou (10.1016/j.trc.2021.103414_b18) 2011 10.1016/j.trc.2021.103414_b22 Mirjalili (10.1016/j.trc.2021.103414_b28) 2014; 69 Pentland (10.1016/j.trc.2021.103414_b32) 1999; 11 10.1016/j.trc.2021.103414_b21 10.1016/j.trc.2021.103414_b20 Liu (10.1016/j.trc.2021.103414_b24) 1999; 12 Mandalia (10.1016/j.trc.2021.103414_b27) 2005; 49 Wu (10.1016/j.trc.2021.103414_b43) 2018; 18 Graves (10.1016/j.trc.2021.103414_b14) 2012 Haibo (10.1016/j.trc.2021.103414_b15) 2009; 21 Zheng (10.1016/j.trc.2021.103414_b47) 2017; 2 Elreedy (10.1016/j.trc.2021.103414_b10) 2019; 505 Luo (10.1016/j.trc.2021.103414_b25) 2021; 70 Mahajan (10.1016/j.trc.2021.103414_b26) 2020; 2674 Sun (10.1016/j.trc.2021.103414_b35) 2007; 40 Hou (10.1016/j.trc.2021.103414_b17) 2014; 15 Ojala (10.1016/j.trc.2021.103414_b30) 2020; 21 10.1016/j.trc.2021.103414_b48 Freund (10.1016/j.trc.2021.103414_b13) 1995; 55 10.1016/j.trc.2021.103414_b29 |
| References_xml | – reference: Morris, B., Doshi, A., Trivedi, M., 2011. Lane change intent prediction for driver assistance: On-road design and evaluation. In: 2011 IEEE Intelligent Vehicles Symposium, IV. pp. 895–901. – volume: 70 start-page: 2930 year: 2021 end-page: 2944 ident: b25 article-title: Unknown input observer based approach for distributed tube-based model predictive control of heterogeneous vehicle platoons publication-title: IEEE Trans. Veh. Technol. – volume: 34 start-page: 1434 year: 2008 end-page: 1444 ident: b46 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Syst. Appl. – volume: 40 start-page: 3358 year: 2007 end-page: 3378 ident: b35 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognit. – volume: 10 start-page: 342 year: 1988 end-page: 361 ident: b38 article-title: VITS-a vision system for autonomous land vehicle navigation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 1387 year: 2020 end-page: 1400 ident: b45 article-title: Hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 39 start-page: 281 year: 2009 end-page: 288 ident: b37 article-title: SVMs modeling for highly imbalanced classification publication-title: IEEE Trans. Syst. Man Cybern. B – start-page: 168 year: 2017 end-page: 175 ident: b1 article-title: Detecting imminent lane change maneuvers in connected vehicle environments publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 12 start-page: 1399 year: 1999 end-page: 1404 ident: b24 article-title: Ensemble learning via negative correlation publication-title: Neural Netw. – volume: 18 start-page: 1096 year: 2018 end-page: 1110 ident: b43 article-title: A weighted deep representation learning model for imbalanced fault diagnosis in cyber-physical systems publication-title: Sensors – volume: 115 start-page: 1 year: 2020 end-page: 19 ident: b44 article-title: An ensemble deep learning approach for driver lane change intention inference publication-title: Transp. Res. C – volume: 343 start-page: 3 year: 2019 end-page: 18 ident: b8 article-title: Boosting the performance of over-sampling algorithms through under-sampling the minority class publication-title: Neurocomputing – volume: 505 start-page: 32 year: 2019 end-page: 64 ident: b10 article-title: A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance publication-title: Inform. Sci. – reference: Lee, D., Kwon, Y.P., McMains, S., Hedrick, J.K., 2017. Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC. In: 2017 International Conference on Intelligent Transportation Systems, ITSC. pp. 1–6. – volume: 50 start-page: 207 year: 2015 end-page: 217 ident: b31 article-title: Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model publication-title: Applied Ergon. – volume: 15 start-page: 566 year: 2007 end-page: 580 ident: b11 article-title: Predictive active steering control for autonomous vehicle systems publication-title: IEEE Trans. Control Syst. Technol. – volume: 23 start-page: 777 year: 2006 end-page: 810 ident: b7 article-title: Alice: An information-rich autonomous vehicle for high-speed desert navigation publication-title: J. Field Robotics – year: 2012 ident: b14 article-title: Long Short-Term Memory – reference: Fernández-Llorca, D., Biparva, M., Izquierdo-Gonzalo, R., Tsotsos, J.K., 2020. Two-stream networks for lane-change prediction of surrounding vehicles. In: 2020 International Conference on Intelligent Transportation Systems, ITSC. pp. 1–6. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b5 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – volume: 55 start-page: 119 year: 1995 end-page: 139 ident: b13 article-title: A decision-thoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 69 start-page: 8164 year: 2020 end-page: 8175 ident: b39 article-title: Ethical decision-making platform in autonomous vehicles with lexicographic optimization based model predictive controller publication-title: IEEE Trans. Veh. Technol. – volume: 15 start-page: 647 year: 2014 end-page: 655 ident: b17 article-title: Modeling mandatory lane changing using Bayes classifier and decision trees publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2021 ident: b19 article-title: Distributed stochastic model predictive control for heterogeneous vehicle platoons subject to modeling uncertainties publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 2674 start-page: 336 year: 2020 end-page: 347 ident: b26 article-title: Prediction of lane-changing maneuvers with automatic labeling and deep learning publication-title: Transp. Res. Rec. J. Transp. Res. Board – reference: Ding, W., Chen, J., Shen, S., 2019. Predicting vehicle behaviors over an extended horizon using behavior interaction network. In: 2019 International Conference on Robotics and Automation, ICRA. pp. 8634–8640. – volume: 68 start-page: 6248 year: 2020 end-page: 6256 ident: b34 article-title: Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets publication-title: IEEE Trans. Ind. Electron. – reference: Wang, S., Yao, X., 2009. Diversity analysis on imbalanced data sets by using ensemble models. In: IEEE Symposium on Computational Intelligence & Data Mining. pp. 1–8. – volume: 13 start-page: 21 year: 1953 end-page: 27 ident: b6 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – volume: 13 start-page: 32 year: 2016 end-page: 42 ident: b23 article-title: A learning-based framework for velocity control in autonomous driving publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 14 start-page: 554 year: 2013 end-page: 562 ident: b42 article-title: Cost-sensitive decision tree ensembles for effective imbalanced classification publication-title: Appl. Soft Comput. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b15 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 14 year: 2017 end-page: 24 ident: b47 article-title: Lane-change detection from steering signal using spectral segmentation and learning-based classification publication-title: IEEE Trans. Intell. Veh. – start-page: 386 year: 2011 end-page: 393 ident: b18 article-title: Driver intention recognition method using continuous hidden Markov model publication-title: Int. J. Comput. Intell. Syst. – reference: Kingma, D.P., Ba, J.L., 2015. Adam: A method for stochastic optimization. In: 2015 International Conference on Learning Representations, ICLR. pp. 1–15. – volume: 11 start-page: 229 year: 1999 end-page: 242 ident: b32 article-title: Modeling and prediction of human behavior publication-title: Neural Comput. – volume: 15 start-page: 9 year: 2001 end-page: 42 ident: b3 article-title: An introduction to hidden Markov models and Bayesian networks publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 28 start-page: 3353 year: 2016 end-page: 3366 ident: b40 article-title: Online bagging and boosting for imbalanced data streams publication-title: IEEE Trans. Knowl. Data Eng. – reference: Kumar, P., Perrollaz, M., Lefèvre, S., Laugier, C., 2013. Learning-based approach for online lane change intention prediction. In: Intelligent Vehicles Symposium. pp. 797–802. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b16 article-title: Long short-term memory publication-title: Neural Comput. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b4 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 63 start-page: 1 year: 2021 end-page: 9 ident: b33 article-title: Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets publication-title: Biomed. Signal Process. Control – start-page: 20 year: 2018 end-page: 28 ident: b36 article-title: Near-crash identification in a connected vehicle environment publication-title: Transp. Res. Rec. J. Transp. Res. Board – reference: Zyner, A., Worrall, S., Ward, J., Nebot, E., 2017. Long short term memory for driver intent prediction. In: 2017 IEEE Intelligent Vehicles Symposium, IV. pp. 1484–1489. – volume: 8 start-page: 56992 year: 2020 end-page: 57002 ident: b2 article-title: Artificial intelligence for vehicle behavior anticipation: Hybrid approach based on maneuver classification and trajectory prediction publication-title: IEEE Access – volume: 21 start-page: 3756 year: 2020 end-page: 3765 ident: b30 article-title: Novel convolutional neural network-based roadside unit for accurate pedestrian localisation publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 49 start-page: 1965 year: 2005 end-page: 1969 ident: b27 article-title: Using Support Vector Machines for Lane-change detection publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. – volume: 505 start-page: 32 year: 2019 ident: 10.1016/j.trc.2021.103414_b10 article-title: A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.07.070 – year: 2021 ident: 10.1016/j.trc.2021.103414_b19 article-title: Distributed stochastic model predictive control for heterogeneous vehicle platoons subject to modeling uncertainties publication-title: IEEE Intell. Transp. Syst. Mag. – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 10.1016/j.trc.2021.103414_b5 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – ident: 10.1016/j.trc.2021.103414_b29 doi: 10.1109/IVS.2011.5940538 – volume: 15 start-page: 647 issue: 2 year: 2014 ident: 10.1016/j.trc.2021.103414_b17 article-title: Modeling mandatory lane changing using Bayes classifier and decision trees publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2285337 – start-page: 386 year: 2011 ident: 10.1016/j.trc.2021.103414_b18 article-title: Driver intention recognition method using continuous hidden Markov model publication-title: Int. J. Comput. Intell. Syst. – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.trc.2021.103414_b16 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 70 start-page: 2930 issue: 4 year: 2021 ident: 10.1016/j.trc.2021.103414_b25 article-title: Unknown input observer based approach for distributed tube-based model predictive control of heterogeneous vehicle platoons publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3064680 – ident: 10.1016/j.trc.2021.103414_b21 doi: 10.1109/IVS.2013.6629564 – volume: 28 start-page: 3353 issue: 12 year: 2016 ident: 10.1016/j.trc.2021.103414_b40 article-title: Online bagging and boosting for imbalanced data streams publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2609424 – ident: 10.1016/j.trc.2021.103414_b48 doi: 10.1109/IVS.2017.7995919 – volume: 68 start-page: 6248 issue: 7 year: 2020 ident: 10.1016/j.trc.2021.103414_b34 article-title: Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2994868 – volume: 23 start-page: 777 issue: 9 year: 2006 ident: 10.1016/j.trc.2021.103414_b7 article-title: Alice: An information-rich autonomous vehicle for high-speed desert navigation publication-title: J. Field Robotics doi: 10.1002/rob.20135 – ident: 10.1016/j.trc.2021.103414_b12 doi: 10.1109/ITSC45102.2020.9294326 – volume: 55 start-page: 119 issue: 1 year: 1995 ident: 10.1016/j.trc.2021.103414_b13 article-title: A decision-thoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 14 start-page: 554 issue: 1 year: 2013 ident: 10.1016/j.trc.2021.103414_b42 article-title: Cost-sensitive decision tree ensembles for effective imbalanced classification publication-title: Appl. Soft Comput. – year: 2012 ident: 10.1016/j.trc.2021.103414_b14 – ident: 10.1016/j.trc.2021.103414_b20 – volume: 10 start-page: 342 issue: 3 year: 1988 ident: 10.1016/j.trc.2021.103414_b38 article-title: VITS-a vision system for autonomous land vehicle navigation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.3899 – volume: 115 start-page: 1 year: 2020 ident: 10.1016/j.trc.2021.103414_b44 article-title: An ensemble deep learning approach for driver lane change intention inference publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102615 – volume: 12 start-page: 1399 issue: 10 year: 1999 ident: 10.1016/j.trc.2021.103414_b24 article-title: Ensemble learning via negative correlation publication-title: Neural Netw. doi: 10.1016/S0893-6080(99)00073-8 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.trc.2021.103414_b28 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: 10.1016/j.trc.2021.103414_b9 doi: 10.1109/ICRA.2019.8794146 – volume: 49 start-page: 1965 issue: 22 year: 2005 ident: 10.1016/j.trc.2021.103414_b27 article-title: Using Support Vector Machines for Lane-change detection publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. doi: 10.1177/154193120504902217 – start-page: 20 issue: 2424 year: 2018 ident: 10.1016/j.trc.2021.103414_b36 article-title: Near-crash identification in a connected vehicle environment publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 2 start-page: 14 issue: 1 year: 2017 ident: 10.1016/j.trc.2021.103414_b47 article-title: Lane-change detection from steering signal using spectral segmentation and learning-based classification publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2017.2708600 – volume: 15 start-page: 9 issue: 1 year: 2001 ident: 10.1016/j.trc.2021.103414_b3 article-title: An introduction to hidden Markov models and Bayesian networks publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001401000836 – ident: 10.1016/j.trc.2021.103414_b22 doi: 10.1109/ITSC.2017.8317874 – volume: 2674 start-page: 336 issue: 7 year: 2020 ident: 10.1016/j.trc.2021.103414_b26 article-title: Prediction of lane-changing maneuvers with automatic labeling and deep learning publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.1177/0361198120922210 – volume: 63 start-page: 1 year: 2021 ident: 10.1016/j.trc.2021.103414_b33 article-title: Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102194 – volume: 39 start-page: 281 issue: 1 year: 2009 ident: 10.1016/j.trc.2021.103414_b37 article-title: SVMs modeling for highly imbalanced classification publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2008.2002909 – volume: 8 start-page: 56992 year: 2020 ident: 10.1016/j.trc.2021.103414_b2 article-title: Artificial intelligence for vehicle behavior anticipation: Hybrid approach based on maneuver classification and trajectory prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982170 – volume: 69 start-page: 8164 issue: 8 year: 2020 ident: 10.1016/j.trc.2021.103414_b39 article-title: Ethical decision-making platform in autonomous vehicles with lexicographic optimization based model predictive controller publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2996954 – volume: 50 start-page: 207 year: 2015 ident: 10.1016/j.trc.2021.103414_b31 article-title: Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model publication-title: Applied Ergon. doi: 10.1016/j.apergo.2015.03.017 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.trc.2021.103414_b15 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 40 start-page: 3358 issue: 12 year: 2007 ident: 10.1016/j.trc.2021.103414_b35 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.04.009 – volume: 31 start-page: 1387 issue: 4 year: 2020 ident: 10.1016/j.trc.2021.103414_b45 article-title: Hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2920246 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.trc.2021.103414_b4 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 13 start-page: 32 issue: 1 year: 2016 ident: 10.1016/j.trc.2021.103414_b23 article-title: A learning-based framework for velocity control in autonomous driving publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2498192 – volume: 11 start-page: 229 year: 1999 ident: 10.1016/j.trc.2021.103414_b32 article-title: Modeling and prediction of human behavior publication-title: Neural Comput. doi: 10.1162/089976699300016890 – ident: 10.1016/j.trc.2021.103414_b41 doi: 10.1109/CIDM.2009.4938667 – volume: 343 start-page: 3 year: 2019 ident: 10.1016/j.trc.2021.103414_b8 article-title: Boosting the performance of over-sampling algorithms through under-sampling the minority class publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.088 – volume: 34 start-page: 1434 issue: 2 year: 2008 ident: 10.1016/j.trc.2021.103414_b46 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.009 – volume: 13 start-page: 21 issue: 1 year: 1953 ident: 10.1016/j.trc.2021.103414_b6 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – volume: 15 start-page: 566 issue: 3 year: 2007 ident: 10.1016/j.trc.2021.103414_b11 article-title: Predictive active steering control for autonomous vehicle systems publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2007.894653 – volume: 18 start-page: 1096 issue: 4 year: 2018 ident: 10.1016/j.trc.2021.103414_b43 article-title: A weighted deep representation learning model for imbalanced fault diagnosis in cyber-physical systems publication-title: Sensors doi: 10.3390/s18041096 – volume: 21 start-page: 3756 issue: 9 year: 2020 ident: 10.1016/j.trc.2021.103414_b30 article-title: Novel convolutional neural network-based roadside unit for accurate pedestrian localisation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2932802 – start-page: 168 issue: 2645 year: 2017 ident: 10.1016/j.trc.2021.103414_b1 article-title: Detecting imminent lane change maneuvers in connected vehicle environments publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2645-18 |
| SSID | ssj0001957 |
| Score | 2.5420802 |
| Snippet | Lane change intention prediction is an essential component for motion planning of Autonomous Vehicles (AVs). In this work, we aim to achieve this task by using... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103414 |
| SubjectTerms | Autonomous Vehicles Data imbalance Ensemble learning Lane change intention prediction Long Short Term Memory (LSTM) network Over-sampling method |
| Title | An improved learning-based LSTM approach for lane change intention prediction subject to imbalanced data |
| URI | https://dx.doi.org/10.1016/j.trc.2021.103414 |
| Volume | 133 |
| WOSCitedRecordID | wos000771458500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZO1j3MLZupd0XetjTgootO7b1GEpHO7aykQzyZixZWVNaJzhO6J_fO-sjbvbBNtiLMSaKgu4X3U_nu98R8i7QfKoGSrFBlkYs5jpgolCcFQmXopQ8KoVpNpFeXGSTifjS601dLcz6Oq2q7PZWLP6rqeEZGBtLZ__C3P5L4QHcg9HhCmaH6x8Zflhh6WM9XwOVtD0hvjN0VmX_02j82auItwmGmOpqi39b5QiT-7io8fVNe7tcSYzUIEWd3UjMg8SEAVvR5mmtl0g3cLIKQpfHQFDrpn_SbrhY59nWZrlgfid9cdS2Fu5_7WDVR7LPVrNuaIKHW2kevmZmk6DUBh4TTLgIJsYDmW03SwXjkdUGd_uyUcj4YY834Yar46ZGCUoeom5AbCpRt6SzRzgXTsVRFw_I5gOyy9OBgN1vd3h-OvnofXYojCas-23u_XebCbg10c8ZTIeVjJ-SJ_Y4QYcGBs9IT1f75JGrNl_uk8cdwcnn5HJYUQcOeh8cFMFBHTgogIMiOKgBB_XgoBtwUAsO2szpBhwUwfGCfPtwOj45Y7bXBlNcpA3jKi5FGkyjErwOOB0J_90AxQ6LFE7QSRIncREWwP2Av0o4AnPsXaa0KFUQS5nx6IDsVPNKHxKqdajKApUcyygelFqCCwVWPFWJBhNHxREJ3PrlygrRYz-U69xlHF7lsOQ5LnlulvyIvPdDFkaF5Xcfjp1RcksjDT3MAUG_Hvby34a9Insb6L8mO0290m_IQ7VuZsv6rcXZHeXblxw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+learning-based+LSTM+approach+for+lane+change+intention+prediction+subject+to+imbalanced+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Shi%2C+Qian&rft.au=Zhang%2C+Hui&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=133&rft_id=info:doi/10.1016%2Fj.trc.2021.103414&rft.externalDocID=S0968090X21004083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |