Layer-wise partitioning and merging for efficient and scalable deep learning

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 149; s. 432 - 444
Hlavní autori: Akintoye, S.B., Han, L., Lloyd, H., Zhang, X., Dancey, D., Chen, H., Zhang, D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.12.2023
ISSN:0167-739X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Author Zhang, D.
Han, L.
Dancey, D.
Lloyd, H.
Akintoye, S.B.
Chen, H.
Zhang, X.
Author_xml – sequence: 1
  givenname: S.B.
  surname: Akintoye
  fullname: Akintoye, S.B.
– sequence: 2
  givenname: L.
  orcidid: 0000-0003-2491-7473
  surname: Han
  fullname: Han, L.
– sequence: 3
  givenname: H.
  orcidid: 0000-0001-6537-4036
  surname: Lloyd
  fullname: Lloyd, H.
– sequence: 4
  givenname: X.
  surname: Zhang
  fullname: Zhang, X.
– sequence: 5
  givenname: D.
  surname: Dancey
  fullname: Dancey, D.
– sequence: 6
  givenname: H.
  orcidid: 0000-0001-8890-8192
  surname: Chen
  fullname: Chen, H.
– sequence: 7
  givenname: D.
  surname: Zhang
  fullname: Zhang, D.
BookMark eNp9kMtqwzAQRbVIoUnaP-jCP2B3ZMlW3F0JfQQM3bTQnRjLoyDj2EFSKPn72k1XXXQ1A5dzuZwVWwzjQIzdccg48PK-y-wpnjxlOeQiA5WBFAu2nCKVKlF9XrNVCB0AcCX4ktU1nsmnXy5QckQfXXTj4IZ9gkObHMjv59-OPiFrnXE0xJ8kGOyx6SlpiY5JT-hn6IZdWewD3f7eNft4fnrfvqb128tu-1inJq9UTHPDDQhbqqbNEYTAoiqMKAFtVZmCjKVGyaYlk0s57d4YKBGlUqA2rZWyEGv2cOk1fgzBk9XGRZyXR4-u1xz07EJ3-uJCzy40KD25mGD5Bz56d0B__h_7BsOda4w
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3527863
crossref_primary_10_1186_s13007_025_01362_z
Cites_doi 10.1002/cnm.2956
10.1109/CVPRW50498.2020.00121
10.1016/j.procs.2021.01.025
10.3390/fi11100209
10.1109/CVPR.2016.308
10.1145/3322795.3331463
10.1109/ACCESS.2020.2981411
10.14778/2732286.2732292
10.18653/v1/2021.sigtyp-1.13
10.1109/ICASSP40776.2020.9053565
10.1109/AVSS.2018.8639121
10.1109/CVPR.2018.00745
10.1109/CBD.2019.00020
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.future.2023.07.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 444
ExternalDocumentID 10_1016_j_future_2023_07_043
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
ID FETCH-LOGICAL-c297t-2c1c03f67bd2a033a595c360af99c5ecfeb74bdec2440168c06aa477078df4453
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001059394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:23:29 EST 2025
Tue Nov 18 21:51:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-2c1c03f67bd2a033a595c360af99c5ecfeb74bdec2440168c06aa477078df4453
ORCID 0000-0001-8890-8192
0000-0001-6537-4036
0000-0003-2491-7473
OpenAccessLink https://doi.org/10.1016/j.future.2023.07.043
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_future_2023_07_043
crossref_primary_10_1016_j_future_2023_07_043
PublicationCentury 2000
PublicationDate 2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2023
References Xu (10.1016/j.future.2023.07.043_b36) 2020
Jia (10.1016/j.future.2023.07.043_b15) 2019
Kingma (10.1016/j.future.2023.07.043_b39) 2015
Giuste (10.1016/j.future.2023.07.043_b45) 2020
10.1016/j.future.2023.07.043_b13
10.1016/j.future.2023.07.043_b35
Zhang (10.1016/j.future.2023.07.043_b40) 2021; PP
Huang (10.1016/j.future.2023.07.043_b32) 2019
Zhou (10.1016/j.future.2023.07.043_b24) 2019
Abadi (10.1016/j.future.2023.07.043_b4) 2016
Sarwinda (10.1016/j.future.2023.07.043_b41) 2021; 179
10.1016/j.future.2023.07.043_b30
10.1016/j.future.2023.07.043_b10
Jaderberg (10.1016/j.future.2023.07.043_b9) 2017
Dai (10.1016/j.future.2023.07.043_b37) 2019
Song (10.1016/j.future.2023.07.043_b25) 2019
Zhuang (10.1016/j.future.2023.07.043_b11) 2021; PP
Belilovsky (10.1016/j.future.2023.07.043_b34) 2020; vol. 119
Liu (10.1016/j.future.2023.07.043_b3) 2018
Martins Campos de Oliveira (10.1016/j.future.2023.07.043_b20) 2019; 11
Martins Campos de Oliveira (10.1016/j.future.2023.07.043_b21) 2018
Sharma (10.1016/j.future.2023.07.043_b44) 2022; 24
Jia (10.1016/j.future.2023.07.043_b14) 2018
Boehm (10.1016/j.future.2023.07.043_b29) 2014; 7
Yang (10.1016/j.future.2023.07.043_b27) 2019
Saguil (10.1016/j.future.2023.07.043_b19) 2020; 8
10.1016/j.future.2023.07.043_b23
10.1016/j.future.2023.07.043_b26
Tian (10.1016/j.future.2023.07.043_b42) 2021
PyTorch (10.1016/j.future.2023.07.043_b46) 2020
Krizhevsky (10.1016/j.future.2023.07.043_b17) 2014
10.1016/j.future.2023.07.043_b28
Gower (10.1016/j.future.2023.07.043_b38) 2019
10.1016/j.future.2023.07.043_b2
Akintoye (10.1016/j.future.2023.07.043_b31) 2021
10.1016/j.future.2023.07.043_b1
Seide (10.1016/j.future.2023.07.043_b16) 2014
Narayanan (10.1016/j.future.2023.07.043_b33) 2019
10.1016/j.future.2023.07.043_b5
10.1016/j.future.2023.07.043_b43
Cheng (10.1016/j.future.2023.07.043_b7) 2021
10.1016/j.future.2023.07.043_b22
Wu (10.1016/j.future.2023.07.043_b18) 2016
Nvidia (10.1016/j.future.2023.07.043_b47) 2021
Huo (10.1016/j.future.2023.07.043_b12) 2018
Dryden (10.1016/j.future.2023.07.043_b6) 2019
Fan (10.1016/j.future.2023.07.043_b8) 2018; 34 5
References_xml – year: 2021
  ident: 10.1016/j.future.2023.07.043_b7
– start-page: 1
  year: 2019
  ident: 10.1016/j.future.2023.07.043_b33
  article-title: PipeDream: Generalized pipeline parallelism for DNN training
– year: 2021
  ident: 10.1016/j.future.2023.07.043_b42
– ident: 10.1016/j.future.2023.07.043_b10
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b38
– ident: 10.1016/j.future.2023.07.043_b35
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b27
– ident: 10.1016/j.future.2023.07.043_b5
– volume: vol. 119
  start-page: 736
  year: 2020
  ident: 10.1016/j.future.2023.07.043_b34
  article-title: Decoupled greedy learning of CNNs
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b32
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b6
  article-title: Channel and filter parallelism for large-scale CNN training
– year: 2018
  ident: 10.1016/j.future.2023.07.043_b12
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b24
  article-title: Distributing deep neural networks with containerized partitions at the edge
– ident: 10.1016/j.future.2023.07.043_b30
– year: 2014
  ident: 10.1016/j.future.2023.07.043_b17
– year: 2015
  ident: 10.1016/j.future.2023.07.043_b39
– year: 2020
  ident: 10.1016/j.future.2023.07.043_b46
– start-page: 1627
  year: 2017
  ident: 10.1016/j.future.2023.07.043_b9
  article-title: Decoupled neural interfaces using synthetic gradients
– start-page: 265
  year: 2016
  ident: 10.1016/j.future.2023.07.043_b4
  article-title: TensorFlow: A system for large-scale machine learning
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b37
  article-title: Toward understanding the impact of staleness in distributed machine learning
– volume: 34 5
  issue: 5
  year: 2018
  ident: 10.1016/j.future.2023.07.043_b8
  article-title: General backpropagation algorithm for training second-order neural networks
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2956
– volume: 24
  year: 2022
  ident: 10.1016/j.future.2023.07.043_b44
  article-title: A deep learning based convolutional neural network model with VGG16 feature extractor for the detection of alzheimer disease using MRI scans
  publication-title: Meas.: Sens.
– ident: 10.1016/j.future.2023.07.043_b13
  doi: 10.1109/CVPRW50498.2020.00121
– volume: 179
  start-page: 423
  year: 2021
  ident: 10.1016/j.future.2023.07.043_b41
  article-title: Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.01.025
– volume: 11
  issue: 10
  year: 2019
  ident: 10.1016/j.future.2023.07.043_b20
  article-title: Partitioning convolutional neural networks to maximize the inference rate on constrained IoT devices
  publication-title: Future Internet
  doi: 10.3390/fi11100209
– ident: 10.1016/j.future.2023.07.043_b1
  doi: 10.1109/CVPR.2016.308
– year: 2016
  ident: 10.1016/j.future.2023.07.043_b18
– ident: 10.1016/j.future.2023.07.043_b28
  doi: 10.1145/3322795.3331463
– year: 2019
  ident: 10.1016/j.future.2023.07.043_b15
– volume: PP
  year: 2021
  ident: 10.1016/j.future.2023.07.043_b40
  article-title: An explainable 3D residual self-attention deep neural network FOR joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 8
  start-page: 59456
  year: 2020
  ident: 10.1016/j.future.2023.07.043_b19
  article-title: A layer-partitioning approach for faster execution of neural network-based embedded applications in edge networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981411
– volume: 7
  start-page: 553
  issue: 7
  year: 2014
  ident: 10.1016/j.future.2023.07.043_b29
  article-title: Hybrid parallelization strategies for large-scale machine learning in systemml
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2732286.2732292
– ident: 10.1016/j.future.2023.07.043_b43
  doi: 10.18653/v1/2021.sigtyp-1.13
– volume: PP
  year: 2021
  ident: 10.1016/j.future.2023.07.043_b11
  article-title: Fully decoupled neural network learning using delayed gradients
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2018
  ident: 10.1016/j.future.2023.07.043_b14
– ident: 10.1016/j.future.2023.07.043_b22
  doi: 10.1109/ICASSP40776.2020.9053565
– year: 2021
  ident: 10.1016/j.future.2023.07.043_b47
– year: 2020
  ident: 10.1016/j.future.2023.07.043_b45
– start-page: 8644
  year: 2018
  ident: 10.1016/j.future.2023.07.043_b3
  article-title: Map-based deep imitation learning for obstacle avoidance
– ident: 10.1016/j.future.2023.07.043_b23
  doi: 10.1109/AVSS.2018.8639121
– start-page: 56
  year: 2019
  ident: 10.1016/j.future.2023.07.043_b25
  article-title: HyPar: Towards hybrid parallelism for deep learning accelerator array
– start-page: 2085
  year: 2020
  ident: 10.1016/j.future.2023.07.043_b36
  article-title: On the acceleration of deep learning model parallelism with staleness
– year: 2021
  ident: 10.1016/j.future.2023.07.043_b31
– ident: 10.1016/j.future.2023.07.043_b2
  doi: 10.1109/CVPR.2018.00745
– year: 2018
  ident: 10.1016/j.future.2023.07.043_b21
– ident: 10.1016/j.future.2023.07.043_b26
  doi: 10.1109/CBD.2019.00020
– start-page: 235
  year: 2014
  ident: 10.1016/j.future.2023.07.043_b16
  article-title: On parallelizability of stochastic gradient descent for speech DNNS
SSID ssj0001731
Score 2.4410121
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 432
Title Layer-wise partitioning and merging for efficient and scalable deep learning
Volume 149
WOSCitedRecordID wos001059394000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELUocOiFz1alFOQDN-QoGztxfNxWIIpWiANIe4scx0FLUXbFbin8-44_N4CEyqGXKHISZ7PzNB6PZt5D6EjBmkdVTgkVdUMYlZII1khS89z0PUpY1UsrNsEvLsrxWFz6nO7cygnwrisfH8Xsv5oaxsDYpnX2HeaOk8IAnIPR4Qhmh-M_GX4kIYomfyZzfTwzl0PG1WTITa9lKJ3UljwilJjPwVa-i0rPgpbETT90PbXsI0ZyWXvUKK8I4emgY3Q-_DXpFtMnl9xOvidLL-f6HOLA6G76ZBF2FodiAnuc9BMSGe0Vd_gcJfheTq1C7tLJOmJS7yaZz2m6FZc5BshXztzlFW4Tx66SmHdZolXH6_ScO_vFmhYrDUMR223lZqnMLFXKK5jlA1rLAJLgC9eGP0_G53EFH3CvY-k_JLRc2rrA17-mF9L0YpOrLbThNxV46MCwjVZ0t4M2g2AH9v57F42W2MB9bGBAAPbYwIANHLFhrwRsYIMNHLDxCV2fnlz9OCNeToOoTPAFydRApbQteN1kMqVU5iJXtEhlK4TKtWp1zVndaAURH3xqqdJCSsYNHVTTMpbTz2i1m3b6C8JyABtvpYu2hd18WjPBWwgFRZmzWrCiHewhGv6RSnmueSN5cle9ZY89ROJTM8e18ub9X995_z76uMTrN7S6uP-tD9C6elhM5veHHgR_ASgJeyM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-wise+partitioning+and+merging+for+efficient+and+scalable+deep+learning&rft.jtitle=Future+generation+computer+systems&rft.au=Akintoye%2C+S.B.&rft.au=Han%2C+L.&rft.au=Lloyd%2C+H.&rft.au=Zhang%2C+X.&rft.date=2023-12-01&rft.issn=0167-739X&rft.volume=149&rft.spage=432&rft.epage=444&rft_id=info:doi/10.1016%2Fj.future.2023.07.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2023_07_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon